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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is a breakthrough waveform that significantly outperforms
conventional modulation schemes in high-mobility scenarios.
Unlike traditional approaches that operate in the time-frequency
domain, OTFS exploits the delay-Doppler domain, transforming
a time-varying channel into a nearly time-invariant one. This
paper focuses on the critical challenge of channel estimation
(CE) in OTFS-based downlink communication. Recognizing the
inherent sparsity of the delay-Doppler domain, the CE problem
is formulated as a sparse recovery task, enabling the use of
advanced compressed sensing techniques. A robust greedy algo-
rithm, namely multipath matching pursuit (MMP), is aided for
OTFS to enhance estimation accuracy. The effectiveness of MMP
is benchmarked against orthogonal matching pursuit (OMP)
and conventional impulse-based estimation methods. Simulation
results demonstrate that the proposed MMP-based CE technique
significantly improves channel state information acquisition and
achieves superior normalized mean square error performance,
making it a promising solution for high-mobility 5G and beyond
communication systems.

Index Terms—Channel estimation, compressed sensing, delay-
Doppler, OTFS modulation, sparse channel recovery.

I. INTRODUCTION

The fifth generation of wireless communication (5G and
beyond) requires seamless and reliable communication in
highly mobile scenarios such as communication between ve-
hicles (V2V), communication between vehicles and various
entities (V2X), high-speed train networks, applications utiliz-
ing millimeter wave (mmWave) technology, unmanned aerial
vehicles (UAVs), and aircraft [1]–[3]. In channels charac-
terized by double dispersion, the performance of orthogonal
frequency division multiplexing (OFDM) is hindered primarily
attributed to the diminished orthogonality among sub-carriers
[4]. Orthogonal time frequency space (OTFS) is an upcoming

Manuscript received October 29, 2024; revised March 17, 2025. Date
of publication May 23, 2025. Date of current version May 23, 2025. The
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modulation scheme that demonstrates resilient performance
in high Doppler environments [5], [6]. OTFS works in the
2D delay-Doppler (DD) domain, providing a more precise
physical representation of the mobile channel. In OTFS,
the information symbols are multiplexed and the channel is
depicted in the DD domain due to which a time-varying
channel looks approximately time-invariant. As the channel
seems to be stationary for a longer duration in the DD domain,
it is sparsely represented in nature and requires very less
parameters to be estimated. This underlying sparsity is the key
parameter in simplifying the channel estimation (CE) problem
in the DD domain when compared to the time-frequency
domain. Several works on the OTFS CE have been reported in
the literature [7]–[16] for high-mobility environments which
can be segregated into two categories: pilot and compressed
sensing-based CE.

In pilot-based approach the CE is carried out by aiding
pilot symbols which are transmitted either as a standalone
or superimposed or embedded with information. In reference
[7], within every OTFS frame, a strategic arrangement of data
symbols, pilot, and guard is implemented in the DD plane,
effectively minimizing pilot and data symbols’ interference at
the receiver. Also, specific arrangements of symbols tailored
for OTFS operating in multipath channels with both fractional
and integer Doppler shifts are made. In the receiver stage,
CE employs a threshold technique. The acquired channel
information is subsequently applied in the detection of data
through the implementation of a message-passing algorithm.
A novel pilot-based time-domain CE technique is presented in
[8], specifically designed for cyclic prefix (CP)-OTFS systems
and embedded in the DD domain. This method addresses chal-
lenges posed by fractional multiple Doppler effects, residual
frame timing offset, and carrier frequency offset. Additionally,
a low-complexity linear minimum mean square error (MMSE)
equalization and successive interference cancellation (SIC)
receiver designed for low-density parity check (LDPC) coded
CP-OTFS systems are analyzed.

Moreover, a compressed sensing (CS) based greedy algo-
rithm is introduced in [9], a novel approach to CE, lever-
aging a 3D-structured orthogonal matching pursuit (OMP)
algorithm. This technique is specifically tailored to address
the complexities of the OTFS multiple input multiple output
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(MIMO) channel. Initially, the OTFS MIMO channel 3D-
structured sparsity is framed, characterized by the sparsity,
block sparsity, and burst sparsity along the delay, Doppler,
and angle dimensions, respectively. Utilizing this structured
sparsity, the formulation of the downlink CE task as a prob-
lem of recovering a sparse signal is accomplished. Likewise,
algorithms based on OMP and modified subspace pursuit
(MSP) for DD CE in the uplink OTFS system are exploited
in [10]. The study includes a comparative analysis of the
performance of these estimation techniques based on CS
against the impulse-based CE scheme commonly reported in
OTFS. The proposed compressed sensing CS-based algorithms
demonstrate superior performance compared to the impulse-
based CE scheme, as evidenced by the normalized mean
squared error and bit error performance. Also, an off-grid
CE method for OTFS systems, utilizing the sparse Bayesian
learning (SBL) and block SBL framework is proposed in
[11], [12]. These approaches aim to mitigate channel fading
induced by Doppler shifts and fractional delay by estimating
the response of the original DD domain channel rather than
that of the effective DD domain channel. These techniques
employ a virtual sampling grid specified in the DD space
to acquire the on-grid and off-grid components of delay and
Doppler shifts during the estimation process. Subsequently, the
determination of on-grid and off-grid components is carried
out by locating the entry indices having significant values in
the reconstructed sparse vector and hyper parameters within
the proposed SBL framework, respectively which is estimated
using the expectation-maximization method.

