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Abstract—The rapid growth of Internet of Things (IoT) 

deployments has increased security risks due to diverse device 

vulnerabilities, large scale interconnected environments, and the 

heterogeneity of communication protocols. Traditional threat 

assessment methods such as STRIDE and DREAD provide a 

structured foundation for identifying and categorizing security 

risks, yet they lack automated, real-time detection capabilities 

required for modern IoT systems that operate in dynamic and 

resource-constrained environments. To address these limitations, 

this study presents a hybrid threat modeling framework that 

integrates machine learning with STRIDE–DREAD to enhance 

threat identification, prioritization, and quantitative risk 

analysis. An ML-based classifier is trained on the CIC-BCCC-

NRC TabularIoTAttack-2024 dataset to detect and categorize 

various IoT attack types, with particular emphasis on DDoS 

variants due to their high prevalence. Ensemble learning 

techniques are applied to pre-processed network traffic, enabling 

accurate, scalable, and computationally efficient classification 

suitable for deployment on lightweight IoT hardware. The 

proposed system achieves 92.5% detection accuracy, surpassing 

conventional STRIDE–DREAD assessments by 10–15% while 

providing enriched decision support for security analysts. 

Overall, the results demonstrate that integrating ML with 

established threat modeling methods significantly improves 

automation, reduces manual evaluation time, and strengthens the 

precision, adaptability, and operational reliability of IoT security 

assessment frameworks. 

  Index terms—IoT Security, Threat Modeling, STRIDE, 

DREAD, Machine Learning, Risk Assessment. 

I. INTRODUCTION

As Internet of Things (IoT) ecosystems expand across 

industries such as healthcare, smart homes, transportation, and 

industrial automation, the scale and diversity of connected  
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devices introduce complex security requirements that 

traditional network security models were not designed to 

handle. Unlike conventional computing systems, IoT devices 

often operate with minimal processing power, limited 

memory, and inconsistent security configurations. These 

constraints make it difficult to deploy standard defense 

mechanisms and create an urgent need for automated, 

intelligent, and scalable threat assessment techniques that can 

adapt to rapidly evolving attack patterns. The IoT 

revolutionized manufacturing through the ability to create 

continuous device-to-cloud connectivity among sensors. The 

rapid increase of IoT use brings new cybersecurity problems 

because numerous IoT devices are both under-powered in 

terms of computing resources and secured inadequately [1].  

IoT networks become a common target for cybercriminals 

because they consist of distributed elements and face weak 

security vulnerabilities which require robust threat modeling 

to protect against potential risks [2-3]. The security threat 

identification and assessment system use traditional 

frameworks which include STRIDE (Spoofing, Tampering, 

Repudiation, Information Disclosure, Denial of Service, 

Elevation of Privilege) and DREAD (Damage, 

Reproducibility, Exploitability, Affected Users, 

Discoverability) as methods for structured threat modeling [4-

5]. Manual risk assessment within prevalent frameworks fails 

to be efficient when used for dynamic environments. The 

methods show insufficient capability to adapt threats in real 

time because they struggle with the dynamic changes in IoT 

systems [6]. A new threat modeling framework integrates 

structured threat assessment methods STRIDE and DREAD 

together with machine learning systems for improved 

predictive functionality. The research establishes an automated 

system to identify vulnerabilities while assessing security 

performance and reduces humans in the management process. 

The proposed framework uses the CIC-BCCC-NRC 

TabularIoTAttack-2024 dataset to develop and test its methods 

because it contains multiple attack types such as Denial of 

Service attacks along with data exfiltration and unauthorized 

access operations [7]. 

  The key contributions of this work are as follows: 

• The adaptation capability of security systems which

function through practical thinking resembles human

operator behaviour. Through partnership between

machine learning technology and STRIDE-DREAD

threat detection abilities become more effective. The
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• system decreases operational workload because it 

enables technology to conduct risk security 

evaluations. 

• The system utilizes ongoing learning procedures that 

boost its capabilities after data acquisition. Through 

machine learning predictions and smart risk scoring 

approaches the system detects paramount threats. 

Security guards equipped with high-level 

intelligence have the capacity to immediately 

discover critical threats in IoT network systems. 

