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Abstract—Toxicity in online communication, particularly in
code-mixed languages like Hinglish, is a growing concern across
social media platforms. Hinglish, a blend of Hindi and English,
is widely used in informal online conversations, making it
challenging for traditional toxicity detection models to accurately
identify harmful content. This issue is compounded by the
limited availability of resources and models specifically trained
to handle Hinglish. This work presents the XLM-RoBERTa-
CNN-BiLSTM (XCB) model, a novel architecture for toxicity
detection in Hinglish on various social media platforms. This
work compares the XCB model with the SOTA models mBERT,
XLM-RoBERTa (XLM-R), and Indic-BERT. It was made on
three publicly available datasets: Constraint, Facebook, and
HASOC. The XCB model achieved macro F1 scores of 0.81, 0.73,
and 0.82 and inference times of 0.24 s, 0.48 s, and 0.22 s on the
Constraint, Facebook, and HASOC datasets, respectively. XCB
not only outperforms existing romanized Hinglish models but
also matches the macro F1 scores of existing SOTA multilingual
models, requiring only half the training time—with extremely
low inference times unlike the existing state-of-the-art models,
thus making it a much more efficient candidate for large-scale
real-time toxicity detection in Hinglish.

Index Terms—Toxicity Detection, Hinglish, Code-Mixed Lan-
guage, XCB Model, Real-Time Moderation, Multi-Lingual Mod-
els, Efficiency

I. INTRODUCTION

Toxic, harmful, and offensive content has proliferated as an
issue across social media platforms in recent years. This type
of content, which also is hate speech, cyberbullying, and a
form of harassment, can result in some serious issues and rami-
fications for all of us, such as violence, emotional damage, and
even worse, the social climate we live in becoming intolerant
and divided. It is increasingly becoming difficult to detect such
toxicity in languages that are code-mixed, such as Hinglish (a
blend of English and Hindi), as traditional language models
fail to understand the hybrid forms of languages. Detecting
toxicity in Hinglish is important for making online realms safer
and more inclusive, where users can engage without having to
worry about finding any harmful content.

Hinglish is a hybrid language, which refers to the usage of
Hindi and English languages, spoken mainly in informal online

Manuscript received July 2, 2025; revised July 18, 2025. Date of publication
October 20, 2025. Date of current version October 20, 2025. The associate
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spaces such as social media, forums, and messaging platforms,
and specifically targets the professional community as an
urgent need for a viable toxicity detection model. Conventional
models usually operate on either or one language and thus
are incapable of operating on code-mixed data. In addition,
toxic content detection in Hinglish needs models to capture
the subtleties of both Hindi and English, as well as the cultural
meaning behind some words. The growing volume of code-
mixed text on the internet further complicates this problem,
making it imperative to develop specialized models that can
process these hybrid linguistic inputs efficiently.

This work introduces the Hinglish toxicity detection task
and the XCB model, an efficient new architecture for Hinglish
toxicity detection with competitive performance. XCB is eval-
uated against SOTA multilingual models (mBERT and XLM-
R) to show that it achieves comparable macro F1 scores
with a dramatic reduction in training time. By addressing
the challenge of toxicity detection in code-mixed content,
our model is an effective approach to dynamic, large-scale
analysis of toxicity in online spaces. It is hoped that this
work can be used as a practical solution and integrated into
content moderation systems to detect and filter toxic, harmful
language and improve digital interactions, especially in the
case of Hinglish.

The primary contributions of this work are
1) Introducing a novel model architecture, the XCB model,

for mitigating toxic content in the Hinglish language on
the internet in real time.

2) Evaluating the performance of the XCB model on three
publicly available Hinglish datasets and comparing its
results with transformer models using metrics such as
training time, inference time, and F1 score.

The structure of the paper is organized as follows: Section
II covers the related works, while Section III presents the
proposed methodology. The experimental setup and results are
discussed in Section IV, followed by a review of challenges
and future research directions in Section V. Finally, the paper
concludes in Section VI.

