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Abstract—Secure audio transmission is crucial in military, 

telemedicine, and IoT multimedia, where confidentiality and 

integrity are vital. Traditional methods, such as RSA, are 

computationally intensive, while DNA cryptography is efficient 

but less secure. This paper proposes an audio encryption and 

decryption scheme using Elliptic Curve Cryptography (ECC). In 

the proposed method, a pair of audio signals is taken as plaintext, 

and corresponding sample points are combined into ordered pairs. 

Some points fall outside the elliptic curve and cannot be directly 

decrypted; these are preserved in a sparse vector. The encrypted 

vector and sparse vector are transmitted through a noiseless 

channel, and at the receiving end, they are combined to ensure 

complete recovery of the original signals. Appropriate ECC 

parameters are selected to minimize the number of ambiguous 

points, allowing for 100% accurate recovery. The performance of 

ECC is compared with RSA and DNA cryptography in terms of 

processing time and security level. Additionally, encryption 

rigidity is evaluated using cross-correlation, discrete wavelet 

transform (DWT) spectral analysis, and fuzzy entropy. Results 

demonstrate that ECC achieves the strongest security among the 

three approaches, albeit with higher processing complexity, 

whereas DNA is most suitable for real-time applications due to its 

efficiency. 

 

Index terms—Sparse sample, Cross-correlation, Fuzzy entropy, 

RSA, DWT, and Spectrogram. 

 

I. INTRODUCTION  
 

The growing prevalence of multimedia transmission and 

Internet of Things (IoT) applications has made the secure 

exchange of audio data increasingly critical. Audio is an 

integral part of several sensitive domains such as military 

communication, telemedicine, surveillance, and smart home 

devices, where both confidentiality and data integrity must be 

preserved. In such applications, unauthorized access, 

tampering, or interception of audio data can lead to severe 

privacy breaches or operational failures. Therefore, the 

development of lightweight yet secure encryption techniques 

suitable for real-time audio transmission has become an 

important research challenge. 

Traditional asymmetric algorithms, particularly the Rivest–

Shamir–Adleman (RSA) algorithm, provide strong 

cryptographic security but suffer from high computational 

overhead during key generation and decryption, which limits 

their efficiency in real-time scenarios. On the other hand, DNA- 
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based cryptographic schemes offer greater efficiency and 

reduced computation time but compromise on encryption 

strength and resistance to brute-force or statistical attacks. 

These opposing characteristics reveal a significant research gap 

between efficiency and security in existing audio encryption 

methods. 

Elliptic Curve Cryptography (ECC) provides a promising 

balance between computational efficiency and high-level 

security. ECC achieves an equivalent security level to RSA 

using much smaller key sizes, resulting in reduced memory 

usage, faster computation, and lower energy consumption — 

qualities essential for IoT and embedded multimedia systems. 

However, ECC has not yet been fully exploited for audio signal 

encryption, particularly in contexts where signal points do not 

always map perfectly onto the elliptic curve.  

Previous studies have explored various cryptographic 

methods for multimedia and audio encryption. Works in [6], [7] 

applied ECC to real-time audio and demonstrated robustness 

under noisy conditions, though computational efficiency was 

not analyzed. A comprehensive survey in [9] reviewed ECC, 

DNA, and hybrid methods, highlighting their potential but 

lacking experimental validation. DNA-based approaches [10–

12] achieved strong diffusion and high Avalanche Effect but 

were limited to image data. Hybrid DNA–ECC models [13] 

improved security for IoT devices but incurred high 

computational cost, while audio-focused methods [14–16] 

based on image conversion or chaotic maps overlooked 

efficiency and recovery accuracy. Other studies extended ECC 

to cloud, IoT, and authentication systems [17–20], confirming 

its versatility but without comparative performance evaluation. 

Direct comparisons of RSA and ECC [21–22] confirmed ECC’s 

higher security and resistance to attacks, though runtime and 

recovery issues remained unexplored. Overall, prior works 

establish ECC and DNA as promising techniques but leave 

open challenges in achieving efficient, fully recoverable, and 

statistically robust audio encryption—the focus of the present 

research. 

Addressing these issues motivates the current research, 

which proposes a novel audio encryption and decryption 

scheme based on Elliptic Curve Cryptography (ECC) enhanced 

with a sparse vector correction mechanism. The proposed 

method pairs samples from two audio signals and encrypts them 

using ECC parameters optimized to minimize the number of 

ambiguous points. Any samples that fall outside the elliptic 

curve are stored in sparse vectors and reintegrated during 

decryption to guarantee 100% recovery of the original signal. 

The performance of the proposed ECC model is compared with 

RSA and DNA cryptography across statistical, spectral, and 

fuzzy entropy analyses to evaluate both encryption strength and 
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computational efficiency. Experimental results demonstrate 

that ECC offers the strongest security, DNA achieves the fastest 

runtime, and RSA provides moderate performance, thereby 

establishing a balanced perspective for selecting cryptographic 

methods in real-time audio communication and IoT 

environments. 

The main contributions of this research work are as follows: 

• A novel ECC-based encryption and decryption 

algorithm for audio signals that ensures 100% 

recovery using a sparse vector for ambiguous points. 

