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Audio Encryption and Decryption under Elliptic
Curve Cryptography and DNA Algorithm

Md. Imdadul Islam, Samsun Nahar Khandakar, Nadia Afrin Ritu, Md. Masum Bhuiyan and Sarwar Jahan

Abstract—Secure audio transmission is crucial in military,
telemedicine, and loT multimedia, where confidentiality and
integrity are vital. Traditional methods, such as RSA, are
computationally intensive, while DNA cryptography is efficient
but less secure. This paper proposes an audio encryption and
decryption scheme using Elliptic Curve Cryptography (ECC). In
the proposed method, a pair of audio signals is taken as plaintext,
and corresponding sample points are combined into ordered pairs.
Some points fall outside the elliptic curve and cannot be directly
decrypted; these are preserved in a sparse vector. The encrypted
vector and sparse vector are transmitted through a noiseless
channel, and at the receiving end, they are combined to ensure
complete recovery of the original signals. Appropriate ECC
parameters are selected to minimize the number of ambiguous
points, allowing for 100% accurate recovery. The performance of
ECC is compared with RSA and DNA cryptography in terms of
processing time and security level. Additionally, encryption
rigidity is evaluated using cross-correlation, discrete wavelet
transform (DWT) spectral analysis, and fuzzy entropy. Results
demonstrate that ECC achieves the strongest security among the
three approaches, albeit with higher processing complexity,
whereas DNA is most suitable for real-time applications due to its
efficiency.

Index terms—Sparse sample, Cross-correlation, Fuzzy entropy,
RSA, DWT, and Spectrogram.

|. INTRODUCTION

The growing prevalence of multimedia transmission and
Internet of Things (loT) applications has made the secure
exchange of audio data increasingly critical. Audio is an
integral part of several sensitive domains such as military
communication, telemedicine, surveillance, and smart home
devices, where both confidentiality and data integrity must be
preserved. In such applications, unauthorized access,
tampering, or interception of audio data can lead to severe
privacy breaches or operational failures. Therefore, the
development of lightweight yet secure encryption techniques
suitable for real-time audio transmission has become an
important research challenge.

Traditional asymmetric algorithms, particularly the Rivest—
Shamir-Adleman  (RSA) algorithm, provide strong
cryptographic security but suffer from high computational
overhead during key generation and decryption, which limits
their efficiency in real-time scenarios. On the other hand, DNA-
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based cryptographic schemes offer greater efficiency and
reduced computation time but compromise on encryption
strength and resistance to brute-force or statistical attacks.
These opposing characteristics reveal a significant research gap
between efficiency and security in existing audio encryption
methods.

Elliptic Curve Cryptography (ECC) provides a promising
balance between computational efficiency and high-level
security. ECC achieves an equivalent security level to RSA
using much smaller key sizes, resulting in reduced memory
usage, faster computation, and lower energy consumption —
qualities essential for 10T and embedded multimedia systems.
However, ECC has not yet been fully exploited for audio signal
encryption, particularly in contexts where signal points do not
always map perfectly onto the elliptic curve.

Previous studies have explored various cryptographic
methods for multimedia and audio encryption. Works in [6], [7]
applied ECC to real-time audio and demonstrated robustness
under noisy conditions, though computational efficiency was
not analyzed. A comprehensive survey in [9] reviewed ECC,
DNA, and hybrid methods, highlighting their potential but
lacking experimental validation. DNA-based approaches [10—
12] achieved strong diffusion and high Avalanche Effect but
were limited to image data. Hybrid DNA-ECC models [13]
improved security for 1oT devices but incurred high
computational cost, while audio-focused methods [14-16]
based on image conversion or chaotic maps overlooked
efficiency and recovery accuracy. Other studies extended ECC
to cloud, 10T, and authentication systems [17-20], confirming
its versatility but without comparative performance evaluation.
Direct comparisons of RSA and ECC [21-22] confirmed ECC’s
higher security and resistance to attacks, though runtime and
recovery issues remained unexplored. Overall, prior works
establish ECC and DNA as promising techniques but leave
open challenges in achieving efficient, fully recoverable, and
statistically robust audio encryption—the focus of the present
research.

