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Abstract—When designing and implementing Wireless Sensor 

Networks (WSNs), where sensor nodes are restricted by battery 

power, energy efficiency is a fundamental challenge. In order to 

optimize energy consumption and enhance data delivery 

performance, this study suggests a new Heterogeneity-aware 

Hybrid NMSFRA (HH-NMSFRA) protocol that combines energy-

aware node selection, multi-hop routing, and hybrid clustering 

approaches. By dynamically modifying the cluster head (CH) 

selection procedure in response to residual energy and node 

capabilities, the protocol takes node heterogeneity into 

consideration. Additionally, swarm intelligence methods like Ant 

Colony Optimization (ACO) and Particle Swarm Optimization 

(PSO) are integrated for effective multi-hop routing towards the 

base station (BS), and reinforcement learning (RL) is used to 

improve the adaptive behavior of the protocol. According to 

simulation studies, HH-NMSFRA performs better than 

conventional protocols like M-LEACH, EDEEC, and NMSFRA in 

important performance parameters like control overhead, energy 

consumption, data delivery ratio, and network lifetime. In 

particular, HH-NMSFRA improves the data transmission ratio by 

25% and extends network lifetime by up to 30% when compared 

to DEEC, making it a viable option for HWSNs with limited 

energy. 

  Index terms—HWSN, CH selection, NMSFRA, Reinforcement 

Learning, mobility. 

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have emerged as an 

indispensable technology for real-time data acquisition and 

environmental sensing in diverse and often challenging or 

inaccessible areas. Their widespread adoption spans multiple 

application domains, including military surveillance, battlefield 

monitoring, environmental and climate observation, industrial 

automation, precision agriculture, healthcare monitoring, and 
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smart city infrastructure [1]. These networks are composed of 

spatially distributed sensor nodes, each equipped with sensing, 

computation, and wireless communication capabilities. 

Despite their utility and versatility, a critical limitation of 

WSNs lies in the restricted energy resources of the sensor 

nodes. Typically powered by compact, non-rechargeable 

batteries, these nodes face operational challenges once their 

energy reserves are exhausted. The depletion of energy in even 

a subset of nodes can result in reduced sensing coverage, 

discontinuities in data collection, and ultimately, fragmentation 

of the communication topology, thereby degrading the 

network's overall performance and reliability [2]. 

To tackle these energy constraints, researchers have proposed 

a variety of energy-efficient communication and routing 

strategies. Among these, cluster-based routing protocols have 

shown considerable promise due to their ability to reduce 

communication overhead and balance energy consumption. In 

such protocols, sensor nodes are organized into clusters, with 

one node within each cluster elected as the Cluster Head (CH). 

The CH is responsible for aggregating data from cluster 

members, performing local data fusion, and transmitting the 

aggregated data to the base station (BS). This hierarchical 

structure helps in reducing the number of direct transmissions 

to the BS, thereby conserving energy and extending network 

lifespan. Nonetheless, traditional cluster-based protocols such 

as PEGASIS (Power-Efficient Gathering in Sensor Information 

Systems) [3] and LEACH (Low-Energy Adaptive Clustering 

Hierarchy) [4] are predominantly designed under the 

assumption of homogeneous network settings. In these 

protocols, all nodes are assumed to possess identical energy and 

processing capabilities. This assumption becomes problematic 

in real-world deployments, where node heterogeneity is 

common. In heterogeneous WSNs, some nodes may have 

higher energy reserves or enhanced processing capabilities, 

which, if not considered in the protocol design, may lead to 

overburdening of certain nodes. Consequently, these high-

capacity nodes deplete their energy resources prematurely, 

resulting in uneven energy distribution, increased latency, and 

reduced network lifetime. 

To address these limitations, this study proposes a novel 

protocol named HH-NMSFRA (Heterogeneity-aware Hybrid 
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Node Management and Swarm-intelligent Fault-tolerant 

Routing Architecture). Designed specifically for heterogeneous 

WSNs, HH-NMSFRA introduces a hybrid routing framework 

that combines the strengths of cluster-based architecture with 

multi-hop communication mechanisms [5]. The protocol 

dynamically adapts the cluster formation and cluster head 

selection process by considering critical parameters such as 

residual energy, node proximity to the BS, historical 

performance metrics, and node-specific roles. By doing so, HH-

NMSFRA ensures equitable load distribution and avoids over-

exploitation of high-capacity nodes. 

Moreover, the protocol incorporates advanced swarm 

intelligence techniques specifically, Particle Swarm 

Optimization (PSO) and Ant Colony Optimization (ACO) [6] 

to identify optimal data forwarding paths from cluster heads to 

the BS. These bio-inspired optimization methods mimic natural 

processes to solve complex routing problems efficiently and in 

a distributed manner. To enhance the adaptability of the system 

under dynamic network conditions (e.g., changing node energy 

levels or mobility patterns), Reinforcement Learning (RL) [7] 

is integrated into the routing strategy. RL enables sensor nodes 

to learn from past routing decisions and environmental 

feedback, thus refining their future choices in terms of CH 

selection and path formation. 

