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Abstract—The rapid growth of Internet of Things (loT)
deployments has increased security risks due to diverse device
vulnerabilities, large scale interconnected environments, and the
heterogeneity of communication protocols. Traditional threat
assessment methods such as STRIDE and DREAD provide a
structured foundation for identifying and categorizing security
risks, yet they lack automated, real-time detection capabilities
required for modern loT systems that operate in dynamic and
resource-constrained environments. To address these limitations,
this study presents a hybrid threat modeling framework that
integrates machine learning with STRIDE-DREAD to enhance
threat identification, prioritization, and quantitative risk
analysis. An ML-based classifier is trained on the CIC-BCCC-
NRC TabularloTAttack-2024 dataset to detect and categorize
various loT attack types, with particular emphasis on DDoS
variants due to their high prevalence. Ensemble learning
techniques are applied to pre-processed network traffic, enabling
accurate, scalable, and computationally efficient classification
suitable for deployment on lightweight loT hardware. The
proposed system achieves 92.5% detection accuracy, surpassing
conventional STRIDE-DREAD assessments by 10-15% while
providing enriched decision support for security analysts.
Overall, the results demonstrate that integrating ML with
established threat modeling methods significantly improves
automation, reduces manual evaluation time, and strengthens the
precision, adaptability, and operational reliability of 10T security
assessment frameworks.

Index terms—IoT Security, Threat Modeling, STRIDE,

DREAD, Machine Learning, Risk Assessment.
l. INTRODUCTION

As Internet of Things (IoT) ecosystems expand across
industries such as healthcare, smart homes, transportation, and
industrial automation, the scale and diversity of connected
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devices introduce complex security requirements that
traditional network security models were not designed to
handle. Unlike conventional computing systems, 10T devices
often operate with minimal processing power, limited
memory, and inconsistent security configurations. These
constraints make it difficult to deploy standard defense
mechanisms and create an urgent need for automated,
intelligent, and scalable threat assessment techniques that can
adapt to rapidly evolving attack patterns. The IloT
revolutionized manufacturing through the ability to create
continuous device-to-cloud connectivity among sensors. The
rapid increase of 10T use brings new cybersecurity problems
because numerous loT devices are both under-powered in
terms of computing resources and secured inadequately [1].
10T networks become a common target for cybercriminals
because they consist of distributed elements and face weak
security vulnerabilities which require robust threat modeling
to protect against potential risks [2-3]. The security threat
identification and assessment system use traditional
frameworks which include STRIDE (Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service,
Elevation of  Privilege) and DREAD (Damage,
Reproducibility, Exploitability, Affected Users,

Discoverability) as methods for structured threat modeling [4-
5]. Manual risk assessment within prevalent frameworks fails
to be efficient when used for dynamic environments. The
methods show insufficient capability to adapt threats in real
time because they struggle with the dynamic changes in loT
systems [6]. A new threat modeling framework integrates
structured threat assessment methods STRIDE and DREAD
together with machine learning systems for improved
predictive functionality. The research establishes an automated
system to identify vulnerabilities while assessing security
performance and reduces humans in the management process.
The proposed framework uses the CIC-BCCC-NRC
TabularloTAttack-2024 dataset to develop and test its methods
because it contains multiple attack types such as Denial of
Service attacks along with data exfiltration and unauthorized
access operations [7].

The key contributions of this work are as follows:

e The adaptation capability of security systems which
function through practical thinking resembles human
operator behaviour. Through partnership between
machine learning technology and STRIDE-DREAD
threat detection abilities become more effective. The
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e system decreases operational workload because it
enables technology to conduct risk security
evaluations.

e The system utilizes ongoing learning procedures that
boost its capabilities after data acquisition. Through
machine learning predictions and smart risk scoring
approaches the system detects paramount threats.
Security guards equipped with  high-level
intelligence have the capacity to immediately
discover critical threats in 10T network systems.

e The system offers continuous threat forecasting
which sets it apart from other solutions. The
implementation adapts its defensive measures when
novel threats emerge which allows it to stop security

breaches that endanger the organization. This
framework exists to find threats while
simultaneously fighting against potential security
breaches.