Addressing these issues motivates the current research,
which proposes a novel audio encryption and decryption
scheme based on Elliptic Curve Cryptography (ECC) enhanced
with a sparse vector correction mechanism. The proposed
method pairs samples from two audio signals and encrypts them
using ECC parameters optimized to minimize the humber of
ambiguous points. Any samples that fall outside the elliptic
curve are stored in sparse vectors and reintegrated during
decryption to guarantee 100% recovery of the original signal.
The performance of the proposed ECC model is compared with
RSA and DNA cryptography across statistical, spectral, and
fuzzy entropy analyses to evaluate both encryption strength and
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computational efficiency. Experimental results demonstrate
that ECC offers the strongest security, DNA achieves the fastest
runtime, and RSA provides moderate performance, thereby
establishing a balanced perspective for selecting cryptographic
methods in real-time audio communication and loT
environments.

The main contributions of this research work are as follows:

e A novel ECC-based encryption and decryption
algorithm for audio signals that ensures 100%
recovery using a sparse vector for ambiguous points.

e A comparative performance analysis of ECC, RSA,
and DNA cryptography algorithms in terms of
encryption quality, process time, and statistical
measures (e.g., variance, entropy, cross-correlation).

e Introduction of fuzzy entropy and spectral component
analysis to evaluate the encryption rigidity of each
cryptographic method.

e A comprehensive experimental setup with real-time
audio signals, including encryption/decryption time
analysis across different audio types.

e A demonstration that ECC provides the highest
security, while DNA cryptography offers the best
efficiency for real-time applications.

The rest of the paper is organized as follows: Section Il
reviews the related studies and outlines the literature gaps.
Section I11 describes the basic theory behind the ECC, RSA, and
DNA cryptographic techniques. Section VI presents the
methodology of the proposed encryption and decryption
algorithms. Section V illustrates the experimental results and
provides a comparative analysis among the algorithms. Finally,
Section VI concludes the research and outlines directions for
future work.

Il. RELATED WORKS

Several studies have explored cryptographic techniques for
securing audio and multimedia signals using various
mathematical and biological approaches. In [6-7], ECC was
applied to real-time audio in noisy environments where
interference was either channel-induced or user-induced. The
study clearly presented system flow diagrams and compared the
original and encrypted audio using histograms, correlation,
entropy, contrast, energy, and homogeneity measures, as well
as spectrograms. The advantage of this work lies in its
demonstration of ECC’s robustness under noisy conditions.
However, the main limitation is that it did not analyze
computational complexity, leaving efficiency issues
unexplored. The comparison of correlation, entropy, contrast,
energy, and homogeneity between original and encrypted
signals is shown in several tables for three audio signals.
Finally, a comparison of the spectrograms of two audio signals
before and after encryption is presented, where their variations
are visually apparent at a glance [8].

A comprehensive survey in [9] analyzed various
cryptographic methods, including DNA, ECC, homomorphic,
hybrid, and lightweight approaches, with a discussion on
algorithms, results, applications, and limitations. This work
excels in broad coverage and insightful cloud data security
recommendations, but lacks experimental validation.

DNA cryptography and its constraints were examined in
[10], with similar evaluations in [11], where DNA performance
was tested on images using PSNR, NPCR, UACI, correlation
coefficients, and entropy. These works contributed valuable
statistical benchmarking, but they are limited by focusing solely
on image data, rather than audio or real-time signals. In [12],
DNA was compared with RSA in terms of bit changes and
Avalanche Effect, showing DNA’s higher AE. While this
highlights DNA’s diffusion strength, it lacks broader robustness
tests.

A hybrid DNA-ECC model was introduced in [13] for loT
devices. The key advantage is its improved security over
standalone methods, verified against brute force attacks. The
limitation is its high computational cost and restriction to text-
based data rather than multimedia. Audio-specific cryptography
was studied in [14-15], where audio signals were converted to
two-dimensional matrices for encryption using image-based
methods. Performance was evaluated using BER in [14] and
SNR in [15]. The novelty lies in treating audio as images for
encryption. The drawback is that these works used only limited
performance metrics and did not consider computational
efficiency. In [16], a chaotic map-based approach was
proposed, utilizing pseudo-random numbers and rotation
equations, with evaluation based on correlation, NSCR, SNR,
PSNR, and encryption time. This method achieved strong
randomness and signal similarity across domains, but its
synchronization overhead and lack of comparison with ECC
limit its relevance.

