JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 22, NO. 1, MARCH 2026 1

Optimised Q-learning for Dynamic Slot Assignment
i Medium Access Control Protocol for Wireless
Body Area Networks
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Abstract—Wireless Body Area Networks (WBANs) enable
continuous health monitoring through implanted and wearable
sensors, but their performance hinges on an efficient Medium
Access Control (MAC) scheme. Conventional protocols struggle
to balance throughput, latency, and energy use, key requirements
for medical data delivery. This paper introduces QLDSA-MAC,
a Q-learning-driven dynamic slot-allocation MAC protocol that
continuously adapts time slots to current traffic conditions. The
agent maintains a Q-table of state-action values and selects
slot assignments that maximize a composite reward reflecting
throughput, delay, and energy consumption. Extensive simula-
tions compare QLDSA-MAC with Time Division Multiple Ac-
cess (TDMA-MAC), Concurrent MAC (C-MAC), and the IEEE
802.15.6 standard. Results show that QLDSA-MAC consistently
delivers the highest throughput and the lowest packet delay across
a range of traffic loads. It also reduces energy consumption,
extending node lifetime in power-constrained scenarios. These
gains demonstrate that reinforcement-learning (RL) methods
can address WBAN challenges more effectively than fixed-rule
MAC designs. Overall, QLDSA-MAC offers a practical path
toward reliable, low-latency, and energy-efficient communication
in healthcare WBAN deployments.

Index Terms—WBANs, Medium Access Control, Dynamic Slot
Allocation, Reinforcement-learning, QLDSA-MAC.

I. INTRODUCTION

With the use of wearable and implanted sensors, Wire-
less Body Area Networks (WBANs) have become a game-
changing technology in the healthcare industry [1], [2]. These
networks improve the quality of patient care by making it
easier to gather and transmit vital signs and physiological
parameters, among other important health-related data. The
efficient operation of WBANS is severely hindered by their
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unique characteristics, which include strict energy constraints,
the need for reliable real-time data transmission, and dynamic
traffic patterns [3]. Among these challenges, developing a
successful Medium Access Control (MAC) protocol is crucial,
as it has a direct impact on network performance, energy effi-
ciency, and resource allocation [4]. WBANs have extensively
utilized conventional MAC protocols, including Time Division
Multiple Access (TDMA-MAC), Concurrent MAC (C-MAC),
and the IEEE 802.15.6 standard. Although these protocols pro-
vide organized methods for controlling communication, they
often fail to adapt to the rapidly changing circumstances that
are common in WBAN situations, resulting in inefficiencies
in energy consumption, throughput, and delay [5].

This study investigates the use of reinforcement learning
(RL), particularly Q-learning, to develop a dynamic time slot
allocation MAC protocol tailored for WBANs to overcome
these constraints. Leveraging Q-learning’s adaptive properties,
the proposed protocol, called QLDSA-MAC (Q-learning-based
Dynamic Slot Allocation MAC), optimizes time slot allocation
based on current network conditions.

A preliminary version of this work was published as part of
the 2025 IEEE 7th Symposium on Computers & Informatics
(ISCI) and entitled “Slot Allocation in Wireless Body Area
Networks (WBANSs) using Q-learning Approaches.” At the
conference, we presented the early concept of Q-learning (QL-
MAC) for adaptive slot assignments in WBANs [6]. The cur-
rent paper is a significant extension of that work as it presents
an improved protocol, QLDSA-MAC, that incorporates a com-
posite reward function to jointly optimize throughput, delay,
and energy. It also utilizes a realistic simulation framework on
Castalia, OMNeT++, and Python (Gymnasium), and extends
evaluation metrics with more theoretical support and in-depth
comparison.