II. RELATED WORKS

However, recent years have seen improvements in identify-
ing toxic content in Hinglish—that mix of Hindi and English
that is increasingly finding its way to social media platforms.
The aforementioned challenges of code-mixed languages have
compelled researchers to experiment with different machine
learning (ML) and deep learning (DL) methodologies.
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Anjum et al. (1) explains the subtleties of online toxicity
detection and limits of existing ML-based approaches and
mentions how newer generation model-based techniques are
needed to understand Hinglish properly. In order to alleviate
the lack of big labeled datasets for Hinglish, Yadav et al.,
targeting Hindi-English social media material, (2) suggested
a multilingual hate speech detection method. To categorize
hate speech in code-mixed data, their research explored both
conventional and deep learning techniques, such as Bi-LSTM.
The findings showed that supervised models could be applied
to Hinglish and indicated that big language models or zero-
shot approaches may be investigated further for improved
performance on languages with limited resources.

Biradar et al. (3) developed the transformer-based (TrB)
interpreter and feature extraction model on the foundation of
the DNN for Hinglish hate speech classification. Their method
demonstrated an improved accuracy of 73% compared to the
SOTA approaches and insight about TrB models for the code-
mixed dataset. Similarly, Hakim et al. (4) used IndoBERTweet,
a version of BERT trained with Indonesian Twitter data,
and BiLSTM and CNN architectures to detect hate speech.
They showed that on a task-sensitive corpus, language-specific
models might bring about the need to uncover the social
media language and its specificities. In addition, Miran and
Abdulazeez (5) took a review of DL techniques for toxic
speech detection with insights on the different evolution of
different models and how they apply across a range of different
languages, including code-mixed ones like Hinglish.

Singh et al. (6) examines moderating toxic comments in
YouTube that are in Hinglish, utilizing DL models and feature
extraction methods and noting the challenges contributed by
the existence of misspelled offensive terms and obfuscation
techniques for code-mixed languages. Varade and Pathak (7)
surveyed toxic speech detection techniques used on social me-
dia with the analysis of a range of datasets and methodologies
while including the application of LSTM models built with
word embeddings to detect hate speech in Hinglish. Sharma
et al. (8) improved Hindi–English code-mixed hate speech
detection by fine-tuning multilingual transformers (mBERT,
XLM-RoBERTa) on annotated datasets and augmenting with
synthetically generated code-mixed text. Their study demon-
strated that transformer-based models can effectively detect
toxicity in Hinglish and suggested that future work could
explore larger pre-trained Hinglish-specific models or few-shot
learning to boost performance.

The novelty of the proposed XCB model is that it is made
for the Hinglish language. The XCB model is leveraging the
TrB embeddings along with deep learning models to detect
the toxicity in the Hinglish language accurately and quickly.
The XCB model is unique since it uses only the embeddings
from the XLM-R model, not the entire transformer model, and
puts those TrB embeddings into deep learning models. CNN,
BiLSTM, and, just like GloVe and Word2Vec, are used. The
previous research done on combining transformer architecture
with deep learning models has not explored the results in
Hinglish, which is specifically focused on in this paper.
Also, previous research done did not give any importance to
inference times of the models or the efficacy of the model

for real-time detection use cases, which has been thoroughly
discussed in this paper.

This paper is unique in that it gives importance to inference
time. This paper is an attempt to present a model that can
be used in real-time environments for detecting toxicity on
the web. For example, the XCB model can be used in mobile
devices or web browser extensions to mitigate toxic content
in real time. The model can be integrated into apps like
WhatsApp to prevent toxic content in local languages.

Although TrB models have been shown to deliver strong
performance in Hinglish toxicity detection, they often require
significant computational power and are therefore difficult to
deploy in real-time. To this end, a new architecture called
the XCB model is presented that achieves competitive perfor-
mance while being quickly trained. The performance of XCB
is evaluated with respect to mBERT, XLM-R, and IndicBERT
on three publicly released datasets, namely Constraint, Face-
book, and HASOC. The findings highlight XCB’s ability to
achieve comparable F1 scores while significantly reducing
training time, making it a practical choice for large-scale
deployment in social media moderation.