ECC was also explored beyond audio, such as for secure
authentication in cloud systems [17] and dynamic constellation
rotation for wireless encryption [18]. These works underscore
ECC’s adaptability, but they focus on authentication and
physical layer encryption rather than multimedia applications.

Studies in [19-20] have highlighted the prominence of ECC
in l1oT security, particularly in mitigating man-in-the-middle
attacks. While they confirm ECC’s growing role in IoT, the
absence of comparative analysis or statistical evaluation limits
the utility of their findings.

A direct RSA-ECC comparison was conducted in [21] using
sequences of 8-, 64-, and 256-bit length. The results showed
RSA’s faster encryption but slower decryption, with ECC
overall more secure and efficient. The drawback is that no
statistical robustness tests were performed. Similarly, in [22],
ECC was applied to audio and evaluated with entropy,
correlation, NPCR, UACI, PSNR, MSE, RMS, and crest factor
values. This demonstrated ECC’s resistance to attacks, but it did
not examine computational efficiency. Finally, [23] applied
RSA and DNA to medical images using seven statistical
parameters. This extended cryptography into medical 10T data,
but it did not integrate ECC, nor did it address audio
applications.

The collective insights from these studies reveal that while
ECC and DNA cryptography have proven effective for securing
multimedia and loT data, significant gaps remain. Most prior
works have not simultaneously addressed computational
efficiency, full audio recovery, and robustness against statistical
attacks. The present study bridges this gap by proposing an
ECC-based audio encryption and decryption method enhanced
with a sparse vector correction mechanism, ensuring both
strong security and complete recovery of the original audio
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signal. A comparison with RSA and DNA cryptography further
clarifies the trade-offs between security strength and processing
efficiency.

I11. BAsIC THEORY

The original messages to be encrypted are known as
plaintext, and are transformed by an algorithm with some
known parameters called keys. The output of the encryption
algorithm, known as the ciphertext, is then transmitted through
the communication channel. When the same key parameters are
used for both encryption and decryption, it is known as
symmetric-key cryptography. Elliptic curve cryptography
(ECC) is an asymmetric cryptography method, similar to RSA,
where two separate keys — a public key and a private key —
are used for encrypting and decrypting data.

A. The elliptic Curve Cryptography

The generalized cubic equation used in Elliptic Curve
cryptography (ECC) is expressed as [24-25],

y2+ byxy + by = x3 + a;x% + ayx + as. (@))
A simplified form of eq. (1) is used in ECC as,
y2=x3+ax+b. )

The constraint, 4a3 + 27b% # 0, is used as the nonsingular
elliptic curve, which has three distinct roots. The ECC
algorithm, in the context of audio encryption and decryption, is
presented in the next section.

B. DNA Cryptography

In DNA cryptography, four symbols, A, C, G, and T, are
used, corresponding to the names of the four bases of biological
DNA found in [26-27]. Each symbol is represented by two
binary bits, and their complement symbols (bases A-T and C-G
are connected on the DNA ladder) are shown in Table I.

TABLE I
DNA AND COMPLEMENTS
DNA | Complement
C=00 G=11
T=01 A=10
A=10 T=01
G=11 Cc=00

Two binary bits (00, 01, 10, and 11) against each of four
symbols (A, T, C, and G) are assigned in 8 different
combinations, and each of the combinations is called a rule. The
8 possible DNA rules are shown in Table II.

TABLE 11
DNA AND COMPLEMENTS
Rul Rule | Rule | Rule | Rule | Rule | Rule | Rule | Rule
e -1 -2 -3 -4 -5 -6 -7 -8
00 A A G G T T C C
01 C G A T C G A T
10 G C T A G C T A
11 T T C C A A G G

Three DNA operators —addition, subtraction, and XOR —
are used on the symbols A, T, G, and C, as shown in Tables III,
IV,and V.

TABLE IlI
DNA ADDITION
Addition | C=00 | T=01 | A=10 [ G=11
C=00 C T A G
T=01 T A G C
A=10 A G C T
G=11 G C T A
TABLE IV
DNA SUBTRACTION
Subtraction | C=00 | T=01 | A=10 | G=11
C=00 C G A T
T=01 T C G A
A=10 A T C G
G=11 G A T C
TABLE V
DNA XOR
XOR C=00 | T=01 ]| A=10| G=11
Cc=00 | C T A G
T=01 | T C G A
A=10 | A G C T
G=11 |G A T C

The steps of the DNA cryptography operation are illustrated
with examples in the next section.