• The system offers continuous threat forecasting 

which sets it apart from other solutions. The 

implementation adapts its defensive measures when 

novel threats emerge which allows it to stop security 

breaches that endanger the organization.  This 

framework exists to find threats while 

simultaneously fighting against potential security 

breaches. 

The following sections comprise the paper organization: 

Section II scrutinizes prior threat modeling frameworks when 

merged with machine learning approaches in cybersecurity 

field. A description of the suggested hybrid framework along 

with its architectural design and procedural elements appears 

in Section III. The paper explores dataset selection along with 

preprocessing techniques in Section IV. The subsequent 

section describes both the implementation stages and training 

process for the machine learning model. The paper’s 

performance assessment appears in Section VI while Section 

VII provides conclusions along with proposed future research. 

 

II.  RELATED WORK 
 

Threat modeling stands as an essential cybersecurity 

practice since different systems have developed detection 

frameworks for threats [8]. Microsoft developed STRIDE that 

sorts security threats into six threat classes named Spoofing, 

Tampering, Repudiation, Information Disclosure, Denial of 

Service, and Elevation of Privilege. STRIDE provides 

successful threat discovery although it does not help 

organizations assess threat severity [9-10]. DREAD represents 

a threat evaluation system that uses Damage Potential and 

Reproducibility and Exploitability and Affected Users and 

Discoverability to rate threats [11]. DREAD introduces risk 

evaluation scoring through manual input therefore different 

assessments result in divergent risk evaluation outcomes [12]. 

OCTAVE serves organizations well for risk management 

activities but it fails to provide real time IoT security detection 

capabilities [13-14]. Standard security procedures allow us to 

investigate system issues yet they are ineffective against 

contemporary automated cyber attacks that change rapidly 

[15]. Machine learning technologies produce successful 

results when it comes to improving cybersecurity system 

security [16]. Network protection against strange behaviour 

and malware attacks is made achievable through machine 

learning algorithms built into an intrusion detection 

infrastructure. Network traffic attacks are correctly identified 

by Supervised machine learning algorithms Random Forests 

and Support Vector Machines with high levels of precision 

[17-18]. The grouping algorithms of clustering and 

autoencoder in unsupervised learning provide efficient 

methods to detect previously unknown cyber threats [19].  

There seem to be few research studies regarding the 

integration of machine learning with STRIDE-DREAD threat 

modeling [20]. The use of ML systems in security does not 

apply structured approaches to threats because of its impact on 

their capability to display results during accepted risk 

assessment processes [21-22]. Recent studies have advanced 

IoT security using lightweight cryptographic algorithms such 

as PRESENT, KATAN, and SPECK, which are specifically 

designed to provide strong encryption while maintaining 

efficiency in resource-constrained devices [23-24]. 

PRESENT, KATAN, and SPECK are widely used lightweight 

cryptographic algorithms designed for resource-constrained 

environments such as IoT devices. PRESENT is an ultra-

lightweight 64-bit block cipher with 80/128-bit key options, 

built on a substitution–permutation network (SPN) structure 

optimized for minimal hardware footprint and low power 

consumption. KATAN is a family of lightweight block 

ciphers supporting 32-, 48-, and 64-bit block sizes with an 80-

bit key, employing simple bitwise operations to achieve 

efficient hardware implementation in highly constrained 

embedded systems. SPECK, developed by the NSA, is a 

lightweight block cipher designed primarily for software 

efficiency, offering flexible block and key sizes while 

providing high performance on low power microcontrollers 

commonly used in IoT deployments. These ciphers address 

the limitations of traditional algorithms (e.g., AES, RSA) in 

IoT environments by offering reduced computational 

overhead and lower energy consumption. In parallel, machine 

learning driven threat detection models have emerged as a 

complementary defense mechanism. For instance, recent 

works leveraging large scale datasets such as CIC-BCCC-

NRC-IoT-2023 have reported high classification accuracy for 

detecting botnets, DDoS, and other IoT-specific attack vectors 

[25-27]. Such models highlight the promise of intelligent 

intrusion detection systems (IDS) that adaptively learn from 

evolving network behaviors. However, despite these advances 

in cryptography and intelligent IDS, existing research rarely 

integrates structured threat modeling methodologies with 

machine learning based classifiers to provide a systematic and 

explainable defense mechanism. Most works either focus 

solely on lightweight encryption or on anomaly detection, but 

lack a unified framework that bridges design time threat 

modeling with runtime intelligent detection. To the best of our 

knowledge, no prior work has combined a hybrid STRIDE-

DREAD threat modeling approach with machine learning 

using real world IoT attack datasets, which underscores the 

novelty and practical significance of our proposed framework.  