Four components characterize its general operation in our
approach. The first is the state, which represents the current
network situation. This state relies mainly on the traffic load
of the nodes and assists in capturing the ever-changing WBAN
environment so that the algorithm can react and adapt in real
time. The second component, actions, determines which time
slots to allocate or reallocate to other nodes by creating new
working slots or modifying existing ones based on network
traffic and priorities. The reward function acts as a referencing
variable that encourages efficient and reliable data transmis-
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sion. It provides positive reinforcement when performance
improves, such as higher throughput, lower latency, or reduced
energy consumption, and imposes penalties when issues like
packet loss or excessive delay occur. Lastly, the agent, which
functions as the WBAN coordinator, gradually learns the most
effective slot allocation strategy through continuous interaction
with its environment. In certain cases, an individual sensor
node may also act as a learning agent, independently optimiz-
ing its transmission timing to save energy and improve overall
system efficiency [2].

The QLDSA-MAC protocol aims to enhance throughput,
minimize delays, and conserve energy by dynamically adjust-
ing resource allocation. These performance measures are vital
for effectively implementing WBANSs in healthcare applica-
tions. By comparing the performance of QLDSA-MAC to that
of other MAC protocols, this study illustrates how effectively
it addresses the limitations of traditional methods. The results
highlight not only QLDSA-MAC’s superiority but also the
broader implications of integrating machine learning (ML)
techniques into networking solutions for resource-constrained
environments. Our contributions are as follows:

o Instead of using static or rule-based scheduling, we
provide QLDSA-MAC, a novel MAC system that uses Q-
learning in the MAC layer protocol to dynamically and
intelligently allocate time slots in WBANs to improve
efficiency.

e Our simulations demonstrate that QLDSA-MAC consis-
tently outperforms IEEE 802.15.6, TDMA-MAC, and C-
MAC, providing the highest throughput, the lowest aver-
age transmission latency, and the greatest energy savings.
This confirms its suitability for battery-constrained and
latency-sensitive healthcare applications.

o We illustrate how the discount factor controls an agent’s
time horizon: the closer « is to one, the further into the
future the agent looks when making decisions. In addi-
tion, we highlight the classic trade-off by comparing the
« value between 0-1: a large « accelerates convergence
but can be volatile in noisy settings, whereas a small «
yields stability at the cost of slower adjustment.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of existing MAC protocols
for WBANSs and discusses their key limitations, highlighting
the need for an adaptive, learning-based approach. Section
IIT describes the proposed Q-learning—based slot allocation
method (QLDSA-MAC), along with details of the learning
framework, simulation environment, and setup. Section IV
presents and analyzes the results in terms of throughput, delay,
and energy consumption, and further examines the impact
of parameters such as the learning rate and discount factor.
Finally, Section V concludes the paper by summarizing the
main findings and offering directions for future research on
reinforcement learning—driven MAC protocols for WBANS.

II. RELATED WORK

Wireless Body Area Networks (WBANs) have been a game-
changing technology in the medical field since they allow for
remote patient care and real-time vital sign monitoring. The
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MAC protocol, which regulates how devices access the shared
wireless medium, is a crucial part of WBANs. Conventional
MAC protocols, including IEEE 802.15.6 MAC, TDMA-
MAC, and C-MAC, have been extensively researched and used
in WBANs [7]-[9]. Each of these protocols, however, has
built-in drawbacks that impair their functionality in contexts
with changing conditions and limited resources.

The available bandwidth is divided into time slots assigned
to nodes using the time-based scheduling technique known as
TDMA-MAC [10]. Although this organized approach prevents
collisions and guarantees predictable performance, it is not
flexible enough to adjust to changing traffic patterns. In
situations where traffic demand varies, TDMA-MAC might
not satisfy real-time needs or underutilize resources, which
results in inefficiencies [11]. Likewise, devices can vie for
access to the medium using contention-based protocols such
as C-MAC. Despite its flexibility, this method frequently
leads to retransmissions, packet collisions, and higher energy
usage, especially in crowded networks [7]. Because of these
limitations, C-MAC is not appropriate for applications that
require low latency and high reliability.

A significant initiative to tackle the challenges of WBANs
is the IEEE 802.15.6 standard, designed explicitly for these
networks [8]. This standard combines both contention-based
and scheduled access mechanisms to strike a balance between
flexibility and performance. Nevertheless, its ability to adapt
to varying traffic conditions is limited by its reliance on pre-
determined schedules and fixed parameters [12]. In situations
with erratic data generation patterns, this rigidity can lead to
inefficient resource utilization, increased delays, and elevated
energy consumption [8].