• A comparative performance analysis of ECC, RSA, 

and DNA cryptography algorithms in terms of 

encryption quality, process time, and statistical 

measures (e.g., variance, entropy, cross-correlation). 

• Introduction of fuzzy entropy and spectral component 

analysis to evaluate the encryption rigidity of each 

cryptographic method. 

• A comprehensive experimental setup with real-time 

audio signals, including encryption/decryption time 

analysis across different audio types. 

• A demonstration that ECC provides the highest 

security, while DNA cryptography offers the best 

efficiency for real-time applications. 

 

The rest of the paper is organized as follows: Section II 

reviews the related studies and outlines the literature gaps. 

Section III describes the basic theory behind the ECC, RSA, and 

DNA cryptographic techniques. Section VI presents the 

methodology of the proposed encryption and decryption 

algorithms. Section V illustrates the experimental results and 

provides a comparative analysis among the algorithms. Finally, 

Section VI concludes the research and outlines directions for 

future work. 

II. RELATED WORKS 
 

Several studies have explored cryptographic techniques for 

securing audio and multimedia signals using various 

mathematical and biological approaches. In [6–7], ECC was 

applied to real-time audio in noisy environments where 

interference was either channel-induced or user-induced. The 

study clearly presented system flow diagrams and compared the 

original and encrypted audio using histograms, correlation, 

entropy, contrast, energy, and homogeneity measures, as well 

as spectrograms. The advantage of this work lies in its 

demonstration of ECC’s robustness under noisy conditions. 

However, the main limitation is that it did not analyze 

computational complexity, leaving efficiency issues 

unexplored. The comparison of correlation, entropy, contrast, 

energy, and homogeneity between original and encrypted 

signals is shown in several tables for three audio signals. 

Finally, a comparison of the spectrograms of two audio signals 

before and after encryption is presented, where their variations 

are visually apparent at a glance [8].  

A comprehensive survey in [9] analyzed various 

cryptographic methods, including DNA, ECC, homomorphic, 

hybrid, and lightweight approaches, with a discussion on 

algorithms, results, applications, and limitations. This work 

excels in broad coverage and insightful cloud data security 

recommendations, but lacks experimental validation. 

DNA cryptography and its constraints were examined in 

[10], with similar evaluations in [11], where DNA performance 

was tested on images using PSNR, NPCR, UACI, correlation 

coefficients, and entropy. These works contributed valuable 

statistical benchmarking, but they are limited by focusing solely 

on image data, rather than audio or real-time signals. In [12], 

DNA was compared with RSA in terms of bit changes and 

Avalanche Effect, showing DNA’s higher AE. While this 

highlights DNA’s diffusion strength, it lacks broader robustness 

tests. 

A hybrid DNA–ECC model was introduced in [13] for IoT 

devices. The key advantage is its improved security over 

standalone methods, verified against brute force attacks. The 

limitation is its high computational cost and restriction to text-

based data rather than multimedia. Audio-specific cryptography 

was studied in [14–15], where audio signals were converted to 

two-dimensional matrices for encryption using image-based 

methods. Performance was evaluated using BER in [14] and 

SNR in [15]. The novelty lies in treating audio as images for 

encryption. The drawback is that these works used only limited 

performance metrics and did not consider computational 

efficiency. In [16], a chaotic map-based approach was 

proposed, utilizing pseudo-random numbers and rotation 

equations, with evaluation based on correlation, NSCR, SNR, 

PSNR, and encryption time. This method achieved strong 

randomness and signal similarity across domains, but its 

synchronization overhead and lack of comparison with ECC 

limit its relevance.  

ECC was also explored beyond audio, such as for secure 

authentication in cloud systems [17] and dynamic constellation 

rotation for wireless encryption [18]. These works underscore 

ECC’s adaptability, but they focus on authentication and 

physical layer encryption rather than multimedia applications. 

Studies in [19–20] have highlighted the prominence of ECC 

in IoT security, particularly in mitigating man-in-the-middle 

attacks. While they confirm ECC’s growing role in IoT, the 

absence of comparative analysis or statistical evaluation limits 

the utility of their findings. 

A direct RSA–ECC comparison was conducted in [21] using 

sequences of 8-, 64-, and 256-bit length. The results showed 

RSA’s faster encryption but slower decryption, with ECC 

overall more secure and efficient. The drawback is that no 

statistical robustness tests were performed. Similarly, in [22], 

ECC was applied to audio and evaluated with entropy, 

correlation, NPCR, UACI, PSNR, MSE, RMS, and crest factor 

values. This demonstrated ECC’s resistance to attacks, but it did 

not examine computational efficiency. Finally, [23] applied 

RSA and DNA to medical images using seven statistical 

parameters. This extended cryptography into medical IoT data, 

but it did not integrate ECC, nor did it address audio 

applications. 

The collective insights from these studies reveal that while 

ECC and DNA cryptography have proven effective for securing 

multimedia and IoT data, significant gaps remain. Most prior 

works have not simultaneously addressed computational 

efficiency, full audio recovery, and robustness against statistical 

attacks. The present study bridges this gap by proposing an 

ECC-based audio encryption and decryption method enhanced 

with a sparse vector correction mechanism, ensuring both 

strong security and complete recovery of the original audio 
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signal. A comparison with RSA and DNA cryptography further 

clarifies the trade-offs between security strength and processing 

efficiency. 