An algorithm comprising two stages is designed for deter-
mining the fractional Doppler channels, which is proposed in
[13]. At the outset, an approximate position for every non-zero
Doppler shift is determined by correlating the basis function
in the DD domain. Subsequently, a quasi-Newton method is
aided to iteratively enhance the fractional Doppler channel
estimation, depending on the initial estimation which reduces
the estimation error attributable to inter-delay interference
(IDI). In [14], a less complex CE algorithm with a rapid greedy
sparse recovery method termed two-choice hard thresholding
pursuit (TCHTP) is introduced. This algorithm is designed to
estimate DD locations and the corresponding channel state
information (DDLCSI) within OTFS systems, even in the
absence of explicit knowledge regarding the number of DD
paths. The proposed approach exhibits superior performance
compared to conventional methods in mean square error,
number of DD path estimates, and complexity. Substantial
works on CE for OTFS are listed out in [15] with highlights
and challenges of each technique.

In light of this, the key factor for the OTFS CE is the sparse
nature of the channel which should be taken into account. Due
to this sparse characteristic, the CE problem is conceptualized
as a challenge in sparse signal recovery, which can be solved
using CS-based algorithms [16]–[19]. In this paper, a greedy
CS algorithm viz., multipath matching pursuit (MMP) is aided
for estimating the OTFS MIMO channel in the downlink
scenario. MMP employs a tree search with the assistance
of a greedy strategy to address the sparse recovery problem.
Moreover, the dual functionality of MMP i.e., depth-first (DF)

and breadth-first (BF) search techniques are analyzed. The
foremost contributions of this paper are:

• An MMP-based CE framework is employed for OTFS,
leveraging the sparsity of the DD domain to enhance
signal recovery and improve estimation accuracy in high-
mobility environments.

• Provides a comparative study of DF-MMP and BF-MMP
approaches, demonstrating DF-MMP’s superior accuracy
in normalized mean square error (NMSE) under practical
system conditions.

• Contrasts MMP with OMP and impulse-based estimation
methods, highlighting MMP’s significant advantages in
precision, robustness, and adaptability for OTFS-based
communication.

• Also, investigates the impact of key parameters such
as antenna configurations, pilot overhead ratio, and user
velocity, offering deep insights into performance trade-
offs in dynamic wireless environments.

• Aligns with the evolving demands of 5G and beyond,
providing a scalable and efficient CE solution for OTFS
in high-mobility scenarios, ensuring improved reliability
and network efficiency.

The far comparative analysis of MMP, OMP, and impulse-
based methods for OTFS CE highlights key distinctions in
their approach and efficiency. MMP effectively exploits the
sparsity of the DD domain by employing a structured search
mechanism. It iteratively refines path estimation through DF
or BF strategies, where DF MMP quickly identifies dominant
paths, and breadth-first MMP provides a more stable and
comprehensive solution. OMP, though also a greedy algorithm,
lacks a structured multipath exploration strategy, which can
lead to sub-optimal CE in complex environments. Impulse-
based methods, being a straightforward approach, do not
leverage sparsity and rely solely on direct pilot-based esti-
mation, making them less effective in handling multipath and
Doppler shifts. In terms of efficiency, MMP offers superior
estimation accuracy by effectively identifying and tracking
multipath components, while OMP provides moderate perfor-
mance with simpler implementation but lacks refined path se-
lection. Impulse-based methods, though computationally less
demanding, suffer from significant performance degradation
in high-mobility scenarios. MMP’s structured approach makes
it more adaptable and robust, ensuring reliable CE essential
for OTFS-based wireless communication. Simulation results
signify that the MMP-based CE technique achieves enhanced
NMSE in comparison to OMP and impulse-based techniques.

The rest of the paper is organized as follows. Section II
provides the relevant input-output relationship equations of
the OTFS system. The DF and BF-MMP-based estimation
schemes for OTFS MIMO in downlink are described in
Section III. The simulation results and discussions are gathered
in Section IV with drawn conclusions in Section V.

Notations: Boldface capital letters denote matrices and
lower-case letters denote column vectors. The inverse of
a matrix, transpose, conjugate and conjugate transpose are
denoted by (·)−1 (·)T , (·)∗ and (·)H , respectively. ⊙ denotes
the Hadamard product operator.
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II. OTFS SYSTEM MODEL AND ITS MATHEMATICAL
BACKGROUND

Consider an OTFS massive MIMO system model, where
the base station is equipped with Nt transmit antennas to
accommodate U users with a single receiver antenna. The
quadrature amplitude modulated (QAM) information symbols
of length MN are arranged into an M ×N 2D DD grid Γ to
obtain 2D OTFS frame XDD ∈ CM×N in the DD domain. Γ
is given as,

Γ =

{(
k

NT
,

l

m∆f

)
, k = 0, 1, . . . , N − 1;

l = 0, 1, . . . ,M − 1}
(1)

where 1
m∆f and 1

NT are the quantization steps in the delay
and Doppler axes while M and N are the number of DD
resource block (DDRB) in the delay and Doppler dimensions,
respectively. For ensuring maximum multi-user (MU)-MIMO
capacity and in order to eliminate the inter-user interference
downlink precoding is performed. After precoding, the 2D
inverse symplectic finite Fourier transform (ISFFT) along with
transmit windowing is applied, in order to translate these
symbols from DD grid Γ to time-frequency grid given by Λ.
The TF plane is discretized by sampling time axes at interval
T and the frequency axes at interval ∆f to obtain a M ×N
grid Λ given by,

Λ = {(nT,m∆f) , n = 0, 1, . . . , N − 1;

m = 0, 1, . . . ,M − 1}
(2)

ISFFT is equivalent to M -point FFT of the columns and N -
point IFFT of the rows of XDD. Thus, the symbols obtained
after ISFFT, XISFFT ∈ CM×N , is written as [6],

XISFFT = FMXDDFH
N (3)

where FM is the M -point discrete Fourier transform (DFT)
matrix, and FH

N is the N -point inverse discrete Fourier trans-
form (IDFT) matrix. The symbol XISFFT is then multiplied
element-wise with the transmit windowing matrix Wtx to
obtain XTF ∈ CM×N , the symbol in the TF domain, given
as,