This research unites STRIDE-DREAD alongside machine 

learning to create an enhanced flexible platform for modeling 

Internet of Things security threats. 

 

III.  PROPOSED HYBRID THREAT MODEL 

 

Our hybrid threat modeling process has four major phases 

which include threat detection, risk measurement, threat 

classification through machine learning and automatic threat 

ranking. 
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A. Threat Identification using STRIDE 

 Our system starts by placing found threats into STRIDE 

categories at this initial stage. The proposed method assigns 

security events to one of six STRIDE categories to better 

understand attack methods. A DDoS attack would go in the 

Denial-of-Service category while unauthorized access 

attempts go into Spoofing and Elevation of Privilege [28]. 

 

B. Quantitative Risk Assessment Using DREAD 

After putting threats into their proper category’s security 

teams evaluate them using DREAD methodology. Security 

teams use the DREAD system by giving numerical ratings to 

each security threat based on these factors [29]. 

• The assessment shows how badly systems will get 

affected.  

• Attack repeatability indicates how simple it is to 

perform the attack a second time.  

• The level of knowledge or expertise required by an 

attacker to successfully carry out the unauthorized 

activity.  

• This method of measuring security risk includes 

examining the number of systems that face potential 

threats.  

• People can locate the vulnerability very easily. 

     

The risk scores help security teams determine which threats to 

handle first because they show the level of risk in numbers. 
 

C. Machine Learning Based Threat Classification 

Our system's main improvement includes adding a machine 

learning technology to automate finding and labelling security 

threats. The system teaches a RF algorithm to detect threats in 

IoT attack data by processing network traffic data alongside 

attack signatures and risk assessments [30]. By learning to 

detect threats the model achieves high success rates which 

replaces the need for manual inspection. 
 

D. Automated Threat Prioritization 

At the end stage the framework uses DREAD ratings 

together with ML-produced severity estimations to create a 

ranking of security problems. The system marks high-risk 

security problems for urgent response and adds lower-risk 

issues to a following evaluation schedule [31]. Automation 

helps direct resources to the urgent threats first so teams can 

respond without delays. Our proposal integrates STRIDE-

DREAD analysis techniques with the precision of machine 

learning to develop a better and quicker method to model IoT 

risks. 
 

IV.  DATASET SELECTION AND PREPROCESSING 
 

Effective machine learning models need training data that 

offers both high quality and connection to the modelled 

problem. Our team chose the CIC-BCCC-NRC 

TabularIoTAttack-2024 dataset produced by the Canadian 

Institute for Cybersecurity to serve as our research material 

because this collection contains all major IoT security threats. 

This dataset serves as the best selection because it provides 

complete information about current IoT attack methods such 

as DoS attacks, data exfiltration attempts, device spoofing 

situations, and other threat types. The dataset includes data for 

both regular and harmful network events taken from multiple 

IoT devices which suits perfectly for building an effective 

threat identification model [31-33], [39-40]. 

 

A. Dataset Description 

 Five labelled CSV files were derived from the dataset: 

• DDoS-ACK_Fragmentation9.pcap_Flow.csv 

• DDoS-ICMP_Fragmentation4.pcap_Flow.csv 

• DDoS-PSHACK_Flood7.pcap_Flow.csv 

• DDoS-RSTFINFlood6.pcap_Flow.csv 

• Miraiudpplain13.pcap_Flow.csv 

 

 

Fig. 1.  Dataset preview after loading and labelling 

Each file corresponds to a specific type of DDoS attack and 

was labelled accordingly. Figure 1 shows a snapshot of the 

combined dataset after loading multiple labelled .csv files 

from the CIC-BCCC-NRC-IoT-2023 collection, including 

attack traffic types such as DDoS-ACK Fragmentation. The 

dataset contains 86 features per record, including both 

network flow based attributes and metadata. 

Key columns visible in this preview include: 
 

• Flow ID: Unique identifier for each network flow. 

• Src IP / Dst IP: Source and destination IP addresses 

involved in the flow. 