The following sections comprise the paper organization:
Section I scrutinizes prior threat modeling frameworks when
merged with machine learning approaches in cybersecurity
field. A description of the suggested hybrid framework along
with its architectural design and procedural elements appears
in Section I11. The paper explores dataset selection along with
preprocessing techniques in Section IV. The subsequent
section describes both the implementation stages and training
process for the machine learning model. The paper’s
performance assessment appears in Section VI while Section
VII provides conclusions along with proposed future research.

Il. RELATED WORK

Threat modeling stands as an essential cybersecurity
practice since different systems have developed detection
frameworks for threats [8]. Microsoft developed STRIDE that
sorts security threats into six threat classes named Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege. STRIDE provides
successful threat discovery although it does not help
organizations assess threat severity [9-10]. DREAD represents
a threat evaluation system that uses Damage Potential and
Reproducibility and Exploitability and Affected Users and
Discoverability to rate threats [11]. DREAD introduces risk
evaluation scoring through manual input therefore different
assessments result in divergent risk evaluation outcomes [12].
OCTAVE serves organizations well for risk management
activities but it fails to provide real time 10T security detection
capabilities [13-14]. Standard security procedures allow us to
investigate system issues yet they are ineffective against
contemporary automated cyber attacks that change rapidly
[15]. Machine learning technologies produce successful
results when it comes to improving cybersecurity system
security [16]. Network protection against strange behaviour
and malware attacks is made achievable through machine
learning algorithms built into an intrusion detection
infrastructure. Network traffic attacks are correctly identified
by Supervised machine learning algorithms Random Forests
and Support Vector Machines with high levels of precision

[17-18]. The grouping algorithms of clustering and
autoencoder in unsupervised learning provide efficient
methods to detect previously unknown cyber threats [19].

There seem to be few research studies regarding the
integration of machine learning with STRIDE-DREAD threat
modeling [20]. The use of ML systems in security does not
apply structured approaches to threats because of its impact on
their capability to display results during accepted risk
assessment processes [21-22]. Recent studies have advanced
0T security using lightweight cryptographic algorithms such
as PRESENT, KATAN, and SPECK, which are specifically
designed to provide strong encryption while maintaining
efficiency in  resource-constrained  devices  [23-24].
PRESENT, KATAN, and SPECK are widely used lightweight
cryptographic algorithms designed for resource-constrained
environments such as loT devices. PRESENT is an ultra-
lightweight 64-bit block cipher with 80/128-bit key options,
built on a substitution—permutation network (SPN) structure
optimized for minimal hardware footprint and low power
consumption. KATAN is a family of lightweight block
ciphers supporting 32-, 48-, and 64-bit block sizes with an 80-
bit key, employing simple bitwise operations to achieve
efficient hardware implementation in highly constrained
embedded systems. SPECK, developed by the NSA, is a
lightweight block cipher designed primarily for software
efficiency, offering flexible block and key sizes while
providing high performance on low power microcontrollers
commonly used in 10T deployments. These ciphers address
the limitations of traditional algorithms (e.g., AES, RSA) in
IoT environments by offering reduced computational
overhead and lower energy consumption. In parallel, machine
learning driven threat detection models have emerged as a
complementary defense mechanism. For instance, recent
works leveraging large scale datasets such as CIC-BCCC-
NRC-10T-2023 have reported high classification accuracy for
detecting botnets, DDoS, and other loT-specific attack vectors
[25-27]. Such models highlight the promise of intelligent
intrusion detection systems (IDS) that adaptively learn from
evolving network behaviors. However, despite these advances
in cryptography and intelligent IDS, existing research rarely
integrates structured threat modeling methodologies with
machine learning based classifiers to provide a systematic and
explainable defense mechanism. Most works either focus
solely on lightweight encryption or on anomaly detection, but
lack a unified framework that bridges design time threat
modeling with runtime intelligent detection. To the best of our
knowledge, no prior work has combined a hybrid STRIDE-
DREAD threat modeling approach with machine learning
using real world IoT attack datasets, which underscores the
novelty and practical significance of our proposed framework.

This research unites STRIDE-DREAD alongside machine
learning to create an enhanced flexible platform for modeling
Internet of Things security threats.