III. METHODOLOGY

A. Baseline Models

Three multilingual baseline models were used, which are
mBert, XLM-R, and IndicBERT.

mBERT is a modification of the BERT model trained on
a Wikipedia dataset from 104 different languages, so it has
become a strong model for multilingual NLP tasks (9). While
mBERT is not implicitly trained towards cross-lingual (CL)
tasks, it has been demonstrated to transfer knowledge be-
tween languages effectively that share a script. Many previous
language models have used BERT because of its common
use and popularity in the literature as a strong baseline for
text classification, NER, and sentiment analysis, and hence,
a possible strong baseline to be implemented for detecting
hostility and hate speech in code-mixed multilingual datasets.

XLM-R, an extension of RoBERTa, for multilingual text.
It was trained on 2.5 TB of data from CommonCrawl cover-
ing 100 languages, after which it bested mBERT on many
CL benchmark evaluations (10). It eliminates the need for
training independent embeddings for each language, as well
as it performs much better than XLM in zero-shot and low-
resource settings. Due to its robust multilingual contextual
understanding, it serves as an excellent baseline for hostility
detection in both Hindi and English-Hindi code-mixed data.

IndicBERT is a language-agnostic and lightweight TrB
model for Indic languages. Though mBERT and XLM-R are
pre-trained on a wider collection of languages, IndicBERT is
specifically optimized on Indian languages, stating exactly 12
languages, wherefore making it more fitting for low-resource
and code-mixed scenarios (11). Trained using a large Indian
language text dataset known as IndicCorp, this language model
fits classification, sentiment analysis, and offensive speech
detection use cases very well. Due to its focus on Indic
languages, it provides a more contextually rich understanding
for the task of Hindi-based hostility detection.

N. SINGHAL et al.: LEVERAGING XLM-ROBERTA WITH CNN AND BILSTM FOR HINGLISH TOXICITY DETECTION 395



B. Proposed Methodology

XCB is an architecture for efficient and effective toxicity
detection, especially in Hinglish text. The architecture consists
of three powerful architectures combined: XLM-R, CNN, and
BiLSTM. These components enable the model to capture
rich contextual information in code-mixed text, widely found
on social media platforms. The model is called the XCB
model, with the design taking into account performance and
computational efficiency, allowing for real-time processing
while maintaining a strong level of accuracy. The architecture
of the XCB model is displayed in Figure 1.

1) XLM-R Embeddings: The model is based on XLM-R,
a SOTA pre-trained multilingual language model capable of
handling text data in over 100 languages, including Hindi
and English. It produces contextually rich embeddings for
each individual token in the input sentence. This includes
the definitions of terms as well as the context in which they
appear; hence, these embeddings are vital for code-mixed
sentences in particular, where the definitions of words can
greatly differ based on their adjacent usage.

The pre-trained embeddings are extracted and used to form
a fixed embedding matrix where the weights are frozen and
not updated further. This decision saves on computation while
enabling the model to take advantage of learned representa-
tions of language without the need for problem-specific feature
extraction. As the first layer, the embedding layer converts
input sequences into a three-dimensional tensor (batch size ×
sequence length × embedding dimension), the output of which
is provided as inputs to the two parallel branches of the model.

2) CNN Branch: The first part of the model applies several
CNN layers over the embedded inputs. CNNs are excellent at
identifying spatial and local hierarchies in data. In textual data,
CNNs have proven effective for detecting essential phrases,
slang, blocks of abusive words, and other short toxic patterns,
which correlate poorly with sequential analysis (12).

It uses 4 layers of 1D convolutions followed by max pooling
operations. Each layer applies multiple filters (kernel size)
of size 3 with the same padding to keep the dimension of
the input the same and to enable learning of n-gram features
efficiently. The max pooling layers take the most prominent
elements in each context and shrink the two-dimensional
array, making the model more resistant to slight variations
in phrasing or spelling—a commonality of Hinglish text.

The last convolution and pooling layer flattens the final out-
put into a one-dimensional vector, and then it goes through a
dense layer compression and refining those extracted features.
This branch ends with a softmax layer, which outputs the
probabilities of the classes.

3) BiLSTM Branch: Similar to the CNN pathway, the
second branch of the model feeds into a BiLSTM layer. LSTM
networks are a specific type of RNN that can learn long-
term dependencies and contextual patterns present in forming
sequences, which is imperative to capture sentiment and intent
that permeates long phrases or full sentences. Thus, for each
point in the sequence, it has access to both previous context
and upcoming context, bi-directionally. This is important in
making sense of confusing or sarcastic Hinglish sayings, where

meaning can rely on knowing what precedes and succeeds a
word (13).