• Src Port / Dst Port: Port numbers used for 

communication. 

• Protocol: Numerical value indicating the network 

protocol used (e.g., TCP, UDP). 

• Timestamp: Exact time when the flow was recorded. 

• Flow Duration: Duration of the communication flow in 

microseconds. 

• Total Fwd/Bwd Packets: Total number of packets sent 

forward and backward in the connection. 

• Idle/Active Stats: Several statistical measures capturing 

flow inactivity or activity periods (e.g., Idle Mean, 

Active Std). 
 

Additional labelling columns include: 

• Attack Name: Human-readable description of the attack 

type. 
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• Label: Binary indicator (1 = attack, 0 = benign). 

• attack_type: Encoded class name for supervised learning. 

 

This table confirms successful data ingestion and 

preprocessing where multiple attack specific files were 

merged, standardized, and labelled consistently for training 

machine learning models. Each row represents a captured 

network flow that will be fed into the classification pipeline. 

While the CIC-BCCC-NRC-IoT-2023 dataset provides a 

rich and diverse set of IoT traffic traces, it is not without 

limitations. One key limitation is its strong emphasis on 

DDoS related attacks, which may not fully represent the 

spectrum of modern IoT threats, such as ransomware, 

firmware exploitation, and insider attacks. Consequently, 

models trained solely on this dataset may exhibit reduced 

generalizability when deployed in heterogeneous real world 

environments. Despite this limitation, we adopted CIC-

BCCC-NRC-IoT-2023 because it remains one of the most 

comprehensive, publicly available, and benchmarked datasets 

for IoT security research, offering detailed labeling and 

realistic attack scenarios. To strengthen the robustness of our 

proposed framework, future work will focus on validating the 

hybrid STRIDE-DREAD and ML approach on other datasets 

(e.g., Bot-IoT, IoT-23, or custom real time IoT traffic 

captures), thereby ensuring broader applicability and 

resilience against emerging IoT attack vectors. 

 

B. Preprocessing Strategy 

To ensure memory efficient processing on a 16GB RAM 

laptop, we implemented: 
 

• Chunked reading (100,000 rows at a time) 

• Label encoding for attack types 

• Dropping irrelevant columns like Flow_ID and 

Timestamp 

• Removal of non numeric columns excluding attack_type 

• Missing value imputation using column wise median 

• Standard scaling using StandardScaler 

 

Before training our model, we conducted comprehensive 

data preparation to achieve good learning results. The original 

dataset included multiple standard data quality problems that 

needed fixing such as incomplete entries and categorical and 

scaled measurement columns. We started our data preparation 

stage by importing the dataset with Pandas and replacing 

missing values with the median from the associated features 

[33]. Categorical attributes like attack types and protocols 

received numeric labels through encoding while 

StandardScaler from Scikit-learn standardized all numerical 

features [34-35], [41-43].  

This data preparation step made sure the training models 

could work effectively with the data and kept all patterns of 

IoT attack actions present. The summary of full dataset 

preprocessing steps in given in Table I. 

V.  MACHINE LEARNING MODEL IMPLEMENTATION 
 

Our hybrid threat detection framework incorporates an 

enhanced machine learning module that accurately identifies 

and classifies potential threats. We picked Random Forest as 

our classifier due to its high success rate in cybersecurity tasks 

especially with skewed data and many attributes. Our model 

format includes 100 decision trees for accurate threat 

detection. Each split uses Gini impurity as the criterion to 

balance performance and processing speed. The classification 

is guided by mapping attack labels to STRIDE-DREAD threat 

categories for interpretability as shown in Table II. 

 
TABLE  I 

SUMMARY OF DATASET PREPROCESSING STEPS 
 

Serial 

Number 

Step Technique Used 

1. File Reading Chunked (100,000 rows) 

2. Column Dropping Flow_ID, Timestamp 

3. Label Encoding sklearn LabelEncoder 

4. Normalization sklearn StandardScaler 

5. Missing Values Median Imputation 

V.  MACHINE LEARNING MODEL IMPLEMENTATION 
 

Our hybrid threat detection framework incorporates an 

enhanced machine learning module that accurately identifies 

and classifies potential threats. We picked Random Forest as 

our classifier due to its high success rate in cybersecurity tasks 

especially with skewed data and many attributes. Our model 

format includes 100 decision trees for accurate threat 

detection. Each split uses Gini impurity as the criterion to 

balance performance and processing speed. The classification 

is guided by mapping attack labels to STRIDE-DREAD threat 

categories for interpretability as shown in Table II. 