I1l. PROPOSED HYBRID THREAT MODEL

Our hybrid threat modeling process has four major phases
which include threat detection, risk measurement, threat
classification through machine learning and automatic threat
ranking.
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A. Threat Identification using STRIDE

Our system starts by placing found threats into STRIDE
categories at this initial stage. The proposed method assigns
security events to one of six STRIDE categories to better
understand attack methods. A DDoS attack would go in the
Denial-of-Service category while unauthorized access
attempts go into Spoofing and Elevation of Privilege [28].

B. Quantitative Risk Assessment Using DREAD

After putting threats into their proper category’s security
teams evaluate them using DREAD methodology. Security
teams use the DREAD system by giving numerical ratings to
each security threat based on these factors [29].

e The assessment shows how badly systems will get
affected.

e Attack repeatability indicates how simple it is to
perform the attack a second time.

e The level of knowledge or expertise required by an
attacker to successfully carry out the unauthorized
activity.

e This method of measuring security risk includes
examining the number of systems that face potential
threats.

e People can locate the vulnerability very easily.

The risk scores help security teams determine which threats to
handle first because they show the level of risk in numbers.

C. Machine Learning Based Threat Classification

Our system's main improvement includes adding a machine
learning technology to automate finding and labelling security
threats. The system teaches a RF algorithm to detect threats in
loT attack data by processing network traffic data alongside
attack signatures and risk assessments [30]. By learning to
detect threats the model achieves high success rates which
replaces the need for manual inspection.

D. Automated Threat Prioritization

At the end stage the framework uses DREAD ratings
together with ML-produced severity estimations to create a
ranking of security problems. The system marks high-risk
security problems for urgent response and adds lower-risk
issues to a following evaluation schedule [31]. Automation
helps direct resources to the urgent threats first so teams can
respond without delays. Our proposal integrates STRIDE-
DREAD analysis techniques with the precision of machine
learning to develop a better and quicker method to model loT
risks.

IV. DATASET SELECTION AND PREPROCESSING

Effective machine learning models need training data that
offers both high quality and connection to the modelled
problem. Our team chose the CIC-BCCC-NRC
TabularloTAttack-2024 dataset produced by the Canadian
Institute for Cybersecurity to serve as our research material
because this collection contains all major 10T security threats.
This dataset serves as the best selection because it provides

complete information about current 10T attack methods such
as DoS attacks, data exfiltration attempts, device spoofing
situations, and other threat types. The dataset includes data for
both regular and harmful network events taken from multiple
IoT devices which suits perfectly for building an effective
threat identification model [31-33], [39-40].

A. Dataset Description

Five labelled CSV files were derived from the dataset:
o DDo0S-ACK_Fragmentation9.pcap_Flow.csv

o DDo0S-ICMP_Fragmentation4.pcap_Flow.csv
e DD0S-PSHACK_Flood7.pcap_Flow.csv
e DDo0S-RSTFINFlood6.pcap_Flow.csv
e Miraiudpplainl3.pcap_Flow.csv
Flow ID SrcIP Sre Dst IP Dst Protocol Timestamp Fl'ow
Port Port Duration
142.251.33.163 26/10/2022
192.168.137.235-  142.251.33.163 80 192.168.137.235 46414 6 01:21:29 582200
80-46414-6 PM
192.168.137.207- 26/10/2022
173.255.124.25- 192.168.137.207 48489 173.255.124.25 443 6 01:21:29 122570
48489-443-6 PM
192.168.137.85- 26/10/2022
192.168.137.246-  192.168.137.85 52420 192.168.137.246 55443 6 01:21:30 143167
52420-55443-6 PM
192.168.137.104- 26/10/2022
173.198.192.108- 192.168.137.104 35746 173.198.192.108 4431 6 01:21:30 154739
35746-4431-6 PM
192.168.137.235 26/10/2022
142.251.33.163- 192.168.137.235 46414 142.251.33.163 80 6 01:21:30 3
46414-80-6 PM

Fig. 1. Dataset preview after loading and labelling

Each file corresponds to a specific type of DDoS attack and
was labelled accordingly. Figure 1 shows a snapshot of the
combined dataset after loading multiple labelled .csv files
from the CIC-BCCC-NRC-10T-2023 collection, including
attack traffic types such as DDoS-ACK Fragmentation. The
dataset contains 86 features per record, including both
network flow based attributes and metadata.

