Sparse-Recovery-Based Channel Estimation in Orthogonal Time-Frequency Space Modulation for High-Mobility Scenarios in 5G and Beyond
Abstract
Orthogonal time frequency space (OTFS) modulation is a breakthrough waveform that significantly outperforms conventional modulation schemes in high-mobility scenarios. Unlike traditional approaches that operate in the time-frequency domain, OTFS exploits the delay-Doppler domain, transforming a time-varying channel into a nearly time-invariant one. This paper focuses on the critical challenge of channel estimation (CE) in OTFS-based downlink communication. Recognizing the inherent sparsity of the delay-Doppler domain, the CE problem is formulated as a sparse recovery task, enabling the use of advanced compressed sensing techniques. A robust greedy algorithm, namely multipath matching pursuit (MMP), is aided for OTFS to enhance estimation accuracy. The effectiveness of MMP is benchmarked against orthogonal matching pursuit (OMP) and conventional impulse-based estimation methods. Simulation results demonstrate that the proposed MMP-based CE technique significantly improves channel state information acquisition and achieves superior normalized mean square error performance, making it a promising solution for high-mobility 5G and beyond communication systems.
Keywords
Channel estimation, compressed sensing, delay-Doppler, OTFS modulation, sparse channel recovery
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
S. Sabapathy, S. Maruthu and D. Sasi, "Sparse-Recovery-Based Channel Estimation in Orthogonal Time-Frequency Space Modulation for High-Mobility Scenarios in 5G and Beyond," in Journal of Communications Software and Systems, vol. 21, no. 2, pp. 220-228, May 2025, doi: https://doi.org/10.24138/jcomss-2024-0095
@article{sabapathy2025sparserecovery,
author = {Sundaresan Sabapathy and Surendar Maruthu and Deepika Sasi},
title = {Sparse-Recovery-Based Channel Estimation in Orthogonal Time-Frequency Space Modulation for High-Mobility Scenarios in 5G and Beyond},
journal = {Journal of Communications Software and Systems},
month = {5},
year = {2025},
volume = {21},
number = {2},
pages = {220--228},
doi = {https://doi.org/10.24138/jcomss-2024-0095},
url = {https://doi.org/https://doi.org/10.24138/jcomss-2024-0095}
}