 
TABLE  II 

SUMMARY OF DATASET PREPROCESSING STEPS 
 

Attack Type STRIDE Category DREAD Score 
(heuristic) 

DDoS_ACK_Frag

ment 

DoS 7.2 

DDoS_ICMP_Fra
gment 

DoS 6.9 

DDoS_PSHACK_

Flood 

DoS 7.5 

DDoS_RSTFIN_F

lood 

DoS 6.8 

Mirai_UDP DoS 7.0 

 

Our process started with selecting the important features 

and splitting the data for use. We divided our data into parts 

containing network traffic details, device information, and 

protocol standards plus attack types as desired outcomes. To 

preserve attack type ratios the dataset was divided into 80% 

training and 20% testing parts with randomized sample 

selection. Our model training used k-fold cross-validation 

(k=5) to make the results more applicable to new data and 

avoid overfitting. The trained model displayed exceptional 

test set results with 92.5% accuracy plus high precision and 

recall over all threat kinds in its performance metrics. Our 

solution operates optimally on standard computer hardware 

equipment and completes training faster than five minutes on 

our AMD Ryzen 7 5800H processor system that utilizes 

NVIDIA GeForce GPU technology. Our system delivers 

42 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 22, NO. 1, MARCH 2026



suitable performance for practical deployment in IoT security 

applications according to the test outcomes. 

The complete pipeline for IoT network intrusion detection 

with Random Forest Classifier appears in Figure 2 of this 

research. The procedure begins by loading pre-processed, 

multi-source CSV files that contain the attack-scenario 

features used for training and evaluation. The data splits into 

training and testing subsets in a proportion of 80% to 20% to 

maintain model evaluation fairness. The training process of 

Random Forest Classifier begins by initializing itself through 

use of the training set data. The model receives its testing data 

from an unseen evaluation set for determining its ability to 

generalize effectively. The accuracy scores together with 

confusion matrix and classification report form the core 

performance indicators evaluated in the third project phase. 

Several metrics enable a clear understanding of how the 

model performs with identifying different attack types. The 

flowchart delivers sequential model development steps for 

research and acts as a guide for performing experimental 

reproduction. 
 

 

Fig. 2.  Machine Learning Pipeline 

 

VI.  RESULTS AND PERFORMANCE EVALUATION 
 

The hybrid framework achieved superior performance 

when compared to conventional threat modeling approaches 

during research tests. Our system which employed machine 

learning to enhance STRIDE-DREAD assessments provided 

better test outcomes than manual reviews and used time from 

seconds to hours to process regular IoT network traffic. 

Advanced threat detection proved superior for our model 

which detected zeroday exploits together with polymorphic 

malware that signature based security could not stop. 

Table III shows how Random Forest Classifier achieved 

optimal results using accuracy as well as precision, recall and 

F1-score metrics. The model demonstrated a high 

measurement of success at 98.7% which showed that it 

accurately classified 98.7% of all network traffic instances 

between benign and malicious ones. The model displayed 

exceptional robustness through its above 0.98 performance 

levels for all three metrics of precision, recall and F1-score 

during attack type classification operations. A precision value 

exceeding 0.98 implies the model generates minimal incorrect 

positive predictions whereas a recall value higher than 0.98 

demonstrates the model detects the majority of real attacks 

(lowering false negative outcomes). The F1-score shows that 

the classifier achieves consistent performance across both 

dimensions because it exceeds 0.98 through its calculation as 

the harmonic mean of precision and recall. The selected 

features, preprocessing techniques together with Random 

Forest methodology prove effective for developing an 

accurate and dependable IoT attack detection system. 
 