C. RSA Algorithm

The simplest form of asymmetric key cryptography was
introduced by a research group of M.L.T. in 1978, known as
RSA (Rivest, Shamir, Adleman). The steps of the RSA method
are presented below, as described in [28-29].

v" Select two prime numbers: p and g

v Evaluaten = pgandz = (p—1)(q—1)
v Selectd suchthat ged (d,z) = 1

v' Choose e such thatde = 1mod z

All three of the above algorithms are used in this research work.

D. Fuzzy Entropy

In voice communication, the number of quantization levels
is 256. If p, is the probability of a quantized sample of a voice
signal of level k and the corresponding MF of a fuzzy system is
u(k), then the weighted probabilities [30-31],

Pa = Yo Pie X ta(k) 3)
Pm = D20 P X M () 4)
Py = Lizo P X tp(k) )

Here we consider that the fuzzy variable has three linguistic
values: m, d, and b; the corresponding MFs are: u,,, udk, and
Up (k). The MFs are Gaussian, expressed as [31-32],
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0, k<a
(k—aq)?
(c1—ay)(b1—-ay)’ a <k < b
_ (k—c1)?
(c1—-a1)(c1—-b1)’ by<ks=c
Un(k) =<1, c<k<a, (6)
_ (k—az)?
(cz—az)(b2—az)’ @ <k <b,
(k—c3)?
(c2—az)(c2—b3)’ b <k=c
0, k>c,
1, k<a
(k—aq)?
- . O a1 < k < bl
_ (c1—a1)(b1-aq)
=1 L ")
(c1—a1)(c1—-b1)’ 1 =G
\ 0, k>c
0, k<a,
(k-a3)?
W@ <k <b,
_ (c2—az)(bz—-az)
wey =4 @ ®
(c2-az)(cz=by)" 2 =
\1, k>c,

The graphical plot of the above MFs is given in Fig.1, taking
a,= 50, b; = 75, ¢; = 100, a, = 150, b, = 175, and ¢, = 200,
where the base variable is the index k of the quantized sample
having the values k = 0 to 255.

0 50 100 150 200 250
Base variable N

Fig. 1. MFs of fuzzy values

The Fuzzy entropy of each MF,

H., = — 3255 PeX#a() g (Pixia (k)

a = = TiZ PR n (PEe0) ©)
_ 255 PrxXtm(k) PrXHm (k)

Hy = Zk:o P ln( o ) (10)
_ __ v'255 PkXup (k) Pic*ip (k)

Hy = — N335 P ln( o ) (11)

The whole fuzzy entropy [32-33] is

In this paper, we vary the parameters al, b1, c1, a2, b2, and c2
to attain the maximum value of fuzzy entropy for both the
original and encrypted signals, in order to assess the rigidity of
encryption algorithms.

IV. METHODOLOGY

This section deals with three cryptographies: (1) ECC, (2)
RSA, and (3) DNA cryptography. The algorithm for audio
signal encryption and decryption using a sparse vector under
ECC is presented below.

E. Pair of Audio Signal Encryption and Decryption using ECC
E.1 Encryption Algorithm

1. Select the encryption parameters based on a simplified
elliptic curve y2=x3+ax+b as: a, b, p, e; =
(x1,¥1), ez = (x3,¥,); Where a and b are the
coefficients of the elliptic curve, p is the prime number
used in GF, e, is a point on the elliptic curve and e, is
another point determined from e, using the private key.

2. Vary the parameters of step 1 until getting the minimum
number of ambiguous points for the sparse vector.

3. Select two audio signals: v, (t) and v,(t), each of the
same length, i.e., N samples.

4. Create an ordered pair, Pi = (v1(i), v2 (i)), using the ith
sample of audio signals.

5. Encrypt and decrypt the ordered pair, Pi = (v, (i) and
vy(0)), fori=1,2,3,...,N

6. The encrypted ordered pair is E ;= (e, (i), e,(i)) and
that of decrypted ordered pair is, D; = (d, (i), d(i))

7. The sample outside of the elliptic curve is checked and
replaced by 0 to form the transmitted signal, and those
ambiguous samples are preserved separately on a sparse
vector.