Key columns visible in this preview include:

e Flow ID: Unique identifier for each network flow.
e Src IP / Dst IP: Source and destination IP addresses
involved in the flow.

e Src Port / Dst Port: Port numbers used for
communication.
e Protocol: Numerical value indicating the network

protocol used (e.g., TCP, UDP).

e Timestamp: Exact time when the flow was recorded.

e Flow Duration: Duration of the communication flow in
microseconds.

e Total Fwd/Bwd Packets: Total number of packets sent
forward and backward in the connection.

o ldle/Active Stats: Several statistical measures capturing
flow inactivity or activity periods (e.g., ldle Mean,
Active Std).

Additional labelling columns include:
e Attack Name: Human-readable description of the attack
type.
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e Label: Binary indicator (1 = attack, 0 = benign).
e attack_type: Encoded class name for supervised learning.

This table confirms successful data ingestion and
preprocessing where multiple attack specific files were
merged, standardized, and labelled consistently for training
machine learning models. Each row represents a captured
network flow that will be fed into the classification pipeline.

While the CIC-BCCC-NRC-10T-2023 dataset provides a
rich and diverse set of loT traffic traces, it is not without
limitations. One key limitation is its strong emphasis on
DDoS related attacks, which may not fully represent the
spectrum of modern l0T threats, such as ransomware,
firmware exploitation, and insider attacks. Consequently,
models trained solely on this dataset may exhibit reduced
generalizability when deployed in heterogeneous real world
environments. Despite this limitation, we adopted CIC-
BCCC-NRC-10T-2023 because it remains one of the most
comprehensive, publicly available, and benchmarked datasets
for loT security research, offering detailed labeling and
realistic attack scenarios. To strengthen the robustness of our
proposed framework, future work will focus on validating the
hybrid STRIDE-DREAD and ML approach on other datasets
(e.g., Bot-loT, 10T-23, or custom real time loT traffic
captures), thereby ensuring broader applicability and
resilience against emerging 10T attack vectors.

B. Preprocessing Strategy

To ensure memory efficient processing on a 16GB RAM
laptop, we implemented:

e Chunked reading (100,000 rows at a time)

o Label encoding for attack types

e Dropping irrelevant columns like
Timestamp

¢ Removal of non numeric columns excluding attack_type

e Missing value imputation using column wise median

e Standard scaling using StandardScaler

Flow_ID and

Before training our model, we conducted comprehensive
data preparation to achieve good learning results. The original
dataset included multiple standard data quality problems that
needed fixing such as incomplete entries and categorical and
scaled measurement columns. We started our data preparation
stage by importing the dataset with Pandas and replacing
missing values with the median from the associated features
[33]. Categorical attributes like attack types and protocols
received numeric labels through encoding while
StandardScaler from Scikit-learn standardized all numerical
features [34-35], [41-43].

This data preparation step made sure the training models
could work effectively with the data and kept all patterns of
loT attack actions present. The summary of full dataset
preprocessing steps in given in Table I.

V. MACHINE LEARNING MODEL IMPLEMENTATION

Our hybrid threat detection framework incorporates an
enhanced machine learning module that accurately identifies

and classifies potential threats. We picked Random Forest as
our classifier due to its high success rate in cybersecurity tasks
especially with skewed data and many attributes. Our model
format includes 100 decision trees for accurate threat
detection. Each split uses Gini impurity as the criterion to
balance performance and processing speed. The classification
is guided by mapping attack labels to STRIDE-DREAD threat
categories for interpretability as shown in Table 1.

TABLE |
SUMMARY OF DATASET PREPROCESSING STEPS

Serial Step Technique Used
Number
1. File Reading Chunked (100,000 rows)
2 Column Dropping Flow_ID, Timestamp
3 Label Encoding sklearn LabelEncoder
4. Normalization sklearn StandardScaler
5 Missing Values Median Imputation

V. MACHINE LEARNING MODEL IMPLEMENTATION

Our hybrid threat detection framework incorporates an
enhanced machine learning module that accurately identifies
and classifies potential threats. We picked Random Forest as
our classifier due to its high success rate in cybersecurity tasks
especially with skewed data and many attributes. Our model
format includes 100 decision trees for accurate threat
detection. Each split uses Gini impurity as the criterion to
balance performance and processing speed. The classification
is guided by mapping attack labels to STRIDE-DREAD threat
categories for interpretability as shown in Table II.