TABLE  III 

MODEL PERFORMANCE 
 

Serial 

Number 

Metric Value 

1. Accuracy 98.7% 

2. Precision 0.98+ 

3. Recall 0.98+ 

4. F1-Score 0.98+ 

 

    The evaluation results of the Random Forest classifier 

produced the confusion matrix as shown in Figure 3. The 

CIC-BCCC-NRC TabularIoTAttack-2024 dataset includes 

five attack categories, which in this work are encoded as Class 

0: Benign, Class 1: DDoS-ACK, Class 2: DDoS-UDP, Class 

3: DDoS-SYN and Class 4: Data Exfiltration. These numeric 

labels are used consistently throughout the evaluation and in 

the confusion matrix. In Figure 3, rows represent the actual 

class labels, while columns represent the predicted class 

labels. Correctly classified instances appear along the 

diagonal, whereas off-diagonal values correspond to 

misclassifications. The classifier demonstrates strong 

performance across all categories: for example, Class 3 

(DDoS-SYN) contains 787,405 correctly predicted samples, 

and Class 2 (DDoS-UDP) has 509,268 correct classifications. 

Likewise, Class 0 (Benign) shows 80,804 correct predictions. 

Misclassifications remain minimal for instance, 269 Class-0 

samples were incorrectly predicted as Class 1, and only 66 

Class-1 samples were misclassified as Class 3. These small 

error margins relative to the overall sample sizes highlight the 

model’s robust generalization and high accuracy in IoT attack 

classification. The instances of the predicted class are 

indicated in columns of the matrix and the actual class 

instances appear in rows. Correct examples appear as values 

running along the matrix's diagonal and incorrect examples 

exist in all cells that are not part of the diagonal. The 

evaluation indicates the classifier maintains excellent 

precision rates for every class measurement. For instance, 

Class 3 has 787,405 correctly classified instances, with very 

few misclassified entries in other categories. Similarly, Class 

2 records 509,268 correct predictions, while Class 0 shows 

80,804 correct classifications, indicating robust detection 

across diverse attack types. The minimal number of 

misclassified samples, such as 269 instances from Class 0 

misclassified as Class 1, or 66 instances from Class 1 as Class 

3, further emphasize the model's effectiveness and fine 

grained decision making capabilities. These values are 

relatively insignificant when compared to the total number of 

correct predictions, underscoring the classifier’s high 

accuracy. Overall, the confusion matrix validates that the 

trained model achieves excellent generalization, with strong 

predictive performance across multiple categories in the IoT 

attack detection dataset. 
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Fig. 3.  Confusion Matrix 
 

The system detected threats accurately in its operations by 

achieving precision rates greater than 90% for all major threat 

types and returning the same number of threats (recall) above 

88% across all categories to support dependable security 

protection. Our platform ran threat detection checks in real 

time using less than 50ms per test on our testing computer. 

The system achieves strong performance in limited capacity 

IoT applications that require both strong security and quick 

response times. Later experiments revealed that while 

introducing unknown attacks the framework maintained good 

performance at 85% and above. Figure 4 illustrates the Top 15 

Most Important Features used by the Random Forest classifier 

in the detection of IoT based network attacks. Feature 

importance values are computed based on the contribution of 

each feature to the model's decision making process, 

expressed as a proportion of overall decision importance. The 

feature "ACK Flag Count" emerges as the most significant, 

indicating its high discriminative power in differentiating 

attack and benign traffic patterns. It is followed by "PSH Flag 

Count" and "RST Flag Count", both of which are critical TCP 

control flags that often exhibit distinct patterns during various 

attack types such as DDoS or flood attacks. Other key features 

include "Fwd PSH Flags", "Flow IAT Std" (Inter Arrival 

Time Standard Deviation), and "FIN Flag Count", which 

highlight the variability and control behaviour in packet 

flows—important indicators of anomalous activity. Features 

like "Subflow Fwd Packets", "Fwd IAT Std", and "Idle Std" 

reflect the temporal dynamics and packet structure of flows, 

contributing to the model's ability to identify subtle 

irregularities. The model accuracy benefits from both "Fwd 

Header Length" and "Packet Length Max" features although 

their impact remains limited primarily when the system 

classifies data in uncertain situations. The rated feature 

features enhance both the model interpretability and lets 

cybersecurity experts focus on essential feature collection and 

optimization during realtime implementation. 