XTF = XISFFT ⊙Wtx (4)

The Heisenberg transform operates on XTF using an M -
point IFFT along with the pulse shaping waveform gtx(t) to
map the 2D DD symbol onto the time domain signal S ∈
CM×N , in order to transmit over the time-varying channel.
The signal to be transmitted is given by,

S = GtxF
H
MXTF (5)

where Gtx ∈ CM×M is a diagonal matrix containing the
samples of gtx(t), and FH

M is the M -point IDFT matrix. If a
rectangular pulse shaping function is considered, Gtx reduces
to the identity matrix. By combining (3) to (5), the transmit
signal can be written as,

S = XDDFH
N (6)

Each symbol in S has a cyclic prefix (CP) of length
NCP appended to it, using the CP addition matrix ACP ∈
C(M+NCP)×M for the prevention of inter-symbol interference
(ISI). By the column-wise vectorization of S, the 1D time
domain transmitted signal s ∈ C(M+NCP)N×1 is obtained,

s = vec {ACPS} (7)

A. Channel

The signal s(t) is transmitted through the time-variant
channel after parallel-to-serial and digital-to-analog conversion
of s. The ith element of the received signal r ∈ C(M+NCP)N×1,
which is converted back to digital from r(t), can be given as,

ri =
P∑

p=0

hi,psi−p + vi (8)

where P +1 is the length of the time-variant channel hi,p and
vi is the additive noise.

B. Receiver

At the receiver, the received symbol r is converted back to
a 2D block in the TF domain by arranging it into a matrix
R ∈ C(M+NCP)N×1, in which each column vector of R is a
symbol with the CP appended to it.

R = invec {r} (9)

CP removal is carried out by multiplying R with the CP
removal matrix given by RCP ∈ CM×(M+NCP). The Wigner
transform, the inverse of the Heisenberg transform, is applied
on the symbols after the removal of CP. It operates by taking
the M -point FFT on the column vectors of RCPR to obtain
YTF, given as,

YTF = FMRCPR (10)

where FM is the M -point DFT matrix. The conversion of
the 2D symbols from the TF to DD domain is done using
receive windowing and the symplectic fast Fourier transform
(SFFT). Receive windowing is carried out by the element-wise
multiplication of YTF with the window matrix Wrx, given as,

YW = YTF ⊙Wrx (11)

Subsequently, the SFFT, which is the M -point IFFT of the
columns and the N -point FFT of the rows of YW, is applied
to obtain the symbol YDD in the 2D SD domain, which can
be written as,

YDD = FH
MYWFN (12)
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C. Input-Ouput Relationships

From [9], the 2D received information block can be inter-
preted as the two-dimensional periodic convolution between
the 2D DD transmit symbol XDD and the DD channel impulse
response (CIR) HDD ∈ CM×N . Let XDD

l,k and YDD
l,k be the

(l + 1, k + 1 + N
2 )

th elements of the transmit and receive
signals XDD and YDD, where l = 0, 1, . . . ,M − 1 and
k = −N

2 , . . . , 0, . . . ,
N
2 − 1. Then the input-output relation

can be written as [6],

YDD
l,k

N→∞
=

M−1∑
l′=0

N
2 −1∑

k′=−N
2

XDD
l′,k′HDD

l−l′,k−k′e
j2π

l(k−k′)
N(M+NCP)

+VDD
l,k

(13)
where HDD

l,k is the (l + 1, k + 1 + N
2 )

th element of the DD
CIR HDD and VDD

l,k is the additive noise in the DD domain.
Finally, equalization is to be carried out to avoid ISI, for which
the DD CIR HDD is necessary. Downlink channel estimation
is employed at the receiver for determining the CIR HDD.

III. CHANNEL ESTIMATION

CE in OTFS systems involve estimating the characteristics
of the wireless channel through which signals are transmitted.
This process is crucial for accurately recovering transmitted
data symbols at the receiver, especially in scenarios with
multipath propagation, and Doppler shifts. In OTFS, the DD
domain is utilized for signal representation, where delays
represent the time-domain and Doppler shifts represent the
frequency-domain. In OTFS systems, the channel impulse
response in the DD domain is predominantly composed of
zeros, with only a few non-zero coefficients and is sparse
in nature. This sparsity arises due to the propagation char-
acteristics of wireless channels, especially in scenarios with
sparse scattering environments or when the channel can be
represented effectively using a small number of paths. The
sparsity in the OTFS channel can be leveraged for efficient
CE and equalization. By exploiting the sparse nature of the
channel impulse response, the complexity of CE algorithms
can be reduced which improves their performance, leading
to more robust communication systems. The undetermined
system with sparsity is subject to minimization function and
can be mathematically expressed as,

min
X

∥X∥2 for ΨX = Y, (14)

where Ψ denotes the measurement matrix or the sensing matrix
in the compressed sensing algorithm, X represents the original
or underlying signal that needs to be recovered or recon-
structed, and Y denotes the measurements or observations
obtained through the sensing process. This equation aims to
minimize the error function and tries to achieve exact recovery
of the sparse information. In the context of this, an effective
sparse recovery greedy algorithm is necessary to make the
system determined from its undetermined nature. MMP [20]–
[23] is a highly effective sparse recovery algorithm that plays
a crucial role in channel CE for OTFS modulation, particularly