III. BASIC THEORY 
 

The original messages to be encrypted are known as 

plaintext, and are transformed by an algorithm with some 

known parameters called keys. The output of the encryption 

algorithm, known as the ciphertext, is then transmitted through 

the communication channel. When the same key parameters are 

used for both encryption and decryption, it is known as 

symmetric-key cryptography. Elliptic curve cryptography 

(ECC) is an asymmetric cryptography method, similar to RSA, 

where two separate keys — a public key and a private key — 

are used for encrypting and decrypting data.  

 

A. The elliptic Curve Cryptography 

    

The generalized cubic equation used in Elliptic Curve 

cryptography (ECC) is expressed as [24-25], 

 

𝑦2 + 𝑏1𝑥𝑦 + 𝑏2𝑦 = 𝑥3 + 𝑎1𝑥
2 + 𝑎2𝑥 + 𝑎3.          (1) 

 

A simplified form of eq. (1) is used in ECC as, 

 

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 .           (2) 

    

The constraint, 4𝑎3 + 27𝑏2 ≠ 0, is used as the nonsingular 

elliptic curve, which has three distinct roots. The ECC 

algorithm, in the context of audio encryption and decryption, is 

presented in the next section.  

 

B. DNA Cryptography  
    

In DNA cryptography, four symbols, A, C, G, and T, are 

used, corresponding to the names of the four bases of biological 

DNA found in [26-27]. Each symbol is represented by two 

binary bits, and their complement symbols (bases A-T and C-G 

are connected on the DNA ladder) are shown in Table I. 

 
TABLE I 

DNA AND COMPLEMENTS 
 

 

DNA Complement 

C = 00 G = 11 

T = 01 A = 10 

A = 10 T = 01 

G = 11 C = 00 

     

  Two binary bits (00, 01, 10, and 11) against each of four 

symbols (A, T, C, and G) are assigned in 8 different 

combinations, and each of the combinations is called a rule. The 

8 possible DNA rules are shown in Table II.  

 
TABLE II 

DNA AND COMPLEMENTS 
 

 

Rul
e 

Rule
-1 

Rule
-2 

Rule
-3 

Rule
-4 

Rule
-5 

Rule
-6 

Rule
-7 

Rule
-8 

00 A A G G T T C C 

01 C G A T C G A T 

10 G C T A G C T A 

11 T T C C A A G G 

Three DNA operators —addition, subtraction, and XOR — 

are used on the symbols A, T, G, and C, as shown in Tables III, 

IV, and V.  
 

TABLE III 

DNA ADDITION 
 

 

Addition C = 00 T = 01 A = 10 G = 11 

C = 00 C T A G 

T = 01 T A G C 

A = 10 A G C T 

G = 11 G C T A 

 

TABLE IV 

DNA SUBTRACTION 
 
 

Subtraction C = 00 T = 01 A = 10 G = 11 

C = 00 C G A T 

T = 01 T C G A 

A = 10 A T C G 

G = 11 G A T C 

 
TABLE V 

DNA XOR 
 

XOR C = 00 T = 01 A = 10 G = 11 

C = 00 C T A G 

T = 01 T C G A 

A = 10 A G C T 

G = 11 G A T C 

 

  The steps of the DNA cryptography operation are illustrated 

with examples in the next section.  

 

C. RSA Algorithm 
 

The simplest form of asymmetric key cryptography was 

introduced by a research group of M.I.T. in 1978, known as 

RSA (Rivest, Shamir, Adleman). The steps of the RSA method 

are presented below, as described in [28-29].  

✓ Select two prime numbers: 𝑝 and 𝑞  

✓ Evaluate 𝑛 =  𝑝𝑞 and 𝑧 =  (𝑝 − 1)(𝑞 − 1)  
✓ Select 𝑑 such that 𝑔𝑐𝑑 (𝑑, 𝑧)  =  1  

✓ Choose 𝑒 such that 𝑑𝑒 =  1 𝑚𝑜𝑑 𝑧  
 

All three of the above algorithms are used in this research work.  

 

D. Fuzzy Entropy 
 

 In voice communication, the number of quantization levels 

is 256. If 𝑝𝑘 is the probability of a quantized sample of a voice 

signal of level 𝑘 and the corresponding MF of a fuzzy system is 

𝜇(𝑘), then the weighted probabilities [30-31],  

 

𝑝𝑑 = ∑ 𝑝𝑘 × 𝜇𝑑(𝑘)
255
𝑘=0            (3) 

𝑝𝑚 = ∑ 𝑝𝑘 × 𝜇𝑚(𝑘)
255
𝑘=0            (4) 

𝑝𝑏 = ∑ 𝑝𝑘 × 𝜇𝑏(𝑘)
255
𝑘=0                          (5) 

 

    Here we consider that the fuzzy variable has three linguistic 

values: 𝑚, 𝑑, and 𝑏; the corresponding MFs are: 𝜇𝑚, 𝜇𝑑𝑘, and 

𝜇𝑏(𝑘). The MFs are Gaussian, expressed as [31-32], 
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𝜇𝑚(𝑘) =

{
 
 
 
 
 