While conventional MAC protocols in WBANS rely heavily
on static configurations and predefined scheduling policies,
such approaches often fail to adapt to dynamic network condi-
tions and diverse traffic demands [13], [14]. To address these
challenges, recent research has turned toward machine learn-
ing (ML)-based solutions, particularly reinforcement learning
(RL), for adaptive decision-making. RL allows MAC pro-
tocols to continuously learn and select optimal actions in
response to varying network states. For example, Kwon et
al. [15] demonstrated that an RL-based contention window
adjustment scheme can significantly reduce collisions and
enhance throughput. Similarly, Rana et al. [16] developed a
reinforcement learning—enabled multi-class MAC protocol that
efficiently handles variable loads and prioritizes heterogeneous
traffic under the IEEE 802.15.6 standard. In addition, a model-
free RL method called Q-learning has been used to solve sev-
eral networking issues, such as congestion control, spectrum
allocation, and routing [17].

MAC protocols can prioritize important data streams, dy-
namically distribute resources, and reduce energy waste by uti-
lizing Q-learning. Notwithstanding these developments, there
is still a gap in understanding the requirements of WBAN
MAC networks, as the use of RL in these protocols remains
largely unexplored [18]-[20].

By introducing QLDSA-MAC, a dynamic time slot alloca-
tion algorithm grounded in Q-learning and specifically tailored
for WBANS, this study aims to bridge this gap. Unlike tra-
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ditional methods, QLDSA-MAC adapts to changing network
conditions, ensuring efficient resource utilization while mini-
mizing latency and energy consumption. This work pushes the
boundaries of current technology in WBANSs and establishes
a foundation for future research in intelligent networking
solutions through the integration of reinforcement learning in
MAC-layer design. Table I provides a summary of various
MAC protocols and their advancements in WBANS.

III. MATERIALS AND METHOD
A. Proposed QLDSA-MAC for Slot Allocation

The focus of this methodology is the creation and as-
sessment of QLDSA-MAC, a dynamic time slot allocation
protocol based on Q-learning that optimizes MAC in WBANS.
This protocol uses Q-learning, a type of RL, to dynamically
assign time slots according to current network conditions.
It addresses critical WBAN challenges, including reducing
latency, conserving energy, and increasing throughput, which
are essential for supporting real-time health monitoring appli-
cations [26].

Q-learning, a model-free RL technique that enables the
system to learn optimal strategies through trial-and-error in-
teractions with the environment, is integrated into QLDSA-
MAC. In this context, the environment is akin to the WBAN,
where nodes (such as wearable sensors) compete for limited
communication resources. State, action, and reward are the
three fundamental building blocks upon which the Q-learning
system is founded.

The state represents the network’s current condition, in-
cluding available bandwidth, traffic load, and the number of
active nodes. The action corresponds to allocating time slots
to nodes, a decision-making process that ensures efficient
resource utilization. Finally, the reward function is designed
to promote desirable outcomes, such as increased throughput,
reduced energy consumption, and minimized packet collisions.

Over time, QLDSA-MAC enhances its decision-making
capabilities by iteratively updating its Q-values based on
observed rewards, resulting in adaptive and optimal time slot
allocation. Fig. 1 shows QLDSA-MAC working in a WBAN
environment.

B. Frameworks for QLDSA-MAC

A clear problem statement is outlined through the Markov
Decision Process (MDP). Within the MDP framework, the
objective is attained through interactive learning, where S is
the set of states, A is the set of actions, and R is the set of
rewards that are finite in number. Both reward (R;) and state
(St) are discrete random variables, each following a discrete
probability distribution. Notably, these variables are dependent
solely on the preceding state and action. All previous states
and actions are probably based on the specified values for all
s',s€ S, reR,and a € A(s) [14], [17], [27], [28].
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Fig. 1. A diagram of the proposed QLDSA-MAC.
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One action is chosen by one environmental state and des-
ignated as a policy. If the agent follows the policy 7 at time
t, the probability of A; = a under S; = s is denoted as
m(a | s). QL can solve MDPs without complete information
by employing an RL technique. Hence, a QL system consists
of the agent, the environment, a policy, a reward, and a Q-
value function. Policy is an action that has been carried out
in certain environmental conditions. Generally, a policy is a
function or lookup table; it is also the foundation of an RL
agent. Policy-determined behavior is adequate. In addition, the
stochastic or defined probability may influence the policy for
each action.