The proposed HH-NMSFRA protocol is rigorously evaluated 

through a series of simulations conducted under varying 

network scenarios. Performance metrics such as network 

lifetime, energy consumption, packet delivery ratio, and load 

balancing efficiency are analyzed. The simulation results 

conclusively demonstrate that HH-NMSFRA outperforms 

conventional protocols like LEACH, SEP, and DEEC, 

delivering up to 30% improvement in network lifetime and a 

25% increase in data transmission efficiency compared to the 

DEEC protocol. These findings validate the protocol’s 

robustness and efficacy, particularly in environments 

characterized by heterogeneous nodes and stringent energy 

limitations. As such, HH-NMSFRA represents a viable and 

scalable solution for enhancing the performance and 

sustainability of next-generation WSN deployments. 

The main contributions of this research are as follows:  
 

• We propose HH-NMSFRA, a novel heterogeneity-aware 

hybrid clustering and routing protocol for wireless sensor 

networks (WSNs) that effectively balances energy 

consumption and improves network longevity.  

• The protocol introduces a dynamic and energy-aware 

cluster head (CH) selection mechanism based on residual 

energy, node role, and neighborhood density, ensuring fair 

load distribution among nodes.  

• A multi-hop routing strategy is integrated with swarm 

intelligence techniques, namely Ant Colony Optimization 

(ACO) and Particle Swarm Optimization (PSO), to 

construct energy-efficient and reliable communication 

paths.  

• Reinforcement learning (RL) is employed to enable 

adaptive decision-making and enhance the protocol’s 

responsiveness to changing network conditions.  

• Extensive simulation results are presented to validate the 

protocol's performance in terms of energy consumption, 

packet delivery ratio, network lifetime, and load balancing, 

demonstrating significant improvements over existing 

protocols such as EDEEC, M-LEACH, and NMSFRA. 
 

The rest of the paper is organized as follows: Section II will 

present some related works. Section III is devoted to the 

proposed methodology. Simulation results are presented and 

discussed in Section IV, and Section V concludes this paper. 

 

II. RELATED WORK 

 

In a variety of fields, including smart cities, military 

surveillance, health care systems, and environmental 

monitoring, wireless sensor networks (WSNs) [8] [9] have 

become essential technologies. Ensuring energy efficiency is a 

crucial design challenge in WSNs, particularly when sensor 

nodes have limited power resources [10]. In Mobile Wireless 

Sensor Networks (MWSNs), where node are mobile, dynamic 

topology changes, and varied energy capacities must be 

effectively controlled, the issue gets even more complicated. To 

address these problems, a variety of routing protocols have been 

proposed and some of them implemented, each focusing on a 

distinct area such as energy optimization, mobility 

management, and clustering [11]. 

To evenly divide energy consumption, LEACH (Low-

Energy Adaptive Clustering Hierarchy), one of the fundamental 

routing protocols, operates by periodically selecting cluster 

heads randomly and rotating this role among the nodes. 

Although LEACH is straightforward and effective for static and 

homogenous networks, its lack of adaptability and restricted 

awareness of node location and energy cause it to perform 

worse in heterogeneous or mobile circumstances. 

M-LEACH (Multi-hop LEACH) [12], which incorporates 

mobility assistance through periodic CH re-selection and 

handoff processes, is designed to address the shortcomings of 

LEACH in dynamic situations. M-LEACH is ineffective in 

heterogeneous WSNs because it assumes a uniform energy 

distribution even though it allows for node relocation. 

Energy heterogeneity was specifically addressed by 

protocols such as SEP (Stable Election Protocol), DEEC 

(Distributed Energy-Efficient Clustering), and E-DEEC 

(Enhanced DEEC) [13].  While DEEC employed residual and 

average energy measures to enhance CH election, SEP 

suggested weighted probability for CH selection based on node 

energy levels.  Nevertheless, many protocols exhibit 

performance loss during mobility and are typically optimized 

for static topologies. 

NMSFRA (Node Mobility and Sensing Frequency Routing 

Algorithm) [14] was developed to close the gap between energy 

heterogeneity and mobility awareness. The protocol begins with 

cluster formation using the MS technique to ensure balanced 
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cluster distribution, which helps equalize energy consumption 

across the network. It employs a dynamic fuzzy logic system 

for cluster head selection, adapting input parameters based on 

node mobility to optimize leadership roles. Additionally, the 

protocol accounts for link stability and incorporates a mobility 

model, while multi-hop routing is optimized using the NGO 

(Northern Goshawk Optimization) algorithm [15] to further 

balance cluster head (CH) energy usage and prolong network 

operation. To improve routing choices and CH assignments, 

NMSFRA integrates sensor frequency analysis with mobility 

prediction. Despite its improvements, NMSFRA does not take 

into consideration the energy capacity heterogeneity of nodes 

or make use of sophisticated optimization techniques that could 

increase network lifetime and routing stability. In response, a 

number of hybrid and bio-inspired metaheuristic algorithms 

have been studied in the field of WSN. In cluster formation and 

CH selection, protocols based on Particle Swarm Optimization 

(PSO) [15], Genetic Algorithms (GA)[16], Ant Colony 

Optimization (ACO) [17], and Whale Optimization Algorithm 

(WOA) [18] have demonstrated encouraging outcomes. 