%The transmitted vector-1
fori=1to Ndo
if di(i) # va(i) then
Txa(i) = 0;
sparse_vectors(i) = va(i)
else
Txu(i) = es(i);
sparse_vectori(i) = 0;
end if
end for

8. Repeat step 6 for vector 2

9. Select random key r, evaluate cipher text C; =r x e1

and C;=P +rxey

E.2 Decryption Algorithm with sparse vectors

10. Evaluate the point d XC,, then invert it to get the point

Q
11. Add Q with C; to get P; = (va(i) and vo(i)) fori=1, 2,
3,...N

12. To count the ambiguous points:
if vi(i) = 0 then
vi(i) « sparse_vectora(i)
end if
if v2(i) = 0 then
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v2(i)« sparse_vectorz(i)
end if
13. Repeat steps 10to 12 fori=1to N

F. RSA Algorithm

1. Select the length of the audio signal N.
2. Load the audio signal S, and resize it to length N as

S(1...N).
3. Normalize the numerical values of samples of audio
signal.
4. Select encryption parameters: e =3,n=33,d=7.
fori=1toN:
Determine encrypted signal: E(i)=mod(S(i)¢, n)
end for
fori=1toN:
Decrypt the signal: D(i)=mod((E (i))%, n)
end for

o

Show original, encrypted, and decrypted signals
6. Determine the statistical parameters of the above three
signals

G. Steps of Operation under DNA Cryptography

Step 1: Take the input plain text data, P = 150
Step 2: Convert it into binary, 150 < 10 01 01 10
Step 3: Apply rule-1 on the bit sequence,
P=10010110GCCG
Step 4: Take thekey 7501001011 - CAGT
Step 5: Apply DNA addition for encryption as:
plain text + key = encrypted sequence
GCCG+CAGT=GAGC
Step 6: Apply DNA subtraction to get the plain text again:
encrypted sequence - key = plain text
GAGC-CAGT=GCCG+« 10010110
«150=P
Under the XOR operation, steps 5 and 6 are replaced by the
following operation:
plain text XOR key = encrypted sequence
encrypted sequence XOR key = plain text

For example,
Plaintext @ key=GCCG@® CAGT
=GAGA
= Encrypted sequence
Encrypted sequence & key=GAGAG CAGT
=GCCG
=P

H. Lowest Spectral Components of Original and Encrypted
Signals

1. Size of the audio samples, N = 1024

2. Size of lowest spectral components, M = 8

3. Read the audio file as Ir

4. Extract N samples to create an array |.

fori=1toN
1(i) = Ir(i)
end for

5. Convert samples to double-precision floating-point
representation
lo=double(l);
6. Encrypt the audio block, le = encrypt_audio(lo)
7. Initialize the variables,
yn = lo, ye = le, L=length(yn)
8. Perform iterative operation.
while L >=M do
yn = dwt(lo)
ye = dwt(le);
L= length(y);
end while
9. Compare yn and ye.

I. Fuzzy entropy of audio signal

1. Read the audio file as Ir

2. fori=1toNdo:

3 Iq < Quantize(Ir(i))

4, lo(i) « Iqd

5. end for

6. lo <« double(l);

7. Generate histogram of the audio sample, R« imhist(l)
8. Normalize the histogram, P=R/max(R) where

O<P(i)<1
9. fori=0to 255
U1 (i), ua (i), uz(i) < Create fuzzy MFs based on
Eq. (6) - (8)
10. end for
11. Determine the weighted probability of Eq. (3) to (5)
12. P1,P2,P3 «0;
13. fori=0to 255 do
P1 — P1+P(i) x p, (i)
P2 — P2 + P(i) x p, (i)
P3 — P3 + P(i) x us(i)
14. end for
15. Determine fuzzy entropy
16. H1,H2,H3 <0
17. fori=1to 256 do
18. if u;(i) # 0 and P(i) # 0 then

19. H1 < H1-— P(DX pus () logs P(DX pus (@)
P1 P1
20. end if
21. if u,(i) # 0 and P(i) # 0 then
22. H2 « H2 — P(D)X ua (D) logs PD)X ua (i)
P2 P2
23. end if