 
 
 
 
 
0,                                                   𝑘 ≤ 𝑎1

(𝑘−𝑎1)
2

(𝑐1−𝑎1)(𝑏1−𝑎1)
,       𝑎1 < 𝑘 ≤ 𝑏1

1 −
(𝑘−𝑐1)

2

(𝑐1−𝑎1)(𝑐1−𝑏1)
,     𝑏1 < 𝑘 ≤ 𝑐1

1,                                              𝑐1 < 𝑘 ≤ 𝑎2

1 −
(𝑘−𝑎2)

2

(𝑐2−𝑎2)(𝑏2−𝑎2)
,   𝑎2 < 𝑘 ≤ 𝑏2

(𝑘−𝑐2)
2

(𝑐2−𝑎2)(𝑐2−𝑏2)
,           𝑏2 < 𝑘 ≤ 𝑐2

0,                                                     𝑘 > 𝑐2

           (6) 

                                     

𝜇𝑑(𝑘) =

{
 
 

 
 
1,                                                      𝑘 ≤ 𝑎1

1 −
(𝑘−𝑎1)

2

(𝑐1−𝑎1)(𝑏1−𝑎1)
,     𝑎1 < 𝑘 ≤ 𝑏1

(𝑘−𝑐1)
2

(𝑐1−𝑎1)(𝑐1−𝑏1)
,              𝑏1 < 𝑘 ≤ 𝑐1

0,                                                  𝑘 > 𝑐1

           (7) 

                                    

𝜇𝑏(𝑘) =

{
 
 

 
 
0,                                                       𝑘 ≤ 𝑎2

(𝑘−𝑎2)
2

(𝑐2−𝑎2)(𝑏2−𝑎2)
,       𝑎2 < 𝑘 ≤ 𝑏2

1 −
(𝑘−𝑐2)

2

(𝑐2−𝑎2)(𝑐2−𝑏2)
,     𝑏2 < 𝑘 ≤ 𝑐2

1,                                                       𝑘 > 𝑐2

            (8)  

    

The graphical plot of the above MFs is given in Fig.1, taking 

𝑎1= 50, 𝑏1  = 75, 𝑐1  = 100, 𝑎2  = 150, 𝑏2 = 175, and 𝑐2  = 200, 

where the base variable is the index 𝑘 of the quantized sample 

having the values 𝑘 = 0 to 255.   

 
Fig. 1. MFs of fuzzy values 

 

 

The Fuzzy entropy of each MF, 

 

𝐻𝑑 = −∑
𝑝𝑘×𝜇𝑑(𝑘)

𝑝𝑑
𝑙𝑛 (

𝑝𝑘×𝜇𝑑(𝑘)

𝑝𝑑
)255

𝑘=0         (9) 

𝐻𝑚 = −∑
𝑝𝑘×𝜇𝑚(𝑘)

𝑝𝑚
𝑙𝑛 (

𝑝𝑘×𝜇𝑚(𝑘)

𝑝𝑚
)255

𝑘=0        (10) 

𝐻𝑏 = −∑
𝑝𝑘×𝜇𝑏(𝑘)

𝑝𝑏
× 𝑙𝑛 (

𝑝𝑘∗𝜇𝑏(𝑘)

𝑝𝑏
)255

𝑘=0      (11) 

The whole fuzzy entropy [32-33] is 

 

𝐻 =  𝐻𝑑  +  𝐻𝑚  +  𝐻𝑏 .                        (12) 

 

In this paper, we vary the parameters 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, and 𝑐2 

to attain the maximum value of fuzzy entropy for both the 

original and encrypted signals, in order to assess the rigidity of 

encryption algorithms.   

 

IV. METHODOLOGY 
 

   This section deals with three cryptographies: (1) ECC, (2) 

RSA, and (3) DNA cryptography. The algorithm for audio 

signal encryption and decryption using a sparse vector under 

ECC is presented below.   

 

E. Pair of Audio Signal Encryption and Decryption using ECC 

E.1 Encryption Algorithm 
 

1. Select the encryption parameters based on a simplified 

elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 as: 𝑎, 𝑏, 𝑝, 𝑒1 =
(𝑥1, 𝑦1), 𝑒2 = (𝑥2, 𝑦2); where 𝑎 and 𝑏 are the 

coefficients of the elliptic curve, 𝑝 is the prime number 

used in GF,  𝑒1 is a point on the elliptic curve and 𝑒2 is 

another point determined from 𝑒1 using the private key. 

2. Vary the parameters of step 1 until getting the minimum 

number of ambiguous points for the sparse vector. 

3. Select two audio signals: 𝑣1(𝑡) and 𝑣2(𝑡), each of the 

same length, i.e., 𝑁 samples.  

4. Create an ordered pair, P𝑖 = (𝑣1(𝑖), 𝑣2 (𝑖)), using the ith 

sample of audio signals. 