in high-mobility and frequency-selective fading scenarios.
The key advantage of OTFS over traditional time-frequency
domain modulation lies in its ability to represent the wireless
channel in the DD domain, where the channel exhibits natural
sparsity. This sparsity makes CS-based CE techniques essential
for accurate signal reconstruction. Among the available CS-
based approaches, MMP provides a significant advantage
over traditional methods, such as impulse-based techniques
and OMP, by offering superior signal recovery capabilities
while maintaining computational efficiency [24]–[26]. Tradi-
tional CE techniques, such as impulse-based methods, rely
on direct correlation with known pilot signals to estimate the
channel impulse response. However, they suffer from high
pilot overhead, reduced estimation accuracy, and degraded
performance in complex propagation conditions. OMP, another
commonly used greedy algorithm for sparse signal recovery,
performs single-index selection per iteration, making it prone
to incorrect index choices that propagate errors throughout the
estimation process. Moreover, OMP’s sequential processing
leads to increased computational time as sparsity grows,
making it inefficient for large-scale OTFS systems. In contrast,
MMP effectively mitigates these issues by refining its search
strategy to handle multiple overlapping signal components.
Unlike OMP, MMP dynamically selects multiple indices per
iteration, improving estimation accuracy and convergence
speed. This makes MMP particularly suitable for OTFS, where
the inherent sparsity of the DD domain requires a robust and
flexible estimation technique. By iteratively decomposing the
received signal into a linear combination of basis functions.
These basis functions can represent various characteristics
of the signal, such as time delay, frequency, or direction of
arrival. MMP ensures that the most significant components
are identified and refined, enabling more accurate CE with
reduced computational overhead. MMP also offers a signifi-
cant improvement in computational complexity over traditional
methods. Since OMP makes hard decisions at each iteration, a
single incorrect selection can lead to severe estimation errors,
resulting in inaccurate CSI acquisition. Additionally, if the
correlation between dictionary elements is high, OMP takes
the maximum number of iterations to converge, increasing
computational burden. MMP, however, adopts a more flexible
search strategy, reducing error propagation and enhancing
overall robustness. To further optimize MMP for OTFS CE,
two variations viz., DF-MMP and BF-MMP have been studied.
DF-MMP prioritizes one dominant path at a time, exploring its
depth before moving on to alternative paths, making it efficient
when dominant components can be identified early. While
BF-MMP explores multiple paths simultaneously, ensuring a
more exhaustive search of the DD domain at the cost of
increased computational effort. The choice between the two
approaches may depend on factors such as the sparsity of
the signal, the structure of the basis function dictionary, and
computational considerations. In this paper, both techniques
are studied and the performance analysis is observed in terms
of NMSE. A detailed comparison of MMP, OMP, and impulse-
based techniques was conducted to assess their suitability for
OTFS CE.
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A. Depth-First MMP

DF-MMP [21] is a structured greedy algorithm designed
for efficient sparse recovery, particularly suited for OTFS CE.
OTFS modulation represents the wireless channel in the DD
domain, where the channel impulse response exhibits inherent
sparsity due to the limited number of significant multipath
components. The estimation challenge lies in accurately recov-
ering the channel coefficients while maintaining computational
efficiency, especially in high-mobility environments where
Doppler shifts significantly impact signal quality. DF-MMP
effectively addresses this challenge by leveraging a structured
search strategy that prioritizes dominant signal components
and iteratively refines the channel estimate. The step-by-step
procedure for DF-MMP-based CE is outlined in Algorithm 1.

The DF-MMP algorithm begins by selecting an initial
basis function from a predefined dictionary that best matches
the most significant component of the residual signal. This
dictionary contains basis functions that represent key OTFS
system parameters, such as time delay (τ), Doppler shift
(υ), and channel gain (h). In OTFS, the received signal in
the DD domain is modeled as a sparse linear combination
of these basis functions, making it suitable for CS-based
recovery methods like MMP. The basis function selection in
DF-MMP is guided by an inner product operation, where the
function that maximally correlates with the residual signal
is chosen. Since OTFS exhibits multipath sparsity, selecting
the most dominant component first ensures that the strongest
contributors to the received signal are accurately identified.

Once the most relevant basis function is chosen, DF-MMP
follows a depth-first exploration strategy, which means it
further refines the estimate along the same path before con-
sidering alternative basis functions. This process is analogous
to traversing a tree structure, where the algorithm goes as
far down a single branch as possible before backtracking
and exploring alternative branches. The advantage of this
approach in OTFS CE is that dominant channel components
such as strong line-of-sight (LoS) paths or primary reflectors
are estimated with high accuracy before moving to weaker
multipath components. Since OTFS operates with a large
number of delay-Doppler grid points, this structured search
helps in reducing the overall computational complexity while
maintaining estimation precision. A critical aspect of DF-
MMP is its iterative refinement process. After selecting a
basis function, the algorithm updates the channel estimate by
solving an optimization problem that minimizes the difference
between the selected basis function and the corresponding
portion of the residual signal. This step ensures that the
estimated channel coefficients align closely with the received
signal structure. Following this, the contribution of the selected
basis function is subtracted from the residual signal, and the
process is repeated iteratively. The stopping criterion for DF-
MMP is either reaching a predefined maximum number of
iterations or when the residual signal falls below a certain
threshold, indicating that all significant channel components
have been recovered. DF-MMP offers computational efficiency
in OTFS CE due to its structured path selection strategy.
Unlike traditional greedy methods like OMP, which select

a single index per iteration without considering structured
relationships between components, DF-MMP prioritizes the
strongest contributions early in the estimation process. This
is particularly beneficial in OTFS systems with dominant
direct paths or well-separated multipath components, as the
algorithm can efficiently capture the most significant delays
and Doppler shifts while reducing unnecessary computations.

Furthermore, DF-MMP’s backtracking mechanism enables
the exploration of alternative basis functions when the current
path does not contribute significantly to the channel estimate.
This feature ensures that the algorithm does not get stuck in
suboptimal selections, thereby improving the robustness of the
estimation process. Since OTFS channels experience varying
sparsity levels depending on mobility conditions and pilot
overhead, DF-MMP dynamically adapts its search strategy to
optimize performance.