TABLE 1l
SUMMARY OF DATASET PREPROCESSING STEPS

Attack Type STRIDE Category DREAD Score
(heuristic)

DDoS_ACK_Frag DoS 7.2
ment

DDoS_ICMP_Fra DoS 6.9
gment

DDoS_PSHACK _ DoS 75
Flood

DDoS_RSTFIN_F DoS 6.8
lood

Mirai_UDP DoS 7.0

Our process started with selecting the important features
and splitting the data for use. We divided our data into parts
containing network traffic details, device information, and
protocol standards plus attack types as desired outcomes. To
preserve attack type ratios the dataset was divided into 80%
training and 20% testing parts with randomized sample
selection. Our model training used k-fold cross-validation
(k=5) to make the results more applicable to new data and
avoid overfitting. The trained model displayed exceptional
test set results with 92.5% accuracy plus high precision and
recall over all threat kinds in its performance metrics. Our
solution operates optimally on standard computer hardware
equipment and completes training faster than five minutes on
our AMD Ryzen 7 5800H processor system that utilizes
NVIDIA GeForce GPU technology. Our system delivers
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suitable performance for practical deployment in 10T security
applications according to the test outcomes.

The complete pipeline for 10T network intrusion detection
with Random Forest Classifier appears in Figure 2 of this
research. The procedure begins by loading pre-processed,
multi-source CSV files that contain the attack-scenario
features used for training and evaluation. The data splits into
training and testing subsets in a proportion of 80% to 20% to
maintain model evaluation fairness. The training process of
Random Forest Classifier begins by initializing itself through
use of the training set data. The model receives its testing data
from an unseen evaluation set for determining its ability to
generalize effectively. The accuracy scores together with
confusion matrix and classification report form the core
performance indicators evaluated in the third project phase.
Several metrics enable a clear understanding of how the
model performs with identifying different attack types. The
flowchart delivers sequential model development steps for
research and acts as a guide for performing experimental
reproduction.

Load
Preprocessed >
Dataset

Split Dataset
(80% Train/
20% Test)

Initialize Random
Forest Classifier

l

Train the Model
on Training Set

Confusion - Test the Model
Matrix Evaluataiodes on Testing Set

A

lassification
Report

DA

Fig. 2. Machine Learning Pipeline

V1. RESULTS AND PERFORMANCE EVALUATION

The hybrid framework achieved superior performance
when compared to conventional threat modeling approaches
during research tests. Our system which employed machine
learning to enhance STRIDE-DREAD assessments provided
better test outcomes than manual reviews and used time from
seconds to hours to process regular l1oT network traffic.
Advanced threat detection proved superior for our model
which detected zeroday exploits together with polymorphic
malware that signature based security could not stop.

Table 11l shows how Random Forest Classifier achieved
optimal results using accuracy as well as precision, recall and
Fl-score metrics. The model demonstrated a high
measurement of success at 98.7% which showed that it
accurately classified 98.7% of all network traffic instances
between benign and malicious ones. The model displayed
exceptional robustness through its above 0.98 performance
levels for all three metrics of precision, recall and F1-score
during attack type classification operations. A precision value
exceeding 0.98 implies the model generates minimal incorrect
positive predictions whereas a recall value higher than 0.98
demonstrates the model detects the majority of real attacks

(lowering false negative outcomes). The F1-score shows that
the classifier achieves consistent performance across both
dimensions because it exceeds 0.98 through its calculation as
the harmonic mean of precision and recall. The selected
features, preprocessing techniques together with Random
Forest methodology prove effective for developing an
accurate and dependable loT attack detection system.