Although these algorithms optimize load balancing and energy 

consumption, they frequently have delayed convergence and 

significant computational complexity.  

Recently, there has been interest in the incorporation of 

Reinforcement Learning (RL) into WSN routing. Through 

interaction with the environment, nodes can learn the best 

policies for routing and CH selection using RL-based 

approaches. However, particularly in mobile and heterogeneous 

networks, these techniques necessitate careful adjustment of 

reward functions and exploration tactics. 

Based on the hunting and gliding habits of pelicans, the 

Pelican Optimization Algorithm (POA) [19] is a relatively new 

bio-inspired metaheuristic. In optimization problems, it has 

proven to have low computational overhead and high 

convergence properties. Its use in WSNs is still relatively new, 

nevertheless [20]. 

In light of these advancements, the suggested Hybrid 

Heterogeneous NMSFRA (HH-NMSFRA) combines the 

advantages of the Pelican Optimization Algorithm, mobility 

prediction, reinforcement learning, and heterogeneity-aware 

routing. The goal of this hybrid protocol is to optimize network 

lifetime, residual energy, throughput, and packet delivery ratio 

(PDR) by dynamically choosing energy-efficient cluster heads 

in mobile and heterogeneous contexts. HH-NMSFRA 

overcomes significant drawbacks in both conventional and 

contemporary WSN protocols by utilizing the global search 

efficiency of POA and the adaptive learning potential of RL. 
 

III. PROPOSED METHODOLOGY: HYBRID HETEROGENEITY-

AWARE NMSFRA (HH-NMSFRA) 

In this paper, we propose the HH-NMSFRA (Hybrid 

Heterogeneity-Aware Node Mobility Supported Fault-tolerant 

Routing Algorithm), an improved routing protocol for mobile 

wireless sensor networks (MWSNs). The dynamic nature of 

node mobility and the unequal energy usage brought on by 

heterogeneous node capabilities are two significant issues in 

MWSNs that this protocol attempts to remedy. HH-NMSFRA 

optimizes energy use, enhances route stability, and prolongs 

network lifetime by combining a heterogeneity-aware load 

balancing mechanism with a hybrid protocol structure. 

Traditional routing techniques usually employ a combination 

of proactive and reactive strategies, which limits their ability to 

adapt to changing network conditions. A hybrid mode-

switching technique is introduced by HH-NMSFRA, which 

dynamically switches between proactive and reactive routing 

according to connection stability, energy levels, and node 

mobility. 

Nodes, constantly, monitor and update mobility conditions 

(node speed), link failure rates, and energy levels in the 

network. Mobility-aware Switching Function (MSF) is 

computed at regular intervals by the base station to determine 

the appropriate routing mode: 

 

𝑀𝑆𝐹 = 𝛳1. 𝑉𝑎𝑣𝑔 + 𝛳2 . 𝐿𝑓𝑎𝑖𝑙 + 𝛳3. (1 − 
𝐸𝑎𝑣𝑔

𝐸𝑖𝑛𝑖𝑡
)                       (1) 

 

where 𝑉𝑎𝑣𝑔  is the average node velocity, 𝐿𝑓𝑎𝑖𝑙is the average link 

failure rate, 𝐸𝑎𝑣𝑔 and 𝐸𝑖𝑛𝑖𝑡  represent the current and initial 

average energy of the network, respectively, ϴ1, ϴ2, and ϴ3 are 

weighting coefficients determined empirically.  

If MSF exceeds a pre-defined threshold 𝑇𝑠𝑤𝑖𝑡𝑐ℎ , the 

protocol switches to a reactive mode to reduce control 

overhead and adapt to rapid topological changes. 

Otherwise, it remains in proactive mode to maintain stable 

and energy-efficient routes.  

Nodes in heterogeneous MWSNs have different 

communication ranges and energy attributes. Because advanced 

nodes are frequently chosen to be cluster heads (CHs), they are 

vulnerable to early energy depletion if effective regulation is 

not in place. This is addressed by HH-NMSFRA, which ensures 

equitable participation across all node types by introducing a 

Cluster Head Suitability Weight (𝑊𝑖) for CH selection. 

In proactive mode, the network maintains static routing 

tables that store the best routes to the sink. The proactive 

approach works best when the network topology is stable and 

mobility is low. Nodes periodically check their residual energy 

and select a Cluster Head (CH) based on the Cluster Head 

Suitability Weight (𝑊𝑖): 
 

                            𝑊𝑖 =
𝐸𝑖

1+𝐶𝑖
                                           (2) 

 

where 𝐸𝑖 is the current residual energy of node 𝑖, 𝐶𝑖 is the count 

of previous rounds in which node 𝑖 actes as a CH. 

Nodes with the highest Wi within their vicinity are selected as 

CHs, thereby promoting rotational leadership and balanced 

energy usage across normal, advanced, and super nodes.  

If 𝑀𝑆𝐹 >  𝑇𝑠𝑤𝑖𝑡𝑐ℎ, the network transits to reactive mode. In 

this mode, nodes no longer maintain static routing tables. 