The reward signal, a single value supplied by the environ-
ment to the RL agent, determines the goal of an RL task.
An agent’s only goal is to maximize its reward. If a policy
selects one action but the reward in the subsequent situation
is low, the policy will be updated to select alternative actions
in that condition. Unlike the reward function, which provides
a signal for a specified time, the Q-value function produces a
good signal for the state’s end time. As a result, the Q-value
indicates a state’s cumulative reward, which an agent will use
to decide which action to perform in the future [28].

In the WBAN environment, the reward in QLDSA-MAC
is designed to guide the learning process toward maximizing
throughput, minimizing latency, and conserving energy. In-
stead of a binary success/failure reward as used in the prelim-
inary conference version [6], this work employs a multi-factor
reward structure that reflects overall network performance. The
reward at the time step ¢ is formulated as:

T,
Rt:’u)l (T

succ
) — W2 Dnorm — w3 Enorm 3)
total

where Ty and Tiy, denote the number of successful and
total transmissions, respectively, Dy.m represents the nor-
malized average delay, and Ejom is the normalized energy
consumption per node. The coefficients w;, we, and wsg are
weighting factors such that w; + ws + w3 = 1, controlling the
trade-off among throughput, delay, and energy efficiency. A



4 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 22, NO. 1, MARCH 2026
TABLE I
SUMMARY OF MAC PROTOCOLS AND THEIR TRENDS

Ref | Protocols IEEE Tech. Sch. | Cont. | Poll. | Method Traffic Type Perf.

[7] C-MAC IEEE 802.15.6 - v - Simulator, numerical analysis Concurrent Traffic v

[8] IEEE 802.15.6 MAC IEEE 802.15.6 v v v Network Simulator UP (0) - UP (7) v

[9] TDMA MAC IEEE 802.15.6 v - - Network Simulator - v

[21] | PA-MAC IEEE 802.15.4 v v - Network Sim. Emergency, on- v
demand, normal,
non-medical

[22] | DSBS, DSBB IEEE 802.15.6 v - Network Simulator Normal and
emergency

[23] | TA-MAC IEEE 802.15.4 v v - Network Simulator Emergency, on-
demand, normal,
non-medical

[24] | DMTM-MAC IEEE 802.15.6 N v v Network Simulator Periodic, urgent, on- v
demand

[25] | McMAC IEEE 802.15.4 v v v Network Sim. Type 0 — Type 4 v

[26] | ADT-MAC IEEE 802.15.6 v v v Network Simulator Emergency, periodic v
(High, medium, low)

- Proposed QLDSA-MAC | IEEE 802.15.6 v v v Network Simulator + ML Normal and v

emergency

higher w; emphasizes data reliability, while larger ws or ws
penalize latency and energy wastage. This formulation allows
QLDSA-MAC to dynamically adapt slot allocation decisions
in response to changing network conditions and traffic loads.

The Q-value function is a key component in the agent’s
decision-making process. Its findings guide the agent in se-
lecting the most appropriate action by maximizing the Q-value
function. This process allows the agent to achieve the largest
reward over several actions without necessarily focusing on a
single reward [13]. The agent in the QL algorithm maintains
a Q(S;, Ay) table. For t = 1,2,3,..., N, the agent observes
the state S; of the MDP in the WBANS network and selects
an action A; from the actions (A). After action A;, the agent
receives a reward R(t) and then observes the next state Sy 1.