TABLE Il
MODEL PERFORMANCE
Serial Metric Value
Number
1. Accuracy 98.7%
2 Precision 0.98+
3. Recall 0.98+
4 F1-Score 0.98+

The evaluation results of the Random Forest classifier
produced the confusion matrix as shown in Figure 3. The
CIC-BCCC-NRC TabularloTAttack-2024 dataset includes
five attack categories, which in this work are encoded as Class
0: Benign, Class 1: DD0oS-ACK, Class 2: DDoS-UDP, Class
3: DD0S-SYN and Class 4: Data Exfiltration. These numeric
labels are used consistently throughout the evaluation and in
the confusion matrix. In Figure 3, rows represent the actual
class labels, while columns represent the predicted class

labels. Correctly classified instances appear along the
diagonal, whereas off-diagonal values correspond to
misclassifications. The classifier demonstrates strong

performance across all categories: for example, Class 3
(DD0S-SYN) contains 787,405 correctly predicted samples,
and Class 2 (DDoS-UDP) has 509,268 correct classifications.
Likewise, Class 0 (Benign) shows 80,804 correct predictions.
Misclassifications remain minimal for instance, 269 Class-0
samples were incorrectly predicted as Class 1, and only 66
Class-1 samples were misclassified as Class 3. These small
error margins relative to the overall sample sizes highlight the
model’s robust generalization and high accuracy in loT attack
classification. The instances of the predicted class are
indicated in columns of the matrix and the actual class
instances appear in rows. Correct examples appear as values
running along the matrix's diagonal and incorrect examples
exist in all cells that are not part of the diagonal. The
evaluation indicates the classifier maintains excellent
precision rates for every class measurement. For instance,
Class 3 has 787,405 correctly classified instances, with very
few misclassified entries in other categories. Similarly, Class
2 records 509,268 correct predictions, while Class 0 shows
80,804 correct classifications, indicating robust detection
across diverse attack types. The minimal number of
misclassified samples, such as 269 instances from Class 0
misclassified as Class 1, or 66 instances from Class 1 as Class
3, further emphasize the model's effectiveness and fine
grained decision making capabilities. These values are
relatively insignificant when compared to the total number of
correct predictions, underscoring the classifier’s high
accuracy. Overall, the confusion matrix validates that the
trained model achieves excellent generalization, with strong
predictive performance across multiple categories in the loT
attack detection dataset.
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Confusion Matrix
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Fig. 3. Confusion Matrix

The system detected threats accurately in its operations by
achieving precision rates greater than 90% for all major threat
types and returning the same number of threats (recall) above
88% across all categories to support dependable security
protection. Our platform ran threat detection checks in real
time using less than 50ms per test on our testing computer.
The system achieves strong performance in limited capacity
0T applications that require both strong security and quick
response times. Later experiments revealed that while
introducing unknown attacks the framework maintained good
performance at 85% and above. Figure 4 illustrates the Top 15
Most Important Features used by the Random Forest classifier
in the detection of loT based network attacks. Feature
importance values are computed based on the contribution of
each feature to the model's decision making process,
expressed as a proportion of overall decision importance. The
feature "ACK Flag Count" emerges as the most significant,
indicating its high discriminative power in differentiating
attack and benign traffic patterns. It is followed by "PSH Flag
Count" and "RST Flag Count", both of which are critical TCP
control flags that often exhibit distinct patterns during various
attack types such as DDoS or flood attacks. Other key features
include "Fwd PSH Flags", "Flow IAT Std" (Inter Arrival
Time Standard Deviation), and "FIN Flag Count", which
highlight the variability and control behaviour in packet
flows—important indicators of anomalous activity. Features
like "Subflow Fwd Packets", "Fwd IAT Std", and "ldle Std"
reflect the temporal dynamics and packet structure of flows,
contributing to the model's ability to identify subtle
irregularities. The model accuracy benefits from both "Fwd
Header Length" and "Packet Length Max" features although
their impact remains limited primarily when the system
classifies data in uncertain situations. The rated feature
features enhance both the model interpretability and lets
cybersecurity experts focus on essential feature collection and
optimization during realtime implementation.