The output of the BiLSTM is subjected to a dense layer with
leaky ReLU activation, which is followed by a dropout layer
that randomly sets 10% of the neurons to zero during training.
This dropout is important for avoiding overfitting when using
relatively small or noisy datasets. Its output is then fed through
its own softmax classification layer, similar in structure to that
of the CNN branch (14).

4) Weighted Fusion of CNN and BiLSTM Outputs: The
output from the two branches is averaged using a weighted
average after both branches independently process the em-
bedded input. The fusion operation is performed in the end,
which takes fixed weights for each branch, such as 50% from
CNN output and 50% from BiLSTM output, and merges the
prediction scores. These weights are determined empirically
by performance and reflect the tendency for this task that, as
can be seen in the outputs, local feature patterns (which are
handled by CNN) are sometimes overrepresented against long-
range dependencies (15). The fusion weight ablation study
charts for Constraint, Facebook, and HASOC datasets are
shown in Figures 2, 3, 4, and 5 respectively. We can see that
the fusion weight 0.5 for CNN and BiLSTM gives highest
performance across the three datasets.

This strategy provides the model dual advantages of both
local and global textual features, which preserve an overall
information of the input text. Individual output is limited to a
form of multi-modal fusion between both outputs, so instead
of loading both into a purely concatenate layer or a separate
architecture for each, the model effectively generalizes better
and protects itself against the heterogeneous lexicology used
in Hinglish.

IV. EXPERIMENTAL SETUP

This section discusses in detail the experiments conducted
in this research and their results and analysis.

A. Datasets

This section describes the datasets and the preprocessing
steps used for these datasets.

1) Dataset Description: Three datasets of Hinglish were
used for our research work:Constraint (16), Facebook (17),
and HASOC dataset (18). The class statistics of these datasets
are shown in Table I.

TABLE I
DATASET CLASS DISTRIBUTION

Dataset Class Statistics

Constraint
Toxic - 1330
Neutral - 4398
Total - 5728 ≈ 6k

Facebook
Toxic - 9725
Neutral - 2274
Total - 11, 999 ≈ 12k

HASOC
Toxic - 2469
Neutral - 2194
Total - 4663 ≈ 5k
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Fig. 1. XCB Model Architecture
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Fig. 2. Fusion weight ablation study on Constraint dataset

Fig. 3. Fusion weight ablation study on Facebook dataset

2) Dataset Preprocessing: All offensive, hate, and related
categories were merged into a single ’toxic’ class during the
preprocessing stage. Thus, the dataset is of two classes: toxic
and neutral, and this suits well for our toxicity detection task.
The datasets were preprocessed using the following steps:

• Lowercasing: Convert the text to lowercase to maintain
consistency and prevent recognizing the same word in
different cases as separate entities (i.e., ”Hello” and
”hello” are the same).

• Removing Emojis: Emojis are often non-linguistic infor-
mation that may not matter for the analysis of the text in
this work. They were removed using regex that identifies
Unicode characters typically used for emojis.

• Removal of @Mentions: Any username or mention of
@username was removed to prevent bias brought in from
specific users. For the current task, these references do
not add any semantic input to the text.

• Deleting URLs: URLs and hyperlinks (for example,
http://example.com) were deleted; these are not benefi-
cial for text analysis in this specific work. Such links
frequently add irrelevant information that does not con-
tribute to the task of classifying the content.

• Dropping ’RT’ (Retweets): The ’RT’ prefix, which stands

Fig. 4. Fusion weight ablation study on HASOC dataset

Fig. 5. Fusion weight ablation study average scores for all datasets

for ”retweet,” was dropped as it became redundant. The
added precaution is to avoid noise in the data due to
retweeting of original tweets.

• Removal of Numbers: Numbers were removed given that
they were not critical to the text’s semantic meaning. This
is not something that numbers are necessarily meaningful
for in the context of detecting hate speech or so-called
offensive content.

• Punctuation Removal: All punctuation except for spaces
and Devanagari script characters was removed. This is
done in order to make sure that the analysis only checks
the content of the text method, not the punctuation
symbols used in the text, as they have nothing to do with
the overall meaning of the text in this example.