5. Encrypt and decrypt the ordered pair, Pi = (𝑣1(𝑖)  and 

𝑣2(𝑖)), for i = 1, 2, 3, …, N 

6. The encrypted ordered pair is E 𝑖= (𝑒1(𝑖),  𝑒2(𝑖)) and 

that of decrypted ordered pair is, D𝑖  = (𝑑1(𝑖),  𝑑2(𝑖)) 
7.    The sample outside of the elliptic curve is checked and 

replaced by 0 to form the transmitted signal, and those 

ambiguous samples are preserved separately on a sparse 

vector.  
            %The transmitted vector-1 

            for i = 1 to N do  

                   if d1(i) ≠  v1(i) then 

            Tx1(i) = 0; 

                           sparse_vector1(i) = v1(i) 

                   else 

                           Tx1(i) = e1(i); 

                           sparse_vector1(i) = 0; 

                   end if 

             end for 

8. Repeat step 6 for vector 2 

9. Select random key r, evaluate cipher text C1 = r × e1     

    and C2 = P + r × e2. 

 

 E.2 Decryption Algorithm with sparse vectors 

 

10. Evaluate the point d ×C1, then invert it to get the point     

Q 

11. Add Q with C2 to get Pi = (v1(i) and v2(i)) for i = 1, 2, 

3, …, N 

    12. To count the ambiguous points: 
          if v1(i) = 0 then 

                  v1(i) ← sparse_vector1(i)  

          end if  

          if v2(i) = 0 then 
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                  v2(i)← sparse_vector2(i)  

          end if 

    13. Repeat steps 10 to 12 for i = 1 to N  

 

F. RSA Algorithm 
 

1. Select the length of the audio signal N. 

2. Load the audio signal S, and resize it to length N as 

S(1…N). 

3. Normalize the numerical values of samples of audio 

signal. 

4. Select encryption parameters: e = 3, n = 33, d = 7. 
 

       for i = 1 to N:  

               Determine encrypted signal: E(i)=mod(𝑆(𝑖)𝑒 , n) 

       end for 

               

for i = 1 to N: 

                     Decrypt the signal:  D(i)=mod((𝐸(𝑖))𝑑, n) 

    end for 

5. Show original, encrypted, and decrypted signals 

6. Determine the statistical parameters of the above three 

signals 

 
G. Steps of Operation under DNA Cryptography 
 

Step 1: Take the input plain text data, P = 150 

Step 2: Convert it into binary, 150 ↔ 10 01 01 10 

Step 3: Apply rule-1 on the bit sequence,  

            P = 10 01 01 10 ↔ G C C G 

Step 4: Take the key 75 ↔ 01 00 10 11 ↔ C A G T 

Step 5: Apply DNA addition for encryption as:  

            plain text + key = encrypted sequence 

           G C C G + C A G T = G A G C 

Step 6: Apply DNA subtraction to get the plain text again:                        

            encrypted sequence - key = plain text 

           G A G C - C A G T = G C C G ↔ 10 01 01 10  

                                                             ↔150 = P 

Under the XOR operation, steps 5 and 6 are replaced by the 

following operation:  

plain text XOR key = encrypted sequence 

encrypted sequence XOR key = plain text 

 

For example,  

Plain text ⨁ key = G C C G ⨁ C A G T  

                           = G A G A  

                           = Encrypted sequence 

Encrypted sequence  ⨁  key = G A G A ⨁ C A G T  

                                              = G C C G  

                                              = P 
 

H. Lowest Spectral Components of Original and Encrypted  

Signals 

1. Size of the audio samples, N = 1024 

2. Size of lowest spectral components, M = 8 

3. Read the audio file as Ir  

4. Extract N samples to create an array I. 

for i = 1 to N 

        I(i) = Ir(i) 

end for 

5. Convert samples to double-precision floating-point 

representation 

Io=double(I); 

6. Encrypt the audio block, Ie = encrypt_audio(Io) 

7. Initialize the variables,  

yn = Io, ye = Ie, L=length(yn) 

8. Perform iterative operation. 
while L >= M do 

        yn = dwt(Io) 

        ye = dwt(Ie); 

        L= length(y); 

 end while 

9. Compare yn and ye. 

 

I. Fuzzy entropy of audio signal 
 

1. Read the audio file as Ir 

2. for i = 1 to N do: 

3.         Iq ← Quantize(Ir(i)) 

4.         Io(i) ← Iqd 

5. end for 

6. Io ← double(I); 

7. Generate histogram of the audio sample, R← imhist(I) 

8. Normalize the histogram, P=R/max(R) where 

0≤P(i) ≤ 1 

9. for i = 0 to 255 

        𝜇1(i), 𝜇2(i), 𝜇3(i) ← Create fuzzy MFs based on    

         Eq. (6) - (8) 

10. end for 

11. Determine the weighted probability of Eq. (3) to (5) 

12. P1, P2, P3 ← 0; 

13. for i = 0 to 255 do 

P1 ← P1 + P(i) × 𝜇1(i) 

P2 ← P2 + P(i) × 𝜇2(i) 

P3 ← P3 + P(i) × 𝜇3(i) 

14. end for 

15. Determine fuzzy entropy 

16. H1, H2, H3 ← 0 

17. for i =1 to 256 do 

18.       if 𝜇1(i ) ≠ 0 and P(i) ≠ 0 then 

19.               𝐻1 ←  𝐻1 −
𝑃(𝑖)× 𝜇1(𝑖)

𝑃1
𝑙𝑜𝑔2

𝑃(𝑖)× 𝜇1(𝑖)