The agent will create an event sequence. The Q-table will
be updated by the sequence of events under the Q(S;, A;)
pairs according to the QL function:

Q(St, Ay) = Q(S, Ay) + a[Rt+1

4
+ ymax Q(Si+1,a) — Q(Sthf)] @

The agent chooses an action based on the state S, and
the maximum Q-value for the following state, S;y1, may be
calculated using the action Ay, which updates the current Q-
value. Fig. 2 depicts the detail.

The optimal range for the discount factor v is 0 j v 1.
The learning rate, denoted by «, ranges from 0 to 1 [29].
The agent evaluates the current reward only if the discount
factor v is 0. If the discount factor v is 1, the agent seeks
a long-term reward. The learning rate determines how much
the new message supersedes the old one. As the anticipated
value changes, the learning rate influences the estimated speed.
Fig. 6 shows that the discount factor 7 scales the weight of
future rewards, while Fig. 7 indicates that the learning rate «
controls convergence speed. These details are depicted in the
results and discussion section.

The agent observes state 5; of MDP

Select action 4,

Perform action A,

Receive reward R,

Observe next state S;

Update Q(&¢, A;) (Q-Table) based on QL function (4)

Fig. 2. A proposed QLDSA-MAC in a Markovian environment.

C. Simulation Environment for the QLDSA Mode

We run simulations of the QL algorithm in a WBAN setting,
investigating different node layouts and traffic patterns. The
network is initially configured with a default slot allocation,
which is then adjusted by the QL agent based on feedback
from a reward function. For performance testing, baseline
protocols such as classic TDMA MAC, C-MAC, and IEEE
802.15.6-MAC are included, allowing for a thorough evalua-
tion of the QL approach’s effectiveness.

To assess critical performance parameters, such as packet
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delay, network throughput, and energy consumption, we uti-
lized Castalia, OmNet++, and various Python libraries, in-
cluding NumPy, pandas, seaborn, matplotlib, and OpenAl
Gymnasium. Castalia was chosen because it is a discrete event
simulator for WBANs. The simulation results were compared
to benchmark protocols under identical network conditions
to guarantee a rigorous and unbiased evaluation. For IEEE
802.15.6-MAC, the superframe structure used a fixed slot size,
including a beacon, five exclusive access phases (EAPs) slots
for emergency traffic, five random access phases (RAPs) for
connection creation, and 15 TDMA-MAP slots for periodic
traffic transmission.

D. Simulation Setup for the QLDSA Mode

The simulation setting was thoughtfully created to assess
QLDSA-MAC'’s performance in authentic WBAN scenarios.
The network model replicated a standard WBAN deployment
by distributing several sensor nodes over a short area. These
nodes mimicked the actions of medical monitoring equipment
by periodically generating data packets. The simulation’s dura-
tion (200 seconds), packet sizes, transmission rates, and chan-
nel characteristics were among its crucial parameters. Three
popular MAC protocols, TDMA-MAC, C-MAC, and IEEE
802.15.6, were utilized to test QLDSA-MAC’s performance to
provide a thorough comparison. Three crucial metrics, average
delay, energy usage, and throughput, were used to assess
each approach. The protocol’s capacity to facilitate real-time
communication is demonstrated by the average latency, which
calculates the time it takes for packets to move across the
network. Because WBAN devices are battery-powered, energy
consumption measures the entire amount of energy used by the
network, which is an important factor to consider. Throughput
measures how well a protocol uses available bandwidth by
calculating the quantity of data that is successfully transmitted
per unit of time.

The paper also offers a concise synopsis of the comparison
protocols in addition to QLDSA-MAC. By using a structured
time division technique, TDMA-MAC divides the available
bandwidth into predetermined time slots that are allocated to
nodes. Although this approach guarantees consistent perfor-
mance, it is not flexible enough to adjust to shifting network
conditions. Nodes vie for channel access in the contention-
based mechanism of C-MAC. Although this method is easy to
use, it frequently results in inefficiencies like retransmissions
and packet collisions, especially in congested networks. Lastly,
the standard MAC protocol for WBANs, IEEE 802.15.6,
depends on preset scheduling methods. Despite being widely
used, it might not handle the dynamic and diverse character
of contemporary WBAN traffic patterns.