24.  if us(i) # 0 and P(i) # 0 then

25, H3 < H3— P(D)X uz(i) logs P()X us(@)
P3 P3

26. endif

27. end for

28. H=H1+H2+H3;
Function Quantize(s)
N 103
1. 1() = —— X 255

2. 1(i) = uint8(I(i))
3. return (i)
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J. Complexity Analysis

In this paper, the application of ECC on a pair of voice
sequences includes ‘verification of the ordered pair falling on
the curve’, and ‘inclusion of two sparse vectors’ makes the
proposed algorithm more complex compared to conventional
ECC of 0(k?), taking k as the bit-length of the key. During
transmission, each sample of v, (t)and v,(t) is encrypted and
decrypted; the complexity will be0 (4Nk?), the comparison of
each plain-text and decrypted value will change it toO (4Nk? +
2N), and finally, the inclusion of two sparse vectors will make
it0(4Nk? + 2N + 2N). For the case of space complexity, the
inclusion of sparse vectors is the only considerable component.
The other two algorithms, RSA and DNA, use the conventional
form; hence, their complexity is avoided here, but both of them
possess lower complexity compared to the proposed ECC
technique.

The next section presents the results obtained from each of
the algorithms and compares them.

V. RESULTS AND DISCUSSIONS

First of all, two audio signals, each of 1200 samples, are taken
for the experiment as shown in Fig. 2. Next, the comparison of
the original and encrypted signals is shown in Fig. 3 in the time
domain, where they are completely different, which indicates
the secrecy level of ECC. The original and decrypted signals are
compared at the receiving end, as shown in Fig. 4, where some
discrepancies are observed at a few sampling points.
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Fig. 3. Comparison of original and encrypted signals.

This happened because some points on the audio signal fell
outside of the elliptic curve. These ambiguous points are shown
in the discrete plot of Fig. 5 and represent the sparse vector
elements.
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Fig. 5. Sparse samples of audio before the addition of sparse samples.

Now, the combination of the decrypted vector and the sparse
vector is used based on the proposed algorithm of the paper, and
100% matching between the original and the decrypted is
found.

Three statistical parameters (Variance, Entropy, and cross-
correlation coefficient) of original, recovered, and encrypted
audio signals are compared in Table V1. The tabular data reveal
that the recovered signal resembles the original signal, but no
similarity is found with the encrypted signal; hence, the rigidity
of the encryption algorithm (ECC) is again confirmed by the
numerical data.

The sparse vector may vary with audio data and also with the
chosen parameters of the ECC algorithm. For example, 4.5% of
mismatched points are found for the parameters of the
encryption algorithm (a=2, b =1, and p = 71) against audio-1.
The audio-2 gives 4.82% miss-matched points shown in Fig.
6(a)-(b). Similar results are shown for the parameters of the
encryption algorithm: a=1, b =1, and p = 61 in Fig. 7(a)-(b),
which improves the performance of the algorithm in this
context.
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TABLE VI
COMPARISON OF SIGNAL PARAMETERS (ECC)
Parameters Audio- Parameters Audio- | py (original-1
1 1 and encrypted-
1)
Variance of 3.6025 Entropy of 2.9335
Original Audio Original
Variance of 3.6025 Entropy of 2.9335 0.072
Recovered Recovered
Audio
Variance of 15.7239 Entropy of 0.0933
Encrypted Encrypted
Audio
Parameters Audio- Parameters Audio- | py (original-2
2 2 and encrypted-
2)
Variance of 44.6589 Entropy of 4.6966
Original Audio original
Variance of 44.6589 Entropy of 4.6966 0.0062
Recovered Recovered
Audio
Variance of the | 2.4628 Entropy of 0.0933
encrypted Encrypted
Audio
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To verify the wide difference between the original and

encrypted signals, the lowest 16 spectral components of the
original and encrypted signals are determined using DWT. A
comparison of their spectral components for different values of
encryption parameters is shown in Figs. 8 to 10 for both audio
signals. Again, their wide variation indicates the rigidity of the

ECC.
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We applied the RSA algorithm to the audio signal, using the
following parameters: e =3, n =33, and d = 7. A comparison of
statistical parameters is shown in Table VII, where the
randomness of encrypted data is less prominent compared to
ECC.
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TABLE VII

COMPARISON OF SIGNAL PARAMETERS (RSA)