𝑃1
 

20.       end if 

21.       if 𝜇2(i ) ≠ 0 and P(i) ≠ 0 then 

22.                 𝐻2 ←  𝐻2 −
𝑃(𝑖)× 𝜇2(𝑖)

𝑃2
𝑙𝑜𝑔2

𝑃(𝑖)× 𝜇2(𝑖)

𝑃2
 

23.       end if 

24.     if 𝜇3(i ) ≠ 0 and P(i) ≠ 0 then 

25.         𝐻3 ←  𝐻3 −
𝑃(𝑖)× 𝜇3(𝑖)

𝑃3
𝑙𝑜𝑔2

𝑃(𝑖)× 𝜇3(𝑖)

𝑃3
 

26.     end if 

27. end for 

28. H=H1+H2+H3; 

Function Quantize(s) 
 

1. I(i) = 
𝐼𝑜(𝑖)

max(𝐼𝑜)
× 255 

2. I(i) = uint8(I(i)) 

3. return I(i) 
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J. Complexity Analysis 
 

In this paper, the application of ECC on a pair of voice 

sequences includes ‘verification of the ordered pair falling on 

the curve’, and ‘inclusion of two sparse vectors’ makes the 

proposed algorithm more complex compared to conventional 

ECC of 𝑂(𝑘2), taking k as the bit-length of the key.  During 

transmission, each sample of 𝑣1(𝑡)and 𝑣2(𝑡) is encrypted and 

decrypted; the complexity will be𝑂(4𝑁𝑘2), the comparison of 

each plain-text and decrypted value will change it to𝑂(4𝑁𝑘2 +
2𝑁), and finally, the inclusion of two sparse vectors will make 

it𝑂(4𝑁𝑘2 + 2𝑁 + 2𝑁). For the case of space complexity, the 

inclusion of sparse vectors is the only considerable component. 

The other two algorithms, RSA and DNA, use the conventional 

form; hence, their complexity is avoided here, but both of them 

possess lower complexity compared to the proposed ECC 

technique.  

The next section presents the results obtained from each of 

the algorithms and compares them.  

 

                         V. RESULTS AND DISCUSSIONS 
 

   First of all, two audio signals, each of 1200 samples, are taken 

for the experiment as shown in Fig. 2. Next, the comparison of 

the original and encrypted signals is shown in Fig. 3 in the time 

domain, where they are completely different, which indicates 

the secrecy level of ECC. The original and decrypted signals are 

compared at the receiving end, as shown in Fig. 4, where some 

discrepancies are observed at a few sampling points.  

 

  
Fig. 2. Two audio signals as the input. 

 

 
Fig. 3. Comparison of original and encrypted signals. 

This happened because some points on the audio signal fell 

outside of the elliptic curve. These ambiguous points are shown 

in the discrete plot of Fig. 5 and represent the sparse vector 

elements. 

 

   
Fig. 4. Original and recovered audio.      

 

                       

 
Fig. 5. Sparse samples of audio before the addition of sparse samples. 

 

Now, the combination of the decrypted vector and the sparse 

vector is used based on the proposed algorithm of the paper, and 

100% matching between the original and the decrypted is 

found.  

Three statistical parameters (Variance, Entropy, and cross-

correlation coefficient) of original, recovered, and encrypted 

audio signals are compared in Table VI. The tabular data reveal 

that the recovered signal resembles the original signal, but no 

similarity is found with the encrypted signal; hence, the rigidity 

of the encryption algorithm (ECC) is again confirmed by the 

numerical data.  

The sparse vector may vary with audio data and also with the 

chosen parameters of the ECC algorithm. For example, 4.5% of 

mismatched points are found for the parameters of the 

encryption algorithm (a = 2, b = 1, and p = 71) against audio-1. 

The audio-2 gives 4.82% miss-matched points shown in Fig. 

6(a)-(b). Similar results are shown for the parameters of the 

encryption algorithm: a = 1, b = 1, and p = 61 in Fig. 7(a)-(b), 

which improves the performance of the algorithm in this 

context. 
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TABLE VI 

COMPARISON OF SIGNAL PARAMETERS (ECC) 

 

Parameters Audio-
1 

Parameters Audio-
1 

ρxy (original-1 
and encrypted-

1) 

Variance of 
Original Audio 

3.6025 Entropy of 
Original 

2.9335  

Variance of 

Recovered 

Audio 

3.6025 Entropy of 

Recovered 

2.9335 0.072 

Variance of 

Encrypted 

Audio 

15.7239 Entropy of 

Encrypted 

0.0933  

     

Parameters Audio-

2 

Parameters Audio-

2 

ρxy (original-2 

and encrypted-

2) 

Variance of 

Original Audio 

44.6589 Entropy of 

original 

4.6966  

Variance of 

Recovered 
Audio 

44.6589 Entropy of 

Recovered 

4.6966 0.0062 

Variance of the 

encrypted  
Audio 

2.4628 Entropy of 

Encrypted 

0.0933  

 

  
(a) Original and recovered audio before the addition of sparse samples 

                      

      
 (b) Sparse samples 

Fig. 6. Results of audio encryption for a = 2, b = 1 and p = 71. 