The goal of this work is to illustrate the benefits of inte-
grating machine learning techniques into MAC layer design by
contrasting QLDSA-MAC with conventional protocols. Even
in challenging situations, QLDSA-MAC’s adaptive nature al-
lows it to respond dynamically to changes in network traffic,
ensuring effective resource allocation. This feature sets it apart
from semi-static or static protocols, such as IEEE 802.15.6
and TDMA-MAC, which may struggle to maintain good

TABLE II

PROPOSED QL-BASED MAC PARAMETERS [26], [30]
Slot length 10 ms
Simulation Time 200 s
Number of Nodes 10
Frequency Band 2.5 GHz
Payload 105 Bytes
Transmissions Rate 1,024 Kbps
Superframe Length 32
Transmission Power 0.017J
Exploration Rate 0.1
Learning Rate () 0.1
Discount Factor (vy) 0.9
Number of Episodes 400-500

performance in dynamic environments. Moreover, QLDSA-
MAC is particularly well-suited for WBANSs, where reliable
data transfer and energy efficiency are crucial, thanks to its
ability to achieve high throughput while minimizing energy
consumption.

In conclusion, the suggested approach demonstrates the
creative application of Q-learning to improve WBAN MAC
layer operations. The study provides valuable insights into how
RL can transform resource management in wireless networks
by combining a robust simulation framework with a compre-
hensive performance evaluation. In addition to confirming the
efficacy of QLDSA-MAC, the study’s findings open the door
to further developments in intelligent and flexible networking
systems. Table II shows the other parameters of our proposed
QLDSA-based MAC protocol for WBAN networks.

IV. RESULTS AND DISCUSSION

The QLDSA-MAC protocol’s performance is contrasted
with that of C-MAC [7], IEEE 802.15.6-MAC [8], and
TDMA-MAC [9]. These protocols were selected for compari-
son due to their conceptual similarities with the main features
of the suggested method. Like C-MAC, which prioritizes
concurrent traffic mitigation to improve network performance
and is a crucial part of QLDSA-MAC, TDMA MAC uses a
dynamic superframe structure based on traffic demand and pri-
oritizes emergency traffic above regular traffic. The superframe
structure of IEEE 802.15.6-MAC serves as a benchmark for
the QLDSA-MAC protocol. Moreover, the performance evalu-
ation of the suggested protocol must consider the outstanding
problems with fixed time slot allocation in the IEEE 802.15.6
standard for WBAN communication. Hence, the performance
of the suggested protocol is illustrated in Figs. 3, Fig. 4, and
Fig. 5.

A. Network Throughput

The throughput (TH) for a WBAN network is defined as
follows [2], [13], [28]:

channe Taa
TH:Rh 1 T at 0

Tsimulation
where Rcpamner 1S the channel data rate, Ty, is the total
transmission time of all successfully transmitted packets, and
Timulation 1S the system simulation time.
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Fig. 3. Network throughput vs simulation time.

A thorough comparison of the throughput performance of
different Medium MAC protocols in Wireless Body Area Net-
works (WBANSs) across Simulation Time is shown in Figs. 3.
IEEE 802.15.6, TDMA-MAC, C-MAC, and QLDSA-MAC
are among the protocols that have been assessed. A crucial
parameter for evaluating the effectiveness of data transmission
in WBANSs, where prompt delivery of health-related data
is crucial, is throughput, which is expressed in kilobits per
second (kbps). The results show that these protocols function
significantly differently, with QLDSA-MAC turning out to be
the best option.

Fig. 3 shows the data throughput performance of each MAC
protocol over 200 s. By 40 seconds, all four protocols had
reached their steady-state speeds. QLDSA-MAC takes the
lead, increasing from 105 kbps to 110 kbps by the end of
the cycle. TDMA-MAC follows closely, averaging just around
100 kbps with little volatility. C-MAC steadily increases from
85 kbps to 90 kbps, while IEEE 802.15.6 plateaus at about
78 kbps.