Algorithm 1 MMP-DF
Input: Measurement y, sensing matrix Ψ, sparsity K,
number of expansion L, stop threshold ϵ, maximum number
of search candidates ℓmax

Output: Estimated signal ĥ
Initialization: ℓ := 0 (candidate order), ρ := ∞ (min.
magnitude of residual), r0 := y (initial residue)
while ℓ < ℓmax and ϵ < ρ do

ℓ := ℓ+ 1
r0 := y
[c1, . . . , cK ] := compute ck(ℓ, L)
for k = 1 to K do

π̃ := arg max|π|=L∥(Ψ′ri
k−1)π∥

2

2

Ωk
ℓ := Ωk−1

ℓ ∪ {π̃Ck
}

ĥk := Φ†
Ωk

u
y

rk := y − Φ†
Ωk

ℓ

ĥk

end for
if |rK | < ρ then
ρ := |rK |
ĥ∗ := ĥK

end if
end while
return ĥ∗

function compute_ck (ℓ, L)
temp := ℓ− 1

for k = 1 to K do
Ck := mod(temp, L) + 1
temp := floor

(
temp
L

)
end for
return [c1, . . . , cK ]
end function

B. Breadth-First MMP

BF-MMP is an advanced extension of the MMP algorithm
tailored for efficient sparse recovery in OTFS CE. Unlike
DF-MMP, which sequentially refines a single path before
considering alternatives, BF-MMP simultaneously explores
multiple paths at the same level of the DD domain, ensuring
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a comprehensive search before proceeding to deeper levels.
This exploration strategy aligns with breadth-first traversal
in graph theory, making it particularly effective for OTFS
systems, where multipath components are spread across the
DD plane. The step-by-step process of BF-MMP-based CE
is detailed in Algorithm 2. OTFS modulation operates in
the DD domain, where channel sparsity is exploited to im-
prove CE performance. In this context, BF-MMP plays a
crucial role in capturing both dominant and weaker multipath
components by systematically evaluating all potential basis
functions at a given level before progressing further. The
basis functions, representing key OTFS parameters are selected
based on their correlation with the residual signal. Unlike
conventional greedy approaches and DF-MMP, the BF-MMP
simultaneously considers multiple basis functions, leading to a
more robust and accurate CE process. A significant advantage
of BF-MMP in OTFS CE is its ability to provide a broader
search space, ensuring that relevant channel coefficients are
identified early in the estimation process. This is particu-
larly beneficial in dynamic environments with rapidly varying
mobility, where accurate Doppler estimation is critical for
reliable data recovery. The BF approach mitigates the risk of
suboptimal selections that could arise from a strictly sequen-
tial search. However, this simultaneous exploration requires
greater computational resources compared to DF-MMP, as
multiple paths are processed in parallel. The effectiveness of
BF-MMP in achieving high-precision CE while maintaining
a balance between accuracy and computational complexity is
discussed in the next section.

Algorithm 2 BF-MMP
Input: Measurement y, sensing matrix Ψ, sparsity K,
number of paths L
Output: Estimated signal ĥ
Initialization: k := 0 (iteration index), r0 := y (initial
residue), Ω := {∅}
while k < K do

k := k + 1, u = 0, Ωk = ∅
for i = 1 to |Ωk−1| do

π̃ := arg max|π|=L∥(Ψ′ri
k−1)π∥

2

2

for j = 1 to L do
Ωtemp := Ωi

k−1 ∪ {π̃j}
if Ωtemp /∈ Ωk then
u := u+ 1
Ωk

u := Ωtemp

Ωk := Ωk ∪ {Ωk
u}

ĥk
u := Ψ†

Ωk
u
y

rku := y −Ψ†
Ωk

u
ĥk
u

end if
end for

end for
end while
u∗ := arg min∥rku∥

2

2

Ω∗ := ΩK
u∗

return ĥ := Ψ†
Ω∗y

TABLE I
VLC CHANNEL MODELING PARAMETERS

Parameters Values

Carrier Frequency 2.15× 109Hz
Duplex mode FDD
Subcarrier spacing 15KHz
FFT size 1024
No. of resource block 50
Size of a OTFS frame (M,N) (600, 12)
No. of BS antenna 32
No. of user antenna 1
Channel model : 3GPP SCM Urban macro cell
No. of dominant channel paths 6
No. of sub-path per dominant path 20
User velocity 100m/s

IV. RESULTS AND DISCUSSIONS

The considered system model is analysed in terms of NMSE
through DF and BF MMP for various transmit signal-to-noise
ratio (SNR). Table I displays the key simulation parameters
utilized for the analysis of OTFS modulation. The urban
macro cell scenario with frequency division duplexing (FDD)
consisting of 6 dominant paths which in turn cover 20 sub-
paths in each dominant path are accounted for simulation. The
impact of pilot overhead, number of base station antennas, and
user velocity are also analysed for MMP-based CE. Moreover,
the outcomes of the MMP- based approach are correlated with
the impulse and OMP-based techniques and the performance
in terms of NMSE is discussed. NMSE is a measure that
evaluates the accuracy of an estimation problem by quantifying
the difference between predicted and actual values. The NMSE
of the proposed MMP-based channel estimation technique is
computed as,

NMSE =
∥Ĥ−H∥2

∥H∥2
(15)