 

  
(a) Original and recovered audio before the addition of sparse 

 

 
           (b) Sparse samples 

Fig. 7. Results of audio encryption for a = 1, b = 1 and p = 61. 

 

To verify the wide difference between the original and 

encrypted signals, the lowest 16 spectral components of the 

original and encrypted signals are determined using DWT. A 

comparison of their spectral components for different values of 

encryption parameters is shown in Figs. 8 to 10 for both audio 

signals. Again, their wide variation indicates the rigidity of the 

ECC.  
 

 
(a) Audio 1 
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(b) Audio 2 

 

Fig. 8. Comparison of spectral components of the audio signal for a = 2, b = 3, 

and p = 76. 
 

 
(a) Audio 1 

 
                                 (b) Audio 2 

Fig. 9. Comparison of spectral components of audio signal for a = 2, b = 1, 

and p = 71. 

 

We applied the RSA algorithm to the audio signal, using the 

following parameters: e = 3, n = 33, and d = 7. A comparison of 

statistical parameters is shown in Table VII, where the 

randomness of encrypted data is less prominent compared to 

ECC. 
 

 
(a) Audio 1              

 
(b) Audio 2 

Fig. 10. Comparison of spectral components of audio signal for a = 1, b = 1, 

and p = 61. 

 
TABLE VII 

COMPARISON OF SIGNAL PARAMETERS (RSA) 
 

Parameters Audio-1 Parameters Audio-1 ρxy (original-1 

and 
encrypted-1) 

Variance of 

Original 
Audio 

26.1542 Entropy of 

Original 

4.2154  

Variance of 

Recovered 

Audio 

26.1542 Entropy of 

Recovered 

4.2154 0.3228 

Variance of 

Encrypted 

Audio 

70.8612 Entropy of 

Encrypted 

1.2049  

     

Parameters Audio-2 Parameters Audio-2 ρxy (original-2 

and 

encrypted-2) 

Variance of 
Original 

Audio 

58.4602 Entropy of 
original 

3.3777  

Variance of 

Recovered 

Audio 

58.4602 Entropy of 

Recovered 

3.3715 0.2588 

Variance of 

Encrypted 
Audio 

105.9864 Entropy of 

Encrypted 

0.3722 

 

 

 

   Next, DNA cryptography is applied to the audio samples 

under MATLAB. The decimal values and corresponding DNA 

sequences for both plain text and encrypted data, against 20 

samples, are shown below.  
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Input message,  

P= [19    19    19    20    20    21    21    21    22    22    22    22    

22    23    23    23    24    25    26    27] 

 

Plain text in DNA symbol, 

P = 'ACAT' 'ACAT' 'ACAT' 'ACCA' 'ACCA' 'ACCC' 'ACCC' 

'ACCC' 'ACCG' 'ACCG' 'ACCG' 

'ACCG' 'ACCG' 'ACCT' 'ACCT' 'ACCT' 'ACGA' 'ACGC' 

'ACGG' 'ACGT' 

 

The encrypted DNA sequence under the XOR operation, 

E = 'AATC' 'AATC' 'AATC' 'AAGG' 'AAGG' 'AAGT' 'AAGT' 

'AAGT' 'AAGA' 'AAGA' 

'AAGA' 'AAGA' 'AAGA' 'AAGC' 'AAGC' 'AAGC' 'AACG' 

'AACT' 'AACA' 'AACC' 

 

The decimal value of the encrypted DNA sequence, 

E = 13    13    13    10    10    11    11    11     8     8     8     8     8     

9     9     9     6     7     4     5 

 

A comparison of statistical parameters is shown in Table 

VIII, where the randomness of encrypted data is less prominent 

compared to ECC but more prominent compared to RSA. 
 

TABLE VIII 

COMPARISON OF SIGNAL PARAMETERS (DNA) 
 

Parameters Audio-
1 

Parameters Audio-
1 

ρxy (original-1 
and encrypted-

1) 

Variance of 

Original Audio 

44.6589 Entropy of 

Original 

0.0517  

Variance of 

Recovered 

Audio 

44.6589 Entropy of 

Recovered 

0.0517 0.0243 

Variance of 
Encrypted 

Audio 

44.6589 Entropy of 
Encrypted 

0.0317  

     

Parameters Audio-
2 

Parameters Audio-
2 

ρxy (original-2 
and encrypted-

2) 

Encrypted 3.6025 Entropy of 
original 

2.9335  

Variance of 

Recovered 
Audio 

3.6025 Entropy of 

Recovered 

2.9335 0.186 

Variance of 

Encrypted 

Audio 

3.6025 Entropy of 

Encrypted 

1.9335  

    

   Four parameters of MFs, a1, c1, a2, and c2, are varied, and 

the numerical value of fuzzy entropy is evaluated for both 

original and encrypted audio signals. Here, the other two 

parameters, b1 and b2, are excluded since they depend on the 

other four parameters, like b1 = (a1 + c1)/2 and b2 = (a2 + c2)/2. 

The variation of fuzzy entropy against a1, c1, a2, and c2 is shown 

in Fig. 11 (a), and the box plot of four parameters is shown in 

Fig. 11(b). The fuzzy entropy attains its maximum value at a1 = 

78.4, c1 = 130.2, a2 = 120, and c2 = 172.3. Now the vector, s = 

[a1 c1 a2 c2] corresponding to the maximum value of fuzzy 

entropy will be used as the feature of the audio signal.  