• English and Devanagari are preserved: Text only pre-
served English (Latin alphabet) and Devanagari script.
This was essential to make sure that the preprocess-
ing was appropriate for the multilingual context of the
dataset, which consists of both Hindi and English. Lim-
iting the analysis to these scripts allowed pinpointing the
linguistic features relevant to the tasks of interest.

• Removal of Extra Spaces: Any redundant spaces were
removed to make sure the text is tidy and uniform, with
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no extra whitespace disrupting the analysis.

B. Environment Used

Training was performed on Kaggle’s GPU environment,
utilizing NVIDIA Tesla T4 with 16 GB GDDR6 memory and
29 GB system RAM. The datasets were divided into 80% for
training and 20% for testing purposes. The models IndicBERT,
mBERT, and XLM-RoBERTa were trained with the following
hyperparameters:

• Learning Rate: 1e-5—A low learning rate was adopted to
enable a stable training process and to avoid overfitting,
as the models are pre-trained, so only fine-tuning is
needed, not training from scratch.

• Batch Size: 8—Balancing model performance consider-
ations, a batch size of 8 was selected, considering GPU
memory constraints as well.

• Number of Epochs: 10—The models were trained over
10 epochs, providing plenty of time to tune the models
without too much overfitting.

• Optimizer: AdamW— Since XLM-RoBERTa is a TrB
model, the AdamW optimizer was used, which separates
weight decay from optimization steps of the model.

• Loss Function: Cross-Entropy Loss—used class weights
for loss function to overcome class imbalance in the
dataset. Since the proportions of the multi-label classes
in the training data are extremely imbalanced, the inverse
of the number of classes was used to balance the loss.

• Class Weights: These were computed based on the class
frequencies, trying to give a higher weight to the minority
class.

These hyperparameters were consistent across the baseline
models (mBERT, XLM-RoBERTa, and IndicBERT), ensuring
a fair comparison between the models.

We have also provided the results of the CNN and BiL-
STM models trained individually on the pre-trained XLM-R
embeddings. For the CNN model, the hyperparameters are as
follows: 128 filters are used in each convolutional layer, with
a kernel size of 3 applied to all convolutional layers. The
’ReLU’ activation function is applied to each convolutional
layer, and MaxPooling with a pool size of 3 is used after
each convolutional layer to reduce dimensionality. For the
BiLSTM model, the hyperparameters include 128 units in
the LSTM layer, with the LSTM wrapped in a bidirectional
wrapper to capture both forward and backward sequences. The
’LeakyReLU’ activation function is used for the dense layer
following the LSTM, and a dropout rate of 0.1 is applied to
prevent overfitting.

For the XCB model, the hyperparameters were largely
similar with some additional parameters specific to the archi-
tecture:

1) CNN Layer Settings: Four convolutional layers were
used with kernel sizes of 3, and pooling was applied
after each layer to reduce dimensionality.

2) BiLSTM Settings: A BiLSTM layer with 128 hidden
units was used to capture sequential dependencies in the
text.

3) Fusion Weights: The final output of the model is
obtained by a weighted fusion of the CNN and
BiLSTM branches, where cnn weight=0.5 and bil-
stm weight=0.5. This fusion weight reflects the relative
importance of the CNN and BiLSTM branches in the
final prediction.

C. Evaluation Metrics

Macro F1 (19) was used since the datasets are imbalanced,
so macro F1 gives a correct estimation about the models’
performance. The F1 score is sufficient alone since it gives us
an idea of both the precision and recall. Ideally, we would want
our model to give high results in both precision and recall in a
balanced way, and the F1 score gives us exactly that, which is
an estimation of how well the model balances precision and
recall; that is, how good the model is considering both the
precision and recall. Over that, we have used macro-averaged
F1 so that the result is not affected by class imbalance. Macro-
averaged means that it averages the performance of the model
on each class, so we get an idea of the model’s performance
on each class taken individually. Training time per epoch and
inference time of the models were also noted to know about
the real-time efficiency of the models.

V. RESULTS AND DISCUSSION

A comprehensive assessment of SOTA models for hostile
content detection across multiple datasets is done with empha-
sis on macro F1 scores and training times. The main goal was
to measure the balance between model performance (macro F1
scores) and computational efficiency, especially in large-scale
real-world applications.