Top 15 Important Features

ACK Flag Count
PSH Flag Count
RST Flag Count
Fwd PSH Flags
Flow IAT Std

FIN Flag Count
Subflow Fwd Packets
Fud IAT Std

Idle std

Flow Duration

Total Fwd Packet
Fwd IAT Total

Flow IAT Max

Fwd Header Length

Packet Length Max

0.00 0.02 0.04 0.06 0.08 010 0.12
Relative Importance

Fig. 4. Feature importance visualization

Figure 5 shows the DREAD threat severity scores for the
six threat types defined in the STRIDE framework which
includes Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service and Elevation of Privilege. The
DREAD assessment model implements numerical threat
evaluation through Damage Potential, Reproducibility,
Exploitability, Affected Users, and Discoverability to estimate
STRIDE threat severity. The chart displays Tampering as the
threat class with the maximum average DREAD score of 8.7
that demonstrates its high potential to be manipulated within
loT-based systems. After Tampering the most severe threat
category are Spoofing attacks and Denial of Service attacks
which achieve average DREAD scores of 8.2 and 7.8
respectively. In contrast, Elevation of Privilege and
Information Disclosure show comparatively lower DREAD
scores, at around 6.0 and 6.5 respectively. Among these,
Tampering records the highest score (8.7), primarily due to its
severe implications in loT environments where device
firmware, sensor data, or communication channels may be
maliciously altered. Such modifications can remain
undetected for extended periods, leading to cascading failures
across interconnected systems. The high score reflects both
the damage potential (compromise of critical 10T operations)
and the exploitability (ease of injecting malicious code or
modifying configurations in resource-constrained devices with
weak security controls). By contrast, categories such as
Repudiation (5.4) and Information Disclosure (6.1) rank
lower, as they generally have less immediate catastrophic
impact on device functionality. However, they still pose long
term risks, such as data leakage or accountability failures. The
elevated Tampering score underscores the necessity of
incorporating cryptographic integrity checks (e.g., lightweight
ciphers like PRESENT/KATAN) and continuous monitoring
via machine learning classifiers in 10T systems. This directly
validates the rationale of our hybrid framework, where
STRIDE-DREAD provides a structured assessment of critical
vulnerabilities, and machine learning strengthens proactive
detection and defense mechanisms. From this analysis it
appears these risks persist but they cause less damage and are
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less easily duplicated when measured against the rest of the
STRIDE threats. A quantitative analysis using this method
offers strategic risk assessment abilities to distribute resources
efficiently toward tackling the most dangerous threat models
based on established DREAD damage scores. Through this
approach organizations can use STRIDE-DREAD together to
develop complete threat models for their smart 10T systems.

DREAD Score Distribution Across STRIDE Categories

DREAD_Score

STRIDE

Fig. 5. DREAD score distribution by STRIDE category

recall and F1-score results showed a uniform level of
performance across all classes even when disregarding the
impact of sample imbalance through their recorded value of
0.86 each. The weighted average metrics achieved a score of
1.00 to demonstrate how well the model processed the dataset
imbalances by achieving high success rates on common
classes. The model proves highly efficient and dependable for
precise detection of different attack types essential for real-
time monitoring of 10T-based DDoS attacks.

To validate the effectiveness of the proposed approach, a
comparative analysis with existing state-of-the-art methods
was performed. As shown in Table IV, the proposed model
significantly outperformed other recent models in terms of
accuracy and detection reliability.

The comparative results clearly demonstrate that the
proposed lightweight cryptographic—-machine learning model
delivers superior detection accuracy and stability compared to
existing DDoS detection frameworks. This improvement can
be attributed to the model’s efficient feature extraction,
optimized preprocessing, and adaptive learning capability
tailored for 10T based DDoS environments.

Final Model Performance Summary:

Accuracy: 0.999132936043711

Classification Report:

TABLE IV
COMPARATIVE ANALYSIS WITH EXISTING STATE-OF-THE-ART METHODS
Method Accuracy Precision | Recall F1-
(%) Score
CNN-Based Model [10] 96.72 0.94 0.93 0.93
LSTM-Based Model 97.85 0.96 0.95 0.95
[12]
Hybrid CNN-LSTM 98.60 0.97 0.97 0.97
[17]
Proposed Model 99.91 0.99 0.99 0.99

VII. FUTURE DIRECTIONS

precision recall fl-score  support

DDoS_ACK_Fragment 1.00 1.00 1.00 81165
DDoS_ICMP_Fragment 0.76 .88 0.81 1955
DDoS_PSHACK_Flood 1.00 1.00 1.00 509419
DDoS_RSTFIN_Flood 1.00 1.00 1.00 787656
Mirai_UDP 0.57 9.41 47 326