The profile of fuzzy entropy of ECC, RSA, and DNA-

encrypted audio is shown in Fig. 12(a)-(c), where the maxima 

are quite different, even shifted from the original signal. The 

feature vector corresponding to the maximum value of fuzzy 

entropy is found to be S_ECC = [52.3, 108.4, 145.75, 192.4], 

S_RSA = [76.3, 122.2, 128.6, 176.3], and S_DNA = [69.8, 

118.2, 130.5, 182.6]. 

     
(a) Fuzzy entropy                

 
(b) Box plot of four parameters 

Fig. 11. Fuzzy entropy and box plot of parameters of the original audio signal 

 

 
(a) ECC 

 
(b)  RSA                                                      
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(b) DNA 

Fig. 12. The profile of fuzzy entropy of encrypted audio 

 

   Finally, four types of audio signals in *.wav format are taken, 

and 15,00,000 samples are considered for encryption and 

decryption.  The encryption time, decryption time, and ‘cross-

correlation coefficients between original and encrypted signal’ 

are measured for all three algorithms. The experiment was 

conducted on a machine with the following specifications: 

Intel(R) Core (TM) i7-1065G7 CPU, 1.50 GHz, 16.0 GB RAM, 

and MATLAB 2023R was used.  The entire results are shown 

in Table IX. For ECC, the encryption time is highest, but the 

decryption time is moderate.  The decryption time of RSA is 

found to be the highest, but its encryption time is moderate. For 

DNA, both encryption and decryption times are the minimum.   

 
TABLE IX 

COMPARISON OF THREE ENCRYPTION METHODS 
 

Category of  

Audio 

Algorithm Encryption 

Time (s) 

Decryption 

Time (s) 

Human audio ECC 3.84 1.96 

RSA 3.33 2.24 

DNA 3.00 1.67 

Car’s Sound ECC 5.78 3.12 

RSA 5.56 3.92 

DNA 5.53 2.18 

Bird’s sound ECC 4.16 3.18 

RSA 4.12 3.86 

DNA 3.94 1.98 

Animal’s sound ECC 4.36 1.88 

RSA 3.98 2.12 

DNA 3.67 1.57 

 

 
(a) Original and encrypted signal 

 
(b) Lowest spectral components of DWT     

 
(c) Fuzzy parameters 

Fig. 13. Cross-correlation, the ECC is the best of all, although DNA shows a 

close result, parameters 

 

 In the context of security (Cross-correlation coefficient), the 

ECC is the best of all, although DNA shows a close result, 

visualized in Fig. 13(a)-(c). Here, the correlation coefficient is 

taken for four types of audio under three techniques: (i) between 

original and encrypted audio directly, (ii) between the 16 lowest 

spectral components of original and encrypted audio, (iii) 

between fuzzy parameters of original and encrypted audio. For 

image or audio encryption, ECC provides the best result, but for 

real-time operation, DNA compromises process time and 

security level.   

 Although the proposed ECC-based audio encryption model 

guarantees complete recovery of the original audio through 

sparse vectors and offers stronger security than RSA and DNA, 

it has several limitations. The study assumes a noiseless 

transmission environment, whereas real-world networks 

involve noise, jitter, and packet loss that can impair recovery. 

ECC also introduces higher computational complexity, 

resulting in longer processing times compared to DNA, which 

may hinder its real-time use. Furthermore, the experiments were 

limited to a small set of clean audio signals, which does not 

accurately reflect the diversity of real-world multimedia data. 

The model’s resilience against advanced attack scenarios, such 

as side-channel, adaptive chosen-plaintext, or quantum-based 

attacks, was also not examined. Finally, to enhance security, the 

proposed model's complexity increases by a factor of 4N 

compared to conventional ECC, as detailed in Section IV. 
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VI. CONCLUSION AND FUTURE WORK 

 This study proposes an ECC-based audio encryption scheme 

with sparse vector correction, compared against RSA and DNA 

using statistical, spectral, and fuzzy entropy analyses. Results 

show that ECC provides the strongest security, DNA offers the 

best real-time efficiency, and RSA offers moderate 

performance. The work extends ECC to audio communication, 

introduces fuzzy entropy as a new rigidity metric, and offers 

guidelines for balancing security and computational cost in IoT 

and multimedia applications.  

From a practical perspective, the proposed method 

guarantees 100% audio recovery through sparse vector 

correction, ensuring data integrity, and offers stronger 

resistance to statistical attacks than RSA and DNA, making 

ECC preferable where security outweighs latency. 

Despite its advantages, the study is limited by testing in a 

noiseless environment, a higher ECC processing time that may 

hinder real-time use, a restricted dataset, and the lack of 

evaluation against advanced cryptanalytic attacks. 

   Future work should extend the model to noisy transmission 

environments and evaluate its performance under realistic 

channel conditions. Lightweight ECC optimizations should be 

explored to reduce computational overhead and enhance 

suitability for real-time and IoT applications. The concept can 

also be applied to image transmission by converting an image 

of size N×M into a vector of NM×1, although this increases 

complexity at both the sender's and receiver's end. 
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