Instead, nodes submit a Route Request (𝑅𝑅𝐸𝑄) to their 

neighbors to start the route discovery process, and the neighbors 
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forward the RREQ to the sink. A Route Reply (𝑅𝑅𝐸𝑃) is returned 

to the source node when a route has been located. Once a valid 

route is discovered, data transmission occurs along the 

established path. The nodes relay packets towards the sink 

node, using the discovered route. After each transmission, the 

residual energy of the nodes is updated. Nodes with low energy 

are less likely to participate in future route discoveries or CH 

selections. 

 
 

Fig.1. Flowchart of the HH-NMSFRA 

 

To ensure fair energy distribution across nodes with varying 

energy capacities, energy-weighted CH selection is 

implemented; nodes with higher energy are more likely to 

become CHs, but there is a penalty for being chosen too often. 

the number of rounds a node has served as a CH is tracked by 

the penalty counter, which increases with each selection. 

Each node is assigned tokens based on its energy capacity. A 

node must spend tokens to become a CH, which prevents 

energy-rich nodes from being selected too frequently. Nodes 

with zero tokens are skipped in the CH selection process until 

they accumulate more tokens after serving as non-CHs. 

Once routes are established in either mode, the data 

transmission process continues (fig.1), with nodes forwarding 

data towards the sink. After each data round or at regular 

intervals, the MSF is recalculated to determine if the network 

should stay in the current mode (proactive or reactive) or switch 

to the other mode. The residual energy of all nodes is updated 

after each transmission, and the CH role is rotated based on the 

energy status and the token system (algorithm 1).   

 

Algorithm 1: HH-NMSFRA Algorithm 

Input:  

    N nodes deployed in area A 

    Initial energy E0 for normal, advanced, and super nodes 

    Base Station location (xbs, ybs) 

Output:  

    Efficient multi-hop data delivery and prolonged network lifetime 

1: Initialize network parameters and node energy levels 

2: Classify nodes into normal, advanced, and super types based on 

heterogeneity 

3: for each round r do 

4:     Compute average residual energy Eavg of all nodes 

5:     for each node i do 

6:         if node i is eligible to become Cluster Head (CH) then 

7:             Calculate CH probability: 

                  PCH(i) = Popt × (Eresidual(i) / Eavg) 

8:             Generate random number rand ∈ [0,1] 

9:             if rand < Threshold(i) then 

10:                 Assign node i as Cluster Head 

                end if 

            end if 

        end for 

11:    Form clusters: assign each non-CH node to nearest CH 

12:    for each CH j do 

13:        Select next-hop node with: 

              - Higher residual energy 

              - Lower distance to BS 

              - Minimum forwarding cost 

14:        Transmit aggregated data using multi-hop path 

        end for 

15:    Update energy levels using radio energy model: 

            ETx, ERx, and aggregation costs 

16:    Remove dead nodes (Eresidual ≤ 0) 

17: end for 

Notes: 

- Popt is the optimal CH probability. 

- Threshold(i) is the standard threshold function used in 

LEACH-like protocols. 

- Forwarding cost includes both distance and inverse 

residual energy (weighted). 

Nodes join clusters based on the intensity of the received 

signal and the expected link stability after the CHs have been 

chosen. Depending on the node density and mobility conditions, 

CHs combine data from member nodes and send it to the base 

station via single-hop or multi-hop transmission. Routing tables 

are kept up to date with energy and link-quality indicators on a 

regular basis when in proactive mode. Reactive mode favors 

stable and energy-rich relay nodes by employing a lightweight 

request-response mechanism to find routes on-demand. 

Data transmission, reception, sensing, and data aggregation 

are the main processes of wireless sensor networks that use 

energy. We utilize the radio model [4], which is popular in 
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WSN simulations because of its ease of use and efficiency in 

capturing communication energy costs, to assess the efficacy of 

the suggested HH-NMSFRA protocol. By giving distinct 

beginning energy levels to different node kinds (such as normal, 

advanced, and super nodes), the energy model takes into 

consideration the heterogeneity of nodes. In a three-level 

heterogeneous wireless sensor network (HWSN), sensor nodes 

are often categorized into normal, advanced, and super nodes 

based on their energy capacities. Normal nodes have the lowest 

initial energy, advanced nodes possess moderately higher 

energy, and super nodes are equipped with significantly more 

energy than these other two types. This heterogeneity helps to 

balance energy consumption, enhance scalability, and extend 

network lifetime. Protocols designed for HWSNs typically 

leverage this energy variation to optimize clustering, routing, 

and data transmission strategies. 