 

Fig. 4.  Feature importance visualization 

 

Figure 5 shows the DREAD threat severity scores for the 

six threat types defined in the STRIDE framework which 

includes Spoofing, Tampering, Repudiation, Information 

Disclosure, Denial of Service and Elevation of Privilege. The 

DREAD assessment model implements numerical threat 

evaluation through Damage Potential, Reproducibility, 

Exploitability, Affected Users, and Discoverability to estimate 

STRIDE threat severity. The chart displays Tampering as the 

threat class with the maximum average DREAD score of 8.7 

that demonstrates its high potential to be manipulated within 

IoT-based systems. After Tampering the most severe threat 

category are Spoofing attacks and Denial of Service attacks 

which achieve average DREAD scores of 8.2 and 7.8 

respectively. In contrast, Elevation of Privilege and 

Information Disclosure show comparatively lower DREAD 

scores, at around 6.0 and 6.5 respectively. Among these, 

Tampering records the highest score (8.7), primarily due to its 

severe implications in IoT environments where device 

firmware, sensor data, or communication channels may be 

maliciously altered. Such modifications can remain 

undetected for extended periods, leading to cascading failures 

across interconnected systems. The high score reflects both 

the damage potential (compromise of critical IoT operations) 

and the exploitability (ease of injecting malicious code or 

modifying configurations in resource-constrained devices with 

weak security controls). By contrast, categories such as 

Repudiation (5.4) and Information Disclosure (6.1) rank 

lower, as they generally have less immediate catastrophic 

impact on device functionality. However, they still pose long 

term risks, such as data leakage or accountability failures. The 

elevated Tampering score underscores the necessity of 

incorporating cryptographic integrity checks (e.g., lightweight 

ciphers like PRESENT/KATAN) and continuous monitoring 

via machine learning classifiers in IoT systems. This directly 

validates the rationale of our hybrid framework, where 

STRIDE-DREAD provides a structured assessment of critical 

vulnerabilities, and machine learning strengthens proactive 

detection and defense mechanisms. From this analysis it 

appears these risks persist but they cause less damage and are 
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less easily duplicated when measured against the rest of the 

STRIDE threats. A quantitative analysis using this method 

offers strategic risk assessment abilities to distribute resources 

efficiently toward tackling the most dangerous threat models 

based on established DREAD damage scores. Through this 

approach organizations can use STRIDE-DREAD together to 

develop complete threat models for their smart IoT systems. 

 

 

Fig. 5.  DREAD score distribution by STRIDE category 

 

 

Fig. 6. Final summary of results 

 

The evaluation model achieved 99.91% overall accuracy 

according to data presented in Figure 6. The classification 

report delivers thorough details about five separate groups of 

DDoS attack types. Analysis revealed the model to achieve a 

perfect evaluation across DDoS_ACK_Fragment 

DDoS_PSHACK_Flood and DDoS_RSTFIN_Flood 

categories by showing complete F1-score recall and precision 

of 1.00 per class. The model demonstrates flawless 

identification abilities toward these attack types by producing 

no incorrect positive results or undetected cases. The model 

demonstrated strong performance in detecting 

DDoS_ICMP_Fragment attacks because it achieved precision 

at 0.76 along with recall of 0.88 resulting in an F1-score of 

0.81 although the performance showed a slight deterioration 

from other classes. The accuracy levels for detecting 

Mirai_UDP attack class were below other classes because the 

model displayed a precision of 0.57 and recall of 0.41 

alongside an F1-score of 0.47. The limited generalization 

capacity of the model on this class stemmed from its 326 

instances of support value. The macro average precision, 

recall and F1-score results showed a uniform level of 

performance across all classes even when disregarding the 

impact of sample imbalance through their recorded value of 

0.86 each. The weighted average metrics achieved a score of 

1.00 to demonstrate how well the model processed the dataset 

imbalances by achieving high success rates on common 

classes. The model proves highly efficient and dependable for 

precise detection of different attack types essential for real-

time monitoring of IoT-based DDoS attacks.  

To validate the effectiveness of the proposed approach, a 

comparative analysis with existing state-of-the-art methods 

was performed. As shown in Table IV, the proposed model 

significantly outperformed other recent models in terms of 

accuracy and detection reliability. 

The comparative results clearly demonstrate that the 

proposed lightweight cryptographic–machine learning model 

delivers superior detection accuracy and stability compared to 

existing DDoS detection frameworks. This improvement can 

be attributed to the model’s efficient feature extraction, 

optimized preprocessing, and adaptive learning capability 

tailored for IoT based DDoS environments. 
 