The NMSE performance of DF and BF MMP techniques with
impulse and OMP approaches are traced in Fig. 1. Monte
Carlo (MC) simulations with 105 iterations were performed
to evaluate the NMSE performance of the CE techniques
for OTFS. The simulations accounted for varying system
parameters, including Doppler shifts, delay spreads, and pi-
lot overhead, ensuring comprehensive performance validation.
The numerical results obtained from these simulations confirm
the effectiveness and robustness of the proposed approach in
different channel conditions. Immediate inference on transmit
SNR and NMSE shows that they are inversely proportional
to each other and MMP-based CE techniques contribute to
less error than OMP and impulse methods. This is because
the OMP performs sequential correlation by considering only
a single basis function and updates the residual parameter
iteratively till the exact match is found. Moreover, the im-
pulse technique involves the pilot transmission and adopts
least square methods for CE which increases the interference
thereby contributing to a high error rate. Keen observation
reveals that the DF-MMP technique outperforms BF-MMP
in terms of NMSE for the considered simulation parameters
because only a single dominant path is chosen for this analysis.
However, if the number of dominant paths and sub-paths
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Fig. 1. NMSE performance of CE schemes validated through MC simulations
against various SNR

Fig. 2. NMSE performance comparison for CE techniques against the number
of BS antennas

within each dominant is increased, BF-MMP outperforms DF-
MMP since the search happens simultaneously in the former.
On average, the MMP technique offers a gain of 4 dB over
the OMP technique for the error of 10−2.

Figure 2 displays the NMSE performance of MMP-based
CE aiding various base station antennas and compared with
OMP and impulse methods for a transmit SNR of 10 dB. The
NMSE gets high as the number of base station antennas in-
creases due to interference among multiple antennas. Inference
shows that the MMP technique possesses an error rate of 0.04
for 10 antennas, whereas for the same number of antennas,
the error of 0.07 and 0.2 is observed in OMP and impulse,
respectively. Likewise, if 30 antennas are aided at the base
station, errors of 0.06, 0.09, and 0.8 account for MMP, OMP,
and impulse techniques, respectively.

The pilot overhead ratio analysis ranging from 20% to 60%

Fig. 3. NMSE performance comparison for CE techniques against pilot
overhead ratio

for MMP-based CE is sketched out in Fig. 3, which infers
that the NMSE is inversely proportional to the pilot overhead
ratio. This is because as the number of pilot overhead increases
more probability of exact correlation of basis function occurs
and in turn estimation error decreases. Profound observation
shows that the MMP technique outperforms OMP and impulse
methods due to the ability of simultaneous and deep correla-
tion of basis function by MMP. An error gain of 0.03 and
0.47 is achieved by MMP over OMP and impulse techniques,
respectively for constant pilot overhead of 50%.

The key benefit of OTFS modulation is its ability to model
the channel in high fading or dynamic environments, i.e.,
OTFS aids for the DD domain localization which is time-
invariant in nature. Figure 4 shows the estimation error per-
formance at various user velocities which is analyzed for the
MMP technique and the same is compared with OMP and
impulse-based CE for an SNR of 10dB. Observation implies
that the error gets higher as the user velocity increases which
is due to the Doppler spread in the channel. To be precise,
in the case of MMP-based CE at a velocity of 40m/s, the
achieved NMSE is 0.02 whereas, for 100m/s it is 0.05 and the
performance is superior to OMP and impulse-based methods
which achieve 0.07, 0.7, and 0.08, 0.8, respectively.

The computational complexity of CE techniques plays a
crucial role in determining their feasibility for OTFS in
practical high-mobility scenarios. In this paper, the complexity
of DF-MMP, BF-MMP, OMP, and impulse-based estimation
methods are analyzed. The DF-MMP follows a sequential
path selection approach where the algorithm prioritizes a
single most dominant path at each iteration, refining it before
considering alternative paths. The complexity of DF-MMP is
primarily influenced by the number of iterations and the search
depth. Without loss of generality, if the number of multipath
components in the DD domain is L, and assuming the search
depth to be D, the computational complexity is O(D ·L ·N)
where N represents the number of pilot symbols used for
estimation. Since DF-MMP explores one path at a time,
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Fig. 4. NMSE performance comparison for CE techniques at various
velocities

it achieves lower complexity compared to BF-MMP while
maintaining a structured search strategy. However, its reliance
on path ordering can sometimes lead to local optima. BF-
MMP, in contrast, explores multiple potential paths in parallel
at each iteration before refining the best candidates. This
leads to a more exhaustive search, enhancing accuracy at the
cost of increased computational complexity. The complexity
of BF-MMP is influenced by the number of candidate paths
considered per iteration. Assuming B candidate paths are
evaluated at each step, the complexity can be approximated
a O(B · L · N). Since B > D, BF-MMP typically has a
higher complexity than DF-MMP. However, it provides better
robustness against erroneous path selection and improves
overall channel estimation accuracy at the expense of greater
computational resources. Whereas, OMP follows a greedy
approach by selecting the most correlated basis vector at each
iteration and orthogonalizing the residual signal accordingly.
The computational complexity of OMP can be driven by the
number of iterations required to reconstruct the sparse channel.
For an OTFS system with L significant paths and a dictionary
matrix of size M ×N , the complexity is O(L ·M ·N) OMP
provides a moderate trade-off between complexity and accu-
racy but does not explicitly exploit the structured multipath
nature of OTFS channels, leading to potential performance
limitations. In contrast, traditional impulse-based techniques
rely on direct correlation with known pilot signals to estimate
the channel impulse response. This method avoids iterative
computations and has the lowest computational cost among
the analyzed techniques. The complexity is mainly dictated by
the number of pilot symbols and can be expressed as O(N).
Since impulse-based methods do not exploit the sparsity of
the DD domain, their performance degrades significantly in
high-mobility environments, making them less suitable for
OTFS. Among the analyzed techniques, DF-MMP achieves
a favorable balance between computational complexity and
estimation accuracy, making it a strong candidate for OTFS
CE. BF-MMP provides better accuracy but comes at a higher

computational cost. OMP, while moderately complex, lacks
structured multipath tracking, making it sub-optimal for OTFS.
Impulse-based estimation, though computationally efficient,
suffers from severe performance degradation in high-mobility
scenarios. Thus, for practical OTFS implementations, DF-
MMP emerges as the best choice due to its structured ap-
proach, lower complexity compared to BF-MMP, and superior
ability to recover the sparse DD channel.