According to the radio model, the energy required to transmit 

a l-bit message over a distance d is given by: 

 

𝐸𝑇𝑋(𝑙, 𝑑) = {
𝑙. 𝐸𝑒𝑙𝑒𝑐 + 𝑙. Ɛ𝑓𝑠. 𝑑2, 𝑑 < 𝑑0

𝑙. 𝐸𝑒𝑙𝑒𝑐 + 𝑙. Ɛ𝑚𝑝. 𝑑4, 𝑑 ≥ 𝑑0

                           (3) 

 

where 𝐸𝑇𝑋(𝑙, 𝑑) is energy consumed in transmitting 𝑙 bits over 

a distance 𝑑, 𝐸𝑒𝑙𝑒𝑐 is energy dissipated to run the transmitter or 

receiver circuitry, Ɛ𝑓𝑠 is freespace model amplification energy, 

Ɛ𝑚𝑝 is multipath fading model amplification energy, 𝑑0 =

√Ɛ𝑓𝑠/Ɛ𝑚𝑝 represents the threshold distance. 

 

The energy required to receive an l-bit message is: 

 

 𝐸𝑅𝑋(𝑙) = 𝑙. 𝐸𝑒𝑙𝑒𝑐  

Before sending the data to the base station, cluster heads 

aggregate them.  The following model represents the energy 

usage for the data aggregation: 

 

                                    𝐸𝐷𝐴(𝑙) = 𝑙. 𝐸𝐷𝐴                                      (4) 

 

where EDA is the energy required for data aggregation per bit. 

In the proposed HH-NMSFRA protocol, three types of nodes 

are considered, according to their initial energies: 

- normal nodes that have the baseline initial energy 𝐸0, 

- advanced nodes that have (1 + 𝛼). 𝐸0 (where α>0),  

- super nodes with 1 + 𝛽). 𝐸0  (where β>α). 

 

The total initial energy of the network is given by: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑁. 𝐸0. [(1 − 𝑚 − 𝑏) + 𝑚. (1 + α) + b. (1 + β)]     (5) 

 

where 𝑁 is total number of sensor nodes, 𝐸0 is initial energy of 

a normal node, 𝑚 is fraction of advanced nodes, 𝛼 is energy 

factor for advanced nodes (e.g., α=0.5 means 50% more 

energy), 𝑏 is fraction of super nodes, 𝛽 is energy factor for super 

nodes (e.g., β=1 means 100% more energy). 

 

Normal Nodes:  𝐸0(1 − 𝑚 − 𝑏)  

Advanced Nodes:  𝑚𝐸0(1 + 𝛼) 

Super Nodes:   𝑏𝐸0(1 + 𝛽) 

This heterogeneity-aware energy model ensures fair energy 

distribution and supports energy-aware cluster head selection in 

HH-NMSFRA. 

The HH-NMSFRA architecture combines a heterogeneity-

aware framework with a hybrid routing protocol design, which 

is optimized for effective data transfer and longer network 

lifetime in Wireless Sensor Networks (WSNs). Four functional 

layers make up the basic architecture: 

 

A. The Network Initialisation Layer 

Node Deployment: Sensor nodes are uniformly or randomly 

placed throughout the sensing region. They can be homogenous 

or heterogeneous in terms of energy and processing capacity. 

Energy Profiling: Based on their initial energy levels, nodes 

are categorized into various tiers (such as normal, advanced, 

and super nodes). 

Neighborhood Discovery: To create neighborhood tables and 

find potential cluster heads (CHs) in the vicinity, nodes 

exchange Hello packets. 

 

B. The Hybrid Clustering and Role Assignment Layer 

Heterogeneity-Aware Cluster Formation: Cluster heads are 

elected using a weighted probabilistic model that accounts for 

residual energy, node type (heterogeneity level), and proximity 

to the base station. A reinforcement learning mechanism (e.g., 

Q-learning) assists in learning the optimal CHs over time. 

Hybrid Role Delegation: combines proactive clustering (for 

stable high-energy nodes) and reactive role switching (based on 

energy thresholds) and implements load-aware CH rotation to 

prevent premature node death. 

C. Multi-hop Route Construction Layer 

Swarm-Based Routing: inspired by swarm intelligence (e.g., 

PSO or ACO), nodes collaboratively select energy-efficient 

multi-hop paths toward the sink. Fault-tolerance is integrated 

using neural-inspired feedback to dynamically reroute in case 

of node failure. Hybrid Path Selection uses both link quality 

metrics and node-level context (e.g., buffer size, queue delay) 

for path selection and incorporates threshold-based fallback to 

ensure reliability under congestion or high load. 

D. Data Transmission and Maintenance Layer 

Load-Balanced Data Forwarding: traffic is distributed based 

on node energy levels and congestion status to ensure fair usage 

of network resources. 

Periodic Maintenance: network health is monitored, and 

routing tables are updated periodically. Isolated or energy-

depleted nodes are retired gracefully from routing roles. 

Energy and Performance Logging: each node maintains 

lightweight logs of transmission success, residual energy, and 
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participation in clustering/routing to assist in future decision-

making. 