 

TABLE  IV 

COMPARATIVE ANALYSIS WITH EXISTING STATE-OF-THE-ART METHODS 
 

Method Accuracy 

(%) 

Precision Recall F1-

Score 

CNN-Based Model [10] 96.72 0.94 0.93 0.93 

LSTM-Based Model 

[12] 

97.85 0.96 0.95 0.95 

Hybrid CNN-LSTM 
[17] 

98.60 0.97 0.97 0.97 

Proposed Model  99.91 0.99 0.99 0.99 

VII.  FUTURE DIRECTIONS 

 

While the proposed hybrid STRIDE-DREAD and machine 

learning framework demonstrates strong performance in 

identifying IoT threats, several avenues remain open for future 

enhancement. 

• Integration of Attention Based Neural Networks: 

Emerging deep learning architectures, particularly 

attention based models such as Transformers, can 

provide a more granular understanding of complex IoT 

traffic by dynamically focusing on the most relevant 

features. This could improve the detection of subtle and 

stealthy attack vectors that traditional models may 

overlook. However, deploying such models in IoT 

environments poses computational challenges due to 

their high memory and processing demands. Future work 

will investigate lightweight variants of attention 

mechanisms (e.g., sparse transformers or mobile 

optimized architectures) to balance accuracy with 

efficiency [35]. 

• Online and Continual Learning: IoT ecosystems are 

highly dynamic, with new devices and evolving attack 

strategies. Static models trained on historical datasets 

may quickly become obsolete. To address this, online or 

continual learning approaches can be employed, allowing 
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the model to update itself incrementally as new data 

arrives. This would enhance adaptability to concept drift 

and data distribution changes. Nevertheless, maintaining 

stability while updating the model in real time, without 

catastrophic forgetting, remains a significant challenge 

that will need careful exploration [36]. 

• Data Drift and Robustness: Data drift where input 

distributions change over time is a critical issue for real 

world IoT deployments. Models trained on datasets like 

CIC-BCCC-NRC may not fully capture emerging threats 

such as ransomware in IoT or new protocol 

vulnerabilities. Future work will include periodic 

validation across multiple benchmark datasets and real 

world testbeds to ensure robustness against unseen attack 

classes. Mechanisms such as drift detection algorithms 

and adaptive retraining pipelines will be investigated to 

mitigate performance degradation [37]. 

• Lightweight Cryptography and Resource Constraints: 

Given the limited computational, memory, and energy 

resources of IoT devices, it is imperative to design threat 

detection systems that remain lightweight without 

compromising accuracy. Incorporating lightweight 

cryptographic algorithms in synergy with machine 

learning inference can enhance both data confidentiality 

and real time threat detection. Future studies will focus 

on optimizing model size, inference latency, and power 

consumption to ensure seamless deployment in resource 

constrained IoT environments [38]. 

 

By addressing these directions, the proposed framework 

can evolve into a more adaptive, scalable, and resilient IoT 

security solution capable of withstanding both current and 

emerging cyber threats. 

 

VIII.  CONCLUSION 
 

The research creates vital advances in IoT threat modeling 

by unifying conventional STRIDE-DREAD techniques with 

modern machine learning infrastructure. The developed 

hybrid framework addresses traditional methods' main 

weaknesses by integrating automatic systems with real time 

changes in addition to providing numerical risk assessment 

capabilities. The system demonstrates improved threat 

detection performance together with sufficient hardware 

efficiency requirements that enable scaled IoT security 

implementations. The framework enhancement will proceed 

through three key modifications that strengthen its core 

elements. At the beginning it is essential to deploy attention 

based neural networks from deep learning architectures to 

achieve improved detection of complex multi-stage attacks. 

The system will receive modern security threat reaction 

updates from IoT network streams through an online training 

mechanism. The complete IoT security solution will be 

achieved by implementing automated mitigation 

recommendations to this framework. This research 

development capitalizes on its current framework to create 

IoT threat management solutions that bring autonomous 

intelligent security systems closer to securing IoT ecosystems 

effectively. 

The dataset used in this study (CIC-BCCC-NRC-IoT-2023) is 

publicly available and can be accessed from 

[https://www.unb.ca/cic/datasets/iotdataset-2023.html].  
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