Parameters Audio-1 Parameters Audio-1 | p, (original-1
and
encrypted-1)
Variance of 26.1542 Entropy of 4.2154
Original Original
Audio
Variance of 26.1542 Entropy of 4.2154 0.3228
Recovered Recovered
Audio
Variance of 70.8612 Entropy of 1.2049
Encrypted Encrypted
Audio
Parameters Audio-2 Parameters Audio-2 | py (original-2
and
encrypted-2)
Variance of 58.4602 Entropy of 3.3777
Original original
Audio
Variance of 58.4602 Entropy of 3.3715 0.2588
Recovered Recovered
Audio
Variance of 105.9864 Entropy of 0.3722
Encrypted Encrypted
Audio

Next, DNA cryptography is applied to the audio samples
under MATLAB. The decimal values and corresponding DNA
sequences for both plain text and encrypted data, against 20
samples, are shown below.
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Input message,
P=[19 19 19 20 20 21 21 21 22 22 22 22
22 23 23 23 24 25 26 27]

Plain text in DNA symbol,

P ='ACAT' 'ACAT' 'ACAT' 'ACCA' 'ACCA' 'ACCC' 'AcCcCC’
'ACCC' 'ACCG''ACCG''ACCG'

'ACCG' 'ACCG' 'ACCT' 'ACCT' 'ACCT' 'ACGA' 'ACGC'
'ACGG' 'ACGT'

The encrypted DNA sequence under the XOR operation,

E ='AATC' 'AATC' 'AATC' 'AAGG' 'AAGG''AAGT' 'AAGT'
'AAGT' 'AAGA"'AAGA'

'AAGA' 'AAGA' 'AAGA' 'AAGC' 'AAGC' 'AAGC' 'AACG'
'AACT 'AACA"'AACC'

The decimal value of the encrypted DNA sequence,
E=13 13 13 10 10 11 11 11 8 8 8 8 8
9 9 9 6 7 4 5

A comparison of statistical parameters is shown in Table
VII1, where the randomness of encrypted data is less prominent
compared to ECC but more prominent compared to RSA.

TABLE VI
COMPARISON OF SIGNAL PARAMETERS (DNA)
Parameters Audio- Parameters Audio- | py (original-1
1 1 and encrypted-
1
Variance of 44.6589 Entropy of 0.0517
Original Audio Original
Variance of 44.6589 Entropy of 0.0517 0.0243
Recovered Recovered
Audio
Variance of 44.6589 Entropy of 0.0317
Encrypted Encrypted
Audio
Parameters Audio- Parameters Audio- | py (original-2
2 2 and encrypted-
2)
Encrypted 3.6025 Entropy of 2.9335
original
Variance of 3.6025 Entropy of 2.9335 0.186
Recovered Recovered
Audio
Variance of 3.6025 Entropy of 1.9335
Encrypted Encrypted
Audio

Four parameters of MFs, al, c1, a2, and c2, are varied, and

the numerical value of fuzzy entropy is evaluated for both
original and encrypted audio signals. Here, the other two
parameters, b1 and b2, are excluded since they depend on the
other four parameters, like by = (a1 + ¢1)/2 and b, = (a2 + ¢2)/2.
The variation of fuzzy entropy against as, c1, a2, and ¢, is shown
in Fig. 11 (a), and the box plot of four parameters is shown in
Fig. 11(b). The fuzzy entropy attains its maximum value at a; =
78.4, c1=130.2, a2 = 120, and ¢ = 172.3. Now the vector, s =
[a1 ¢1 a2 c2] corresponding to the maximum value of fuzzy
entropy will be used as the feature of the audio signal.

The profile of fuzzy entropy of ECC, RSA, and DNA-
encrypted audio is shown in Fig. 12(a)-(c), where the maxima
are quite different, even shifted from the original signal. The

feature vector corresponding to the maximum value of fuzzy
entropy is found to be S ECC = [52.3, 108.4, 145.75, 192.4],
S_RSA = [76.3, 122.2, 128.6, 176.3], and S_DNA = [69.8,
118.2, 130.5, 182.6].
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Finally, four types of audio signals in *.wav format are taken,
and 15,00,000 samples are considered for encryption and
decryption. The encryption time, decryption time, and ‘cross-
correlation coefficients between original and encrypted signal’
are measured for all three algorithms. The experiment was
conducted on a machine with the following specifications:
Intel(R) Core (TM) i7-1065G7 CPU, 1.50 GHz, 16.0 GB RAM,
and MATLAB 2023R was used. The entire results are shown
in Table IX. For ECC, the encryption time is highest, but the
decryption time is moderate. The decryption time of RSA is
found to be the highest, but its encryption time is moderate. For
DNA, both encryption and decryption times are the minimum.