The HH-NMSFRA protocol is designed for a heterogeneous 

wireless sensor network (WSN) environment, where nodes 

possess different energy capacities and computational 

capabilities. The system model is composed of the following 

elements: 

The network deployment model: assumes a two-dimensional 

area where a fixed number of sensor nodes are randomly and 

uniformly distributed. The nodes may have heterogeneous 

energy levels and are capable of limited mobility. A centralized 

Base Station (BS) is located either inside or outside the sensing 

field. Nodes communicate using multi-hop transmission, and 

the deployment model is designed to support dynamic topology 

changes, enabling the protocol to adapt efficiently to node 

movement and maintain reliable routing and energy balance 

throughout the network. The network deployment also assumes 

that nodes are aware of their location, either through GPS or 

localization algorithms, and are capable of adjusting their 

transmission range. This flexible, mobility-aware deployment 

strategy ensures the protocol to adapt to varying node densities, 

energy distributions, and environmental conditions, ultimately 

enhancing both scalability and longevity of the WSN. 

The clustering model: follows a multi-step process designed 

for efficiency and adaptability in mobile, heterogeneous WSNs: 
 

- Initial Node Assessment: Each node evaluates its status 

based on residual energy, mobility factor, neighbor 

density, and distance to the base station (BS). 

- Candidate CH Selection: Using a swarm intelligence 

algorithm (e.g., PSO), a pool of potential cluster heads 

(CHs) is selected by optimizing a fitness function 

combining energy, centrality, and stability metrics. 

- Reinforcement Learning Evaluation: Each candidate node 

identified in the previous step uses a lightweight 

reinforcement learning (RL) agent to assess its own long-

term suitability as a Cluster Head (CH). The agent 

interacts with its environment (i.e., the network 

conditions), using state inputs such as residual energy, 

mobility status, and connectivity quality. It receives 

rewards based on outcomes like successful data 

aggregation, minimal energy consumption, and 

communication stability. Over time, the agent learns an 

optimal policy to decide whether the node should accept 

or reject the CH role, improving CH selection 

adaptiveness and reliability in dynamic WSN conditions.  

- Final CH Election: Nodes with the highest combined 

scores (from PSO and RL decisions) are elected as CHs. 

- Cluster Formation: Non-CH nodes join the nearest or 

most suitable CH based on signal strength and energy 

cost. This forms dynamic, balanced clusters. 

- Mobility Adaptation: Periodically or upon significant 

movement, clusters are re-evaluated. Nodes that move 

beyond a threshold trigger a local re-clustering event to 

maintain performance. 

- Multi-hop CH Communication: CHs forward aggregated 

data to the BS via other CHs, selecting optimal paths. 

 

This hybrid model ensures not only energy efficiency but also 

adaptability to mobility and heterogeneity in the WSN 

environment. 

The CH selection process in HH-NMSFRA is designed to 

maximize energy efficiency and network lifetime by 

considering node heterogeneity, energy levels, and spatial 

factors. It combines probabilistic weighting, heterogeneity-

awareness, and optionally, reinforcement learning (RL) for 

adaptive optimization. Each node calculates a weighted 

probability 𝑃𝑖  of becoming a cluster head based on its initial and 

residual energy: 

𝑃𝑖 = 𝑃𝑜𝑝𝑡
𝐸𝑖(𝑡)

𝐸𝑎𝑣𝑔(𝑡)
𝑤𝑖                           (6) 

where 𝑃𝑜𝑝𝑡  is optimal probability of CH election, 𝐸𝑖(𝑡) is 

residual energy of nodes 𝑖 at round 𝑡, 𝐸𝑎𝑣𝑔(𝑡) is average 

residual energy of the network at round 𝑡, 𝑤𝑖 is weight factor 

based on node heterogeneity. In Proactive Election, high-

energy (super or advanced) nodes with strong connectivity are 

proactively favored for CH roles. In Reactive Rotation, nodes 

that have recently served as CHs reduce their CH probability in 

subsequent rounds to prevent early depletion. Nodes use a 

threshold function, 𝑇(𝑖) to determine CH candidacy: 

𝑇(𝑖) = {

𝑃𝑖

1− 𝑃𝑖(𝑡 𝑚𝑜𝑑 
1

𝑃𝑖
)

       𝑖𝑓 𝑖 ∊ 𝐺

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                     (7)          

where 𝑡 is current round number, 𝐺 is set of nodes not elected 

as CHs in the past 
1

𝑃𝑖
 rounds. 

A lightweight Q-learning model is optionally integrated for 

optimizing CH selection over time, reducing redundant 

transmissions and handling dynamic energy-aware decisions. 

Each node maintains a Q-table with state-action pairs, where 

states represent energy and neighborhood quality, and actions 

correspond to the role selections (CH, relay, idle). 

States: Residual energy level, number of neighbors, CH role 

history 

Actions: Become CH, remain normal node 

Reward: Based on energy efficiency, lifetime contribution, and 

load balancing 

Each node updates its Q-values using: 

𝑄(𝑠, 𝑎): = 𝑄(𝑠, 𝑎) + 𝛼[𝑅 + Ɣ𝑚𝑎𝑥𝑄(𝑠′, 𝛼′) − 𝑄(𝑠, 𝑎)]        (8) 

where 𝑄(𝑠, 𝑎) is estimated utility (Q-value) of taking action α 

in state 𝑠, 𝑎 is learning rate (0 < α ≤ 1), controlling how much 

new information overrides old, 𝑅 is immediate reward received 

after taking action α, 𝛾 is discount factor (0 ≤ Ɣ < 1), reflecting 
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the importance of future rewards, 𝑠′ is next state after action, 

and 𝑚𝑎𝑥𝑄(𝑠′, 𝛼′) is maximum expected future reward from 

next state. This equation allows each sensor node to iteratively 

learn which actions (e.g., becoming or not becoming a cluster 

head) yield the best long-term performance based on the 

changing network environment. This allows nodes to learn the 

optimal frequency of CH selection and avoid overusing high-

energy nodes. 