In terms of performance, QLDSA-MAC beats TDMA-
MAC by 9%, C-MAC by 22%, and IEEE 802.15.6 by 41%.
This gain is credited to QLDSA-MAC’s usage of Q-learning,
which optimizes slot assignments while maintaining steady
throughput. For wireless body-area networks that require quick
startup and consistent performance, QLDSA-MAC is the most
dependable alternative.

These results demonstrate how crucial adaptive mechanisms
are to WBAN MAC schemes. By dynamically optimizing
resource allocation and ensuring effective data transmission,
QLDSA-MAC'’s incorporation of Q-learning enables it to
outperform conventional protocols. In healthcare applications,
where WBANs must facilitate real-time monitoring of vital
signs and other crucial health-related data, this flexibility is
very advantageous. QLDSA-MAC solves major issues with
traditional protocols by optimizing throughput while reducing
latency and energy usage.

B. Energy Efficiency

The total amount of energy used by a sensor node during its
communication time across its operating states is known as its

w
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=350
2
£.300
2 250
=]
S 200
5 150
g
& 100
50
0
0 40 80 120 160 200
Simulation Time (S)
——QLDSA-MAC -®-TDMA-MAC —4-C-MAC —<IEEE 802.15.6

Fig. 4. Energy consumption vs simulation time.

total energy consumption, denoted by Fi.,. Here, we consider
only energy consumption during successful transmission and
collisions [31]-[33].

Etotal = Esuccess + Ecollision (2)

where Egyccess denotes the energy consumption of successful
transmission in a WBAN network, and E.opision denotes the
energy consumption during a collision in a TDMA MAC of
the WBAN network.

Z Dsuccessful
Ttotal

Here, Dgyccessfur represents the total successfully received
data in bits, and Ty, represents the total energy consumed in
Joules.

The suggested QLDSA-MAC protocol, as shown in Fig. 4,
offers convincing proof of its higher efficiency when compared
to more conventional MAC protocols, such as IEEE 802.15.6,
TDMA-MAC, and C-MAC. Fig. 4 charts how much energy
each MAC protocol burns over the 200-second run. Consump-
tion climbs steadily for all four schemes, but the gaps open
quickly. QLDSA-MAC is the most frugal throughout, creeping
from zero to 270 mJ by the end. TDMA-MAC tracks slightly
higher, finishing close to 290 mJ. In contrast, C-MAC and the
IEEE 802.15.6 baseline draw far more power: C-MAC hits
about 420 mJ at 200 s, while IEEE 802.15.6 tops the list at
450 mlJ.

Translated into savings, QLDSA-MAC uses around 7% less
energy than TDMA-MAC, 36% less than C-MAC, and 40%
less than IEEE 802.15.6 over the full simulation. The lower
draw suggests that QLDSA’s Q-learning keeps retransmissions
and idle listening to a minimum, making it the best choice
when battery life is at a premium, especially in wearable
WBAN nodes where every millijoule counts.

These results demonstrate the shortcomings of static and
semi-static MAC protocols in WBANSs, where sensor nodes
run on batteries, and energy economy is crucial. Because
QLDSA-MAC is adaptive, it can successfully handle these
issues by dynamically modifying time slot allocations in
response to the state of the network. The protocol’s use of
Q-learning reduces delays and energy waste, guaranteeing

Energy efficiency = (3)
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the prompt and dependable supply of vital health-related
data while prolonging the life of WBAN devices. Energy
efficiency has a direct impact on the durability and usability of
wearable and implanted sensors, making this skill very useful
in healthcare applications.

C. Packet Delay

The average amount of time that passes between a packet
being generated at the sensor node and being received at the
hub is known as the packet delay of that node. A lower packet
delay shows better protocol performance. It is computed as
follows [10], [34]:

Csuccess Nrial

Delay = Z Z tﬁelay )

i=17 j=1, connection ¢

where Cgyceess denotes the total number of successful con-
nections, 7y is the number of attempts required to achieve
successful transmission, and t},, denotes the contention delay
for the j™ trial for a connection involved in a TDMA MAC
of a WBAN network.