TABLE IX
COMPARISON OF THREE ENCRYPTION METHODS
Category of Algorithm | Encryption | Decryption
Audio Time (s) Time (s)
Human audio ECC 3.84 1.96
RSA 3.33 2.24
DNA 3.00 1.67
Car’s Sound ECC 5.78 3.12
RSA 5.56 3.92
DNA 5.53 2.18
Bird’s sound ECC 4.16 3.18
RSA 4.12 3.86
DNA 3.94 1.98
Animal’s sound | ECC 4.36 1.88
RSA 3.98 212
DNA 3.67 157
Direct Signal
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Cross Correlation Co-efficient

1 .

Bird’'s sound Car Sound Human audio
Sounds

(@) Original and encrypted signal

Animal sound

Lowest Spectral of DWT

||m 1]

Car Sound Human audio
Sounds

(b) Lowest spectral components of DWT

Cross Correlation Co-efficient

Animal sound Bird sound

Parameters of fuzzy entropy

|
. Ecc
I RsA
ConA

Cross Correlation Co-efficient

Animal sound Bird sound Car Sound

Sounds

(c) Fuzzy parameters

Human audio

Fig. 13. Cross-correlation, the ECC is the best of all, although DNA shows a
close result, parameters

In the context of security (Cross-correlation coefficient), the
ECC is the best of all, although DNA shows a close result,
visualized in Fig. 13(a)-(c). Here, the correlation coefficient is
taken for four types of audio under three techniques: (i) between
original and encrypted audio directly, (ii) between the 16 lowest
spectral components of original and encrypted audio, (iii)
between fuzzy parameters of original and encrypted audio. For
image or audio encryption, ECC provides the best result, but for
real-time operation, DNA compromises process time and
security level.

Although the proposed ECC-based audio encryption model
guarantees complete recovery of the original audio through
sparse vectors and offers stronger security than RSA and DNA,
it has several limitations. The study assumes a noiseless
transmission environment, whereas real-world networks
involve noise, jitter, and packet loss that can impair recovery.
ECC also introduces higher computational complexity,
resulting in longer processing times compared to DNA, which
may hinder its real-time use. Furthermore, the experiments were
limited to a small set of clean audio signals, which does not
accurately reflect the diversity of real-world multimedia data.
The model’s resilience against advanced attack scenarios, such
as side-channel, adaptive chosen-plaintext, or quantum-based
attacks, was also not examined. Finally, to enhance security, the
proposed model's complexity increases by a factor of 4N
compared to conventional ECC, as detailed in Section IV.
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V1. CONCLUSION AND FUTURE WORK

This study proposes an ECC-based audio encryption scheme
with sparse vector correction, compared against RSA and DNA
using statistical, spectral, and fuzzy entropy analyses. Results
show that ECC provides the strongest security, DNA offers the
best real-time efficiency, and RSA offers moderate
performance. The work extends ECC to audio communication,
introduces fuzzy entropy as a new rigidity metric, and offers
guidelines for balancing security and computational cost in 0T
and multimedia applications.

From a practical perspective, the proposed method
guarantees 100% audio recovery through sparse vector
correction, ensuring data integrity, and offers stronger
resistance to statistical attacks than RSA and DNA, making
ECC preferable where security outweighs latency.

Despite its advantages, the study is limited by testing in a
noiseless environment, a higher ECC processing time that may
hinder real-time use, a restricted dataset, and the lack of
evaluation  against advanced  cryptanalytic  attacks.

Future work should extend the model to noisy transmission
environments and evaluate its performance under realistic
channel conditions. Lightweight ECC optimizations should be
explored to reduce computational overhead and enhance
suitability for real-time and 10T applications. The concept can
also be applied to image transmission by converting an image
of size NxM into a vector of NMx1, although this increases
complexity at both the sender's and receiver's end.
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