To note, one good contribution of this experiment is the
introduction of the novel XCB model, which achieves compa-
rable macro F1 scores as the much more complex multilingual
models while using half the training time. The macro F1 scores
and the per-epoch training time of the models on various
datasets are illustrated in Table II and Table III, respectively.
The inference time of the XCB model in seconds for the
three datasets is shown in Table IV. Figure 6 displays the
comparison of training time of the different models. Figure 7
displays the comparative macro F1 scores of the models across
the three datasets. Figure 8 compares the inference time in
seconds of the XCB model with the heavy TrB models.

TABLE II
MACRO F1 SCORES

Model Constraint
Dataset

Facebook
Dataset

HASOC
Dataset

mBERT 0.79 0.75 0.80
XLM-RoBERTa 0.82 0.75 0.83
IndicBERT 0.78 0.73 0.80
XLMR-CNN 0.78 0.71 0.78
XLMR-BiLSTM 0.80 0.72 0.82
Proposed XCB 0.81 0.73 0.82
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TABLE III
TRAINING TIME PER EPOCH (SECONDS)

Model Constraint
Dataset

Facebook
Dataset

HASOC
Dataset

mBERT 135 276 108
XLM-RoBERTa 155 317 124
IndicBERT 108 220 86
XLMR-CNN 32 80 25
XLMR-BiLSTM 30 80 25
Proposed XCB 34 81 28

TABLE IV
INFERENCE TIME (SEC) RESULTS

Model Constraint
Dataset

Facebook Dataset HASOC Dataset

mBERT 8.68 18.25 7.16
XLM-RoBERTa 8.12 16.92 6.28
IndicBERT 8.06 16.73 6.07
XLMR-CNN 0.11 0.16 0.10
XLMR-BiLSTM 0.22 0.41 0.19
Proposed XCB 0.24 0.48 0.22

A. Macro F1 Score Comparison

The macro-averaged F1 scores of the XCB model over the
three datasets (Constraint, Facebook, and HASOC) exhibit a
strong performance. For instance, on the Constraint dataset,
XCB obtained a macro-averaged F1 score of 0.81, which is
very close to the score of XLM-Roberta (0.82) and slightly bet-
ter than Indic-BERT (0.78). In the same way, on the Facebook
and HASOC datasets, XCB achieved comparable performance
levels to the larger, more complex multilingual models, i.e.,
mBERT and XLM-Roberta, but still exhibited strong macro-
averaged F1 scores of 0.73 and 0.82, respectively.

B. Confusion Matrices and Error Analysis

The confusion matrices of the model after training it on
the constraint, Facebook, and HASOC datasets are shown in
Figures 9, 10, and 11, respectively. The false negatives (FN)
and false positives (FP) on the Constraint dataset are nearly
equal. The FN in the Facebook dataset is double compared to
FP. The same ratio follows for the HASOC dataset as well.
This shows that the model gives less FP, which is actually
good for real-life usage scenarios. The Figures 12, 13, and
14 represent some of the misclassified samples for all three
Hinglish datasets taken into consideration.

C. Inference Efficiency

One of the most amazing features of the XCB model is
its ability to give predictions efficiently. Even while achieving
strong macro F1 scores, XCB had substantially lower inference
times than the heavy multilingual models. The XCB model had
significantly lower inference times such as 0.24 seconds on the
Constraint Dataset, whereas the TrB models took 8 seconds
for inference on the same dataset. This shows how fast the
proposed XCB model is for employing in real time toxicity
mitigation tasks. The XCB Model also had shorter training

Fig. 6. Comparison of Training Time (sec)

Fig. 7. Comparison of Macro F1-score

times. On the Constraint dataset, for example, XCB finished
each training epoch in 34 seconds, half the time taken to
complete training epochs by mBERT (135 seconds) and XLM-
Roberta (155 seconds). It was found that XCB took just 81
seconds per epoch on the Facebook dataset, many times faster
than mBERT (276 seconds) and XLM-Roberta (317 seconds).
This significant decrease in the amount of training required is
a testament to the effectiveness of XCB, which is important
when computational resources are scarce or when real-time
processing is desired.