The performance evaluation of the suggested QLDSA-MAC
protocol, as shown in Fig. 5, provides convincing evidence of
its superiority over conventional MAC protocols, such as IEEE
802.15.6, TDMA-MAC, and C-MAC. Fig. 5 traces the average
packet delay for the same four protocols over the 200-second
run. All curves climb quickly during start-up, peaking near the
40-second mark, and then settle into a gentle plateau.

By the 200-second point, QLDSA-MAC’s delay is about
23% lower than TDMA-MAC, 38% lower than C-MAC,
and 56% lower than IEEE 802.15.6. The consistently shorter
queues suggest that QLDSA’s Q-learning quickly discovers
efficient slot assignments, trimming contention and retrans-
missions. For latency-sensitive WBAN traffic, this makes
QLDSA-MAC the clear winner.

These results demonstrate the shortcomings of static and
semi-static MAC protocols in WBANSs, where effective re-
source management and real-time data transfer are critical.
Because QLDSA-MAC is adaptive, it can successfully handle
these issues by dynamically modifying time slot allocations
in response to the state of the network. The protocol ensures
dependable and timely delivery of vital health-related data by
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utilizing Q-learning to reduce packet collisions and delays. In
healthcare applications, where delays can have serious reper-
cussions for patient monitoring and treatment, this capacity is
beneficial.

D. Choosing Value for Learning Rate and Discount Factor

Fig. 6 plots the weight assigned to future rewards (vertical
axis) against the number of steps into the future (horizontal
axis) for four discount factors: v = 0, 0.5, 0.9, and 1.0. When
~ = 0, the curve drops immediately to zero, showing that only
the immediate reward is valued. With v = 0.5, the weight falls
off quickly but not instantaneously, reflecting modest concern
for near-term rewards. For v = 0.9, the decline is gradual,
indicating that the agent still values reward many steps ahead,
though each is slightly less important than the last. At v =
1.0, the line remains flat at one, meaning every future reward
is treated the same as the present reward. Together, these
curves illustrate how the discount factor controls an agent’s
time horizon: the closer + is to one, the further into the future
the agent looks when making decisions.

Fig. 7 shows how the learning rate « influences the speed at
which an estimated value (vertical axis) converges to the true
value of 1.0 (dashed reference line) over successive updates
(horizontal axis). With a high learning rate (o = 0.9), the
estimate leaps toward the target within just a few iterations,
demonstrating rapid adaptation. By contrast, a low learning
rate (o = 0.1) causes the estimate to rise slowly and smoothly,
illustrating cautious, incremental learning. The comparison
highlights the classic trade-off: a large « accelerates conver-
gence but can be volatile in noisy settings, whereas a small «
yields stability at the cost of slower adjustment.



V. CONCLUSION

This study shows that the suggested QLDSA-MAC protocol
outperforms traditional MAC techniques in WBANs. QLDSA-
MAC surpasses TDMA-MAC, C-MAC, and IEEE 802.15.6 in
throughput, achieving the highest data rates and continuing
to improve steadily as simulation time progresses. QLDSA-
MAC also exhibits the lowest average transmission delays,
suggesting more efficient channel access and prompt data
delivery, which is crucial for real-time healthcare applications.
The advantage of QLDSA-MAC is further illustrated by en-
ergy consumption analysis, which indicates that the protocol
utilizes the least amount of energy over the simulation pe-
riod, thereby extending network lifetime and conserving node
battery resources. These results showcase the effectiveness
of integrating Q-learning into MAC protocols to facilitate
dynamic slot allocation that intelligently adapts to changing
network conditions. Consequently, QLDSA-MAC presents a
viable approach to enhance the sustainability, efficiency, and
reliability of future WBAN deployments. Although there have
been significant improvements in throughput, latency, and
energy efficiency with the QLDSA-MAC protocol, several
avenues for future research remain to further enhance its
capabilities. For instance, applying the Q-learning paradigm to
a Deep Q-Network (DQN) in larger and more dynamic WBAN
contexts may improve scalability and learning efficiency.
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