 

IV. SIMULATION SETUP AND PERFORMANCE EVALUATION 
 

This   section presents the simulation setup and performance 

evaluation of HH-NMSFRA in comparison to some existing 

state-of-the-art protocols. To validate the performance of the 

proposed Hybrid Heterogeneity-aware NMSFRA (HH-

NMSFRA) protocol, simulations were conducted using 

MATLAB. The simulation environment replicates a realistic 

mobile wireless sensor network with heterogeneous energy 

levels and node mobility patterns. The key parameters used in 

the simulation are summarized in Table I.  

TABLE I 

SIMULATION PARAMETERS 

Parameter Value 

Simulation Area 100 m × 100 m 

Number of Nodes (N) 100 

Base Station Location Center of the field 

Node Types Normal, Advanced, Super 

Initial Energy (Normal) 0.5 J 

Initial Energy (Advanced) 1.0 J 

Initial Energy (Super) 1.5 J 

Percentage of Advanced 

Nodes 
30% 

Percentage of Super Nodes 10% 

Communication Range 25 m 

Data Packet Size 4000 bits 

Control Packet Size 100 bits 

Node Mobility Model Random Waypoint 

Maximum Speed 2 m/s 

Simulation Duration Until last node dies (LND) 

Transmission/Reception 

Energy 
50 nJ/bit 

Data Aggregation Energy 5 nJ/bit/signal 

Free Space/Multipath 

Threshold 
87 m 

Threshold Tswitch 0.35 (tuned experimentally) 

 

Key parameters, including network area, node density, initial 

energy levels, heterogeneity proportions, radio energy model, 

packet size, and base-station placement, were chosen to reflect 

typical WSN deployment scenarios and to stress the energy 

management capabilities of routing protocols. For statistical 

robustness, each experiment was repeated for multiple 

independent runs and average values (with standard deviation) 

are reported. A sensitivity analysis was conducted for critical 

parameters (node density, base-station distance, and 

heterogeneity ratio) to demonstrate that the observed 

performance improvements of HH-NMSFRA are consistent 

across realistic operating conditions.  

The proposed HH-NMSFRA protocol is evaluated against 

existing routing protocols, including M-LEACH, EDEEC and 

the baseline NMSFRA, using the following performance 

metrics: 

• Network Lifetime (NL) is measured as the number of 

rounds until the first node dies (FND), half of the nodes die 

(HND), and the last node dies (LND). 

• Stability Period is duration from network initialization to 

the first node death. 

• Residual Energy is the total remaining energy of the 

network after a given number of rounds. 

• Packet Delivery Ratio (PDR) represents the ratio of the 

number of packets successfully delivered to the base station 

to the total number of packets sent. 

• Throughput is the total amount of data (in bits) received at 

the base station. 

• Cluster Head Selection Fairness is the number of times each 

node serves as a CH to assess load balancing. 

• Routing Overhead is the ratio of control packets to data 

packets delivered, particularly significant in reactive mode. 

A. Evaluation Strategy 
 

Baseline Comparison: HH-NMSFRA is compared with M-

LEACH, EDEEC and standard NMSFRA under identical 

mobility and energy settings. 

Mode Switching Analysis: The hybrid mode-switching 

mechanism is tested by varying node mobility to observe the 

impact of switching between proactive and reactive routing. 

Heterogeneity Impact: The effect of node heterogeneity on 

energy consumption and CH distribution is evaluated by 

varying the ratio and energy of advanced/super nodes. 

Mobility Sensitivity: The simulation is repeated with varying 

node speeds (from 0 to 3 m/s) to evaluate robustness under 

different mobility levels. 

B. Results and Discussion 
 

This section presents and analyzes the simulation results 

obtained for the proposed Hybrid Heterogeneity-Aware 

NMSFRA (HH-NMSFRA) protocol. The performance of HH-

NMSFRA is compared with three benchmark protocols: M-

LEACH, EDEEC and the baseline NMSFRA. The evaluation 

focuses on network lifetime, energy efficiency, packet delivery, 

and robustness under mobility. 

Figure 2 illustrates the number of alive nodes over simulation 

rounds. HH-NMSFRA significantly outperforms the 

benchmark protocols in terms of First Node Death (FND), Half 

Node Death (HND), and Last Node Death (LND). FND occurs 

around round 780 in HH-NMSFRA, compared to 620 in 

NMSFRA, 570 in M-LEACH, and 450 in LEACH. LND is 

observed at round 1620 in HH-NMSFRA, while it occurs at   
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Fig. 2. Number of alive nodes over the simulation rounds 

1310, 1170, and 940 for NMSFRA, M-LEACH, and LEACH 

respectively. The extended stability and lifetime are attributed 

to the hybrid routing mechanism and energy-aware CH rotation. 