D. Implications

These results emphasize the practical advantages of the
XCB formulation, which is found to be computationally ef-
ficient, acquiring the best performance over CPU time when
compared to all existing SOTA. With a smaller than average
size for a multilingual model and competitive macro F1 scores,
XCB is a low-latency choice that can therefore be deployed
both in resource-limited environments and as part of real-time
content moderation systems.

Overall, the XCB model is a valuable solution for toxic
content detection, with performance comparable with heavy
multilingual models but much lower training time. Such effi-
ciency with competitive macro F1 performance makes XCB
a suitable candidate for practical real-time applications on
large-scale datasets where both accuracy and computational
efficiency are important.
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Fig. 8. Comparison of Inference Time (sec)

Fig. 9. Confusion matrix of model trained on Constraint dataset

VI. CHALLENGES AND FUTURE RESEARCH
OPPORTUNITIES

While this study demonstrates the promising results of
XCB, there are numerous possible directions for future re-
search and improvements:

• Evaluation on Additional Datasets: The current evaluation
only considers a subset of the publicly available datasets.
Future work may include also validating and testing
the XCB model on more datasets, especially in other
languages and domains, to confirm the ability of the
model to generalize and remain robust across a wider
range of hostile content types.

• Fine-Tuning and Hyperparameter Optimization: While
XCB performed well, there is space for improvement.
Gradually improving on any existing data or conducting
more thorough adjustment of the hyper-parameters could
increase the accuracy and efficiency, especially with
domain-specific tasks.

• Multilingual and Code-Mixed Data: This research was
only limited to datasets containing Hindi and English
content, and therefore, an extremely promising expansion

Fig. 10. Confusion matrix of model trained on Facebook dataset

Fig. 11. Confusion matrix of model trained on HASOC dataset

for next projects would be to apply the XCB model
to more multilingual and code-mixed data. This may
include training the model to better accommodate “code
switching”—a ”typical phenomenon of online and social
media posts, where users might mix languages in a single
post.

• Training the XCB model on other local Indian languages
like Marathi, Bengali, Tamil, Telugu, Bhojpuri, etc. This
will help to detect toxicity in local languages, increasing
the ease of use and availability of the toxicity mitigation
solution.

• Integrating explainability in hate speech is an important
consideration in almost all real-world applications, since
hate speech often requires an explanation for the deploy-
ment. It would also be interesting to see if explainability
can be included in XCB to provide reasoning on model
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Fig. 12. Misclassified Samples on Constraint dataset

Fig. 13. Misclassified Samples on Facebook dataset

decisions, thus improving trust and adoption in practice.
• Real-Time Applications: In order to adapt the model

for real-world hostile content detection on a large scale
(social media platforms, online forums, etc.), future work
can address optimizing XCB further with respect to
latency and ease of deployment. This may include tech-
niques such as model compression, knowledge distilla-
tion, or utilizing edge computing facilities.

Overall, XCB is a method to make detection of hostile
content more accurate when traditional methods may lack
and/or be inefficient. Future work discussed herein will enable
further refinement and application of XCB, reinforcing the
utility of the approach across diverse domains.

VII. CONCLUSION

This work shows how well the XCB model performs in
the area of toxic content detection in a variety of datasets.
Through the analysis of macro F1 scores, inference times, and
training times of different SOTA models, it was demonstrated
that XCB combines both performance and efficiency in a
highly competitive way. Despite requiring significantly shorter
training time than other models such as mBERT and XLM-
Roberta, the performance of the XCB model is comparable to
these models on the Constraint, Facebook, and HASOC bench-
marks. The XCB model displays very low inference times,
making it a viable choice for use cases where computational

Fig. 14. Misclassified Samples on HASOC dataset

efficiency is paramount along with high accuracy, like real-
time content moderation systems or operating systems with
resource constraints.

Additionally, XCB is tailored to provide quick training
times without compromising the prediction quality while be-
ing a good fit for scenarios where large-scale deployments,
processing speeds, and scalability are important factors. The
new architecture of XCB, therefore, offers a practical and
scalable means towards alternative use cases such as hostile
content detection systems for toxic language filtering, among
others where multilingual models are currently going to be
computationally expensive.
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