V. CONCLUSION

This paper investigated MMP-based algorithms (BF-MMP
and DF-MMP) for CE in OTFS systems, highlighting the
benefits of the CS greedy approach and utilizing MMP’s
unique properties for OTFS modulation. Extensive analysis
demonstrated the superiority of MMP over conventional meth-
ods, particularly in scenarios with high Doppler spread and
severe delay spread. The results prove that MMP achieved
robust CE even under challenging conditions such as high
mobility, frequency-selective fading, and varying pilot over-
head. Additionally, the impact of key parameters, including
user velocity, pilot overhead ratio, and multiple antennas at
the base station, was examined. These findings contributed to
advancing OTFS CE, improving signal detection accuracy, and
enhancing overall system reliability in 5G and beyond wireless
networks. Future research may focus on optimizing MMP
further, exploring adaptive algorithms for dynamic parameter
tuning, and investigating advanced signal processing tech-
niques integrated with machine learning to enhance estimation
accuracy in rapidly changing environments.

REFERENCES

[1] J. Wu and P. Fan, “A Survey on High Mobility Wireless Communica-
tions: Challenges, Opportunities and Solutions,” IEEE Access, vol. 4,
pp. 450–476, 2016.

[2] B. Ai, X. Cheng, T. Kürner, Z.-D. Zhong, K. Guan, R.-S. He, L. Xiong,
D. W. Matolak, D. G. Michelson, and C. Briso-Rodriguez, “Challenges
Toward Wireless Communications for High-Speed Railway,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp.
2143–2158, 2014.

[3] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W.
Heath, “Millimeter-Wave Vehicular Communication to Support Massive
Automotive Sensing,” IEEE Communications Magazine, vol. 54, no. 12,
pp. 160–167, 2016.

[4] T. Wang, J. Proakis, E. Masry, and J. Zeidler, “Performance degradation
of OFDM systems due to Doppler spreading,” IEEE Transactions on
Wireless Communications, vol. 5, no. 6, pp. 1422–1432, 2006.

[5] Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo,
“Orthogonal Time-Frequency Space Modulation: A Promising Next-
Generation Waveform,” IEEE Wireless Communications, vol. 28, no. 4,
pp. 136–144, 2021.

[6] S. S. Das and R. Prasad, Orthogonal Time Frequency Space Modulation:
OTFS a Waveform for 6G. River Publishers, 2022.

[7] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded Pilot-Aided Channel
Estimation for OTFS in Delay–Doppler Channels,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 5, pp. 4906–4917, 2019.

[8] S. S. Das, V. Rangamgari, S. Tiwari, and S. C. Mondal, “Time Domain
Channel Estimation and Equalization of CP-OTFS Under Multiple
Fractional Dopplers and Residual Synchronization Errors,” IEEE Access,
vol. 9, pp. 10 561–10 576, 2021.

[9] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, “Channel Estimation
for Orthogonal Time Frequency Space (OTFS) Massive MIMO,” IEEE
Transactions on Signal Processing, vol. 67, no. 16, pp. 4204–4217, 2019.

[10] O. K. Rasheed, G. D. Surabhi, and A. Chockalingam, “Sparse Delay-
Doppler Channel Estimation in Rapidly Time-Varying Channels for Mul-
tiuser OTFS on the Uplink,” in 2020 IEEE 91st Vehicular Technology
Conference (VTC2020-Spring), 2020, pp. 1–5.

S. SABAPATHY et al.: SPARSE-RECOVERY-BASED CHANNEL ESTIMATION 227



[11] Z. Wei, W. Yuan, S. Lit, J. Yuant, and D. W. Kwan Ngt, “A New
Off-grid Channel Estimation Method with Sparse Bayesian Learning
for OTFS Systems,” in 2021 IEEE Global Communications Conference
(GLOBECOM), 2021, pp. 01–07.

[12] L. Zhao, J. Yang, Y. Liu, and W. Guo, “Block Sparse Bayesian
Learning-Based Channel Estimation for MIMO-OTFS Systems,” IEEE
Communications Letters, vol. 26, no. 4, pp. 892–896, 2022.

[13] X. He, P. Fan, and Q. Wang, “A Two-Stage Channel Estimation Algo-
rithm for OTFS in Fractional Doppler Channels,” IEEE Communications
Letters, vol. 27, no. 7, pp. 1839–1843, 2023.

[14] S. Kumari, M. K. Dikkala, S. Mukhopadhyay, and H. B. Mishra, “Two
Choice Hard Thresholding Pursuit (TCHTP) for Delay-Doppler Channel
Estimation in OTFS,” IEEE Wireless Communications Letters, vol. 12,
no. 6, pp. 1032–1036, 2023.

[15] S. Sabapathy, J. S. Prabhu, S. Maruthu, and D. N. K. Jayakody, “Profuse
Channel Estimation and Signal Detection Techniques for Orthogonal
Time Frequency Space in 6G Epoch: A Survey,” IEEE Access, vol. 11,
pp. 129 963–129 993, 2023.

[16] N. P. TV, H. VK, K. Soman, and A. Soman, “Comparative Study of
Recent Compressed Sensing Methodologies in Astronomical Images,”
in International Conference on Eco-friendly Computing and Communi-
cation Systems. Springer, 2012, pp. 108–116.

[17] S. A.V. and K. Soman, “Secrecy of Cryptography with Compressed
Sensing,” in 2012 International Conference on Advances in Computing
and Communications, 2012, pp. 207–210.