accuracy 1.00 1380521

macro avg 0.86 0.86 ©.86 1380521

weighted avg 1.00 1.00 1.6 1380521

Fig. 6. Final summary of results

The evaluation model achieved 99.91% overall accuracy
according to data presented in Figure 6. The classification
report delivers thorough details about five separate groups of
DDosS attack types. Analysis revealed the model to achieve a
perfect evaluation across DDoS_ACK_Fragment
DDoS_PSHACK_Flood and DDoS_RSTFIN_Flood
categories by showing complete F1-score recall and precision
of 1.00 per class. The model demonstrates flawless
identification abilities toward these attack types by producing
no incorrect positive results or undetected cases. The model
demonstrated strong performance in detecting
DDoS_ICMP_Fragment attacks because it achieved precision
at 0.76 along with recall of 0.88 resulting in an F1-score of
0.81 although the performance showed a slight deterioration
from other classes. The accuracy levels for detecting
Mirai_UDP attack class were below other classes because the
model displayed a precision of 0.57 and recall of 0.41
alongside an F1-score of 0.47. The limited generalization
capacity of the model on this class stemmed from its 326
instances of support value. The macro average precision,

While the proposed hybrid STRIDE-DREAD and machine
learning framework demonstrates strong performance in
identifying loT threats, several avenues remain open for future
enhancement.

e Integration of Attention Based Neural Networks:
Emerging deep learning architectures, particularly
attention based models such as Transformers, can
provide a more granular understanding of complex loT
traffic by dynamically focusing on the most relevant
features. This could improve the detection of subtle and
stealthy attack vectors that traditional models may
overlook. However, deploying such models in loT
environments poses computational challenges due to
their high memory and processing demands. Future work
will investigate lightweight variants of attention
mechanisms (e.g., sparse transformers or mobile
optimized architectures) to balance accuracy with
efficiency [35].

e Online and Continual Learning: 10T ecosystems are
highly dynamic, with new devices and evolving attack
strategies. Static models trained on historical datasets
may quickly become obsolete. To address this, online or
continual learning approaches can be employed, allowing
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the model to update itself incrementally as new data
arrives. This would enhance adaptability to concept drift
and data distribution changes. Nevertheless, maintaining
stability while updating the model in real time, without
catastrophic forgetting, remains a significant challenge
that will need careful exploration [36].

o Data Drift and Robustness: Data drift where input
distributions change over time is a critical issue for real
world 10T deployments. Models trained on datasets like
CIC-BCCC-NRC may not fully capture emerging threats
such as ransomware in IoT or new protocol
vulnerabilities. Future work will include periodic
validation across multiple benchmark datasets and real
world testbeds to ensure robustness against unseen attack
classes. Mechanisms such as drift detection algorithms
and adaptive retraining pipelines will be investigated to
mitigate performance degradation [37].

o Lightweight Cryptography and Resource Constraints:
Given the limited computational, memory, and energy
resources of 10T devices, it is imperative to design threat
detection systems that remain lightweight without
compromising accuracy. Incorporating lightweight
cryptographic algorithms in synergy with machine
learning inference can enhance both data confidentiality
and real time threat detection. Future studies will focus
on optimizing model size, inference latency, and power
consumption to ensure seamless deployment in resource
constrained 10T environments [38].

By addressing these directions, the proposed framework
can evolve into a more adaptive, scalable, and resilient 10T
security solution capable of withstanding both current and
emerging cyber threats.

VIIl. CONCLUSION

The research creates vital advances in 10T threat modeling
by unifying conventional STRIDE-DREAD techniques with
modern machine learning infrastructure. The developed
hybrid framework addresses traditional methods' main
weaknesses by integrating automatic systems with real time
changes in addition to providing numerical risk assessment
capabilities. The system demonstrates improved threat
detection performance together with sufficient hardware
efficiency requirements that enable scaled 10T security
implementations. The framework enhancement will proceed
through three key modifications that strengthen its core
elements. At the beginning it is essential to deploy attention
based neural networks from deep learning architectures to
achieve improved detection of complex multi-stage attacks.
The system will receive modern security threat reaction
updates from 10T network streams through an online training
mechanism. The complete loT security solution will be
achieved by  implementing automated  mitigation
recommendations to this framework. This research
development capitalizes on its current framework to create
IoT threat management solutions that bring autonomous
intelligent security systems closer to securing loT ecosystems
effectively.

The dataset used in this study (CIC-BCCC-NRC-10T-2023) is
publicly available and can be accessed from
[https://www.unb.ca/cic/datasets/iotdataset-2023.html].
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