[18] S. Ravindranath, S. N. Ram, S. Subhashini, A. S. Reddy, M. Janarth,
R. AswathVignesh, R. Gandhiraj, and K. Soman, “Compressive sensing
based image acquisition and reconstruction analysis,” in 2014 Interna-
tional Conference on Green Computing Communication and Electrical
Engineering (ICGCCEE), 2014, pp. 1–6.

[19] S. Aasha Nandhini, R. Sankararajan, and K. Rajendiran, “Video Com-
pressed Sensing framework for Wireless Multimedia Sensor Networks
using a combination of multiple matrices,” Computers & Electrical
Engineering, vol. 44, pp. 51–66, 2015.

[20] S. Kwon, J. Wang, and B. Shim, “Sparse signal recovery via multipath
matching pursuit,” in 2013 IEEE International Symposium on Informa-
tion Theory, 2013, pp. 854–858.

[21] Kwon, Suhyuk and Wang, Jian and Shim, Byonghyo, “Multipath Match-
ing Pursuit,” IEEE Transactions on Information Theory, vol. 60, no. 5,
pp. 2986–3001, 2014.

[22] B. Shim, S. Kwon, and B. Song, “Sparse Detection With Integer
Constraint Using Multipath Matching Pursuit,” IEEE Communications
Letters, vol. 18, no. 10, pp. 1851–1854, 2014.

[23] H. Li, J. Wang, and X. Yuan, “On the Fundamental Limit of Multipath
Matching Pursuit,” IEEE Journal of Selected Topics in Signal Process-
ing, vol. 12, no. 5, pp. 916–927, 2018.

[24] X. Zhang, H. Du, B. Qiu, and S. Chen, “Fast sparsity adaptive mul-
tipath matching pursuit for compressed sensing problems,” Journal of
electronic imaging, vol. 26, no. 3, pp. 033 007–033 007, 2017.

[25] J. Tao, C. Qi, and Y. Huang, “Regularized Multipath Matching Pursuit
for Sparse Channel Estimation in Millimeter Wave Massive MIMO
System,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 169–
172, 2019.

[26] Y.-Y. Li, H.-C. Zhao, P.-F. Liu, G.-G. Wang, and H.-B. Sun, “Electro-
magnetic Inversion Algorithm for Nonsparse Targets via CNN-Assisted
Depth-First Multipath Matching Pursuit,” IEEE Antennas and Wireless
Propagation Letters, vol. 23, no. 4, pp. 1271–1275, 2024.

Sundaresan Sabapathy (Member, IEEE) received
his B.Tech (ECE) degree from Pondicherry Uni-
versity, Puducherry and M.Tech degree in Remote
Sensing and Wireless Sensor Networks from Amrita
Vishwa Vidyapeetham, Coimbatore and Ph.D. in
wireless communications from National Institute of
Technology Puducherry. He is currently working as
a Assistant Professor in School of Artificial Intelli-
gence, Amrita Vishwa Vidyapeetham, Coimbatore.
He has 5 years of teaching experience and have
published various research articles and book chapters

in reputed journals and international conferences. He also serves as reviewer
in IEEE Transactions on Vehicular Technology, IEEE Internet of Things, IEEE
latin and American Transactions, Digital signal processing journal-Elsevier,
Internet Technology Letters-Wiley, Advances in Science, Technology and
Engineering Systems Journal (ASTESJ), Journal of Engineering Research and
Science and International Journal of Innovative Research in Engineering and
Physical Sciences. His research interests are URLLC, PHY Layer design, 5G
and Beyond systems, Software Defined Radio and Deep learning..

Surendar Maruthu (Member, IEEE) is an As-
sistant Professor in the Department of Electronics
and communication engineering at NIT Puducherry.
He did his B.E.(ECE) and M.Tech. (ECE) from
Thiagarajar College of Engineering, Madurai, and
Ph.D. (ECE) from National Institute of Technology,
Thiruchirapalli. He has published several research
articles in various reputed journals and international
conferences. He delivered several guest lectures and
key note speech in various premier institutes. Since
2018, he has been an Assistant Professor with the

Department of Electronics and Communication Engineering, National Institute
of Technology Puducherry, Puducherry, India. He is co-principal investigator
for the project from Sri Lanka Technological Campus (SLTC), Srilanka. His
research interests include PHY layer prospective of 5G and Beyond Wireless
Communication, Signal Processing, etc.

Deepika Sasi (Graduate Student Member, IEEE)
received her B.Tech Degree in ECE from Cochin
University of Science and Technology, Kerala, India,
and the M.Tech Degree in Communication Sys-
tems from APJ Abdul Kalam Technological Uni-
versity, Kerala, India. She has worked as a Senior
Application Developer (in Python) at Tata Elxsi,
Technopark, Trivandrum, Kerala. Currently she is
pursuing Ph.D. (Senior Research Fellow) at National
Institute of Technology, Puducherry (NITPY). She
is a recipient of the MoE, India Scholarship for her

Ph.D. Program in the Department of Electronics and Communication Engi-
neering, NITPY. She has published several research articles in reputed journals
and national & international conferences. Her research interests include
Wireless Communication, Optical Fiber Sensors, Optical Signal Processing,
Data Engineering, Digital Signal Processing, and Artificial Intelligence.

228 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025


	Introduction
	OTFS System Model and its Mathematical Background 
	Channel
	Receiver
	Input-Ouput Relationships

	Channel Estimation
	Depth-First MMP
	Breadth-First MMP

	Results and Discussions
	Conclusion
	References
	Biographies
	Sundaresan Sabapathy (Member, IEEE)
	Surendar Maruthu (Member, IEEE)
	Deepika Sasi (Graduate Student Member, IEEE)