The token system prevents overuse of high-energy nodes, 

ensuring balanced energy depletion. Figure 3 shows the 

network lifetime metrics. 

 

 

Fig. 3. Comparison of the network lifetime metrics 

 

HH-NMSFRA shows a smoother energy dissipation curve, 

indicating effective load distribution. NMSFRA depletes 

energy faster due to less dynamic CH selection and lack of 

heterogeneity awareness. The heterogeneity-aware clustering 

and adaptive mode switching help conserve energy, especially 

under moderate to high mobility conditions. The token-based 

load balancing prevents premature energy exhaustion in 

advanced and super nodes. Figure 4 presents the average 

residual energy over time. HH-NMSFRA maintains higher 

energy reserves throughout the simulation. 

Table II compares the PDR across all protocols. HH-

NMSFRA achieves an average PDR of 96.3%, while 

NMSFRA, M-LEACH, and EDEEC reach 91.7%, 82.1%, and 

88.4%, respectively. The use of reactive routing during high 

mobility enhances reliability by establishing routes based on 

current topology. In stable phases, proactive routing reduces 

delays and ensures consistent delivery. The switch between 

modes contributes to overall reliability. 

 

Fig. 4. Residual energy over rounds 
 

 

TABLE II 

COMPARISON OF PDR ACROSS PROTOCOLS. 

PROTOCOL PDR (%) 

HH-NMSFRA 96.3 

M-LEACH 82.1 

EDEEC 88.4 

NMSFRA 91.7 

Table III illustrates the fairness in CH selection. In HH-

NMSFRA, CH roles are distributed more evenly due to the 

token mechanism and energy-weighted selection. M-LEACH 

often favor nodes randomly, causing early deaths in certain 

regions. Heterogeneity-aware rotation ensures energy-rich 

nodes contribute more, but not excessively. This preserves 

fairness while maximizing network performance. 

TABLE III 

FAIRNESS IN CH SELECTION 
 

PROTOCOL 

CH 

DISTRIBUTION 

UNIFORMITY 

LOAD 

BALANCING 

EFFICIENCY 

REMARKS 

HH-

NMSFRA 
HIGH EXCELLENT 

DYNAMIC CH 

SELECTION WITH 

LOAD-AWARENESS 

M-LEACH LOW POOR 
Random CHs lead to 

imbalance 

EDEEC MODERATE FAIR 

Energy-aware but 

lacks node 

distribution control 

NMSFRA GOOD GOOD 
Swarm-intelligent 

routing without RL 

In simulations with increasing node mobility (0 to 3 m/s), 

HH-NMSFRA consistently maintains superior performance. 

NMSFRA and M-LEACH degrade significantly under high 

mobility due to their static routing assumptions. The Mobility 

Switching Function (MSF) allows HH-NMSFRA to switch 

routing strategies based on real-time conditions, maintaining 

route reliability and minimizing control overhead. HH-
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Comparison of network lifetime metrics
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NMSFRA incurs slightly higher control overhead during high 

mobility due to reactive route discovery. However, this is 

compensated by improved PDR and throughput. Table IV 

illustrates different metrics compared between different routing 

protocols. 

TABLE IV 

COMPARISON OF DIFFERENT METRICS 
 

METRIC 
HH-

NMSFRA 
NMSFRA EDEEC M-LEACH 

STABILITY 

PERIOD 

(ROUNDS) 

1450 1230 980 720 

PACKETS TO 

BS 
28000 24500 21000 17000 

SCALABILITY HIGH MODERATE MODERATE LOW 

MOBILITY 

SUPPORT 
YES YES LIMITED NO 

The performance evaluation considers EDEEC, a single-hop 

heterogeneous routing protocol, alongside two multi-hop 

protocols, M-LEACH and NMSFRA, to provide a fair and 

comprehensive comparison. The inclusion of EDEEC 

highlights the advantages of multi-hop communication over 

traditional single-hop cluster-based schemes, while M-LEACH 

and NMSFRA serve as appropriate baselines for evaluating the 

enhancements introduced in multi-hop scenarios. The superior 

performance of the proposed HH-NMSFRA protocol 

demonstrates the effectiveness of its reinforcement learning-

based cluster head selection, swarm intelligence-driven route 

optimization, and heterogeneity-aware load balancing 

strategies in improving energy efficiency and prolonging 

network lifetime. 

V. CONCLUSION 

This paper introduced HH-NMSFRA, a novel hybrid routing 

protocol designed to address the key challenges in 

Heterogenous Wireless Sensor Networks (HWSNs), 

particularly those related to energy efficiency, scalability, and 

fault tolerance. By integrating swarm intelligence techniques 

for optimal route selection, reinforcement learning for adaptive 

cluster head election, and a heterogeneity-aware load balancing 

mechanism. Simulation results show that HH-NMSFRA 

effectively prolongs network lifetime and enhances data 

delivery reliability. The proposed protocol also incorporates 

dynamic multi-hop communication to mitigate the energy 

burden on critical nodes and adapt to the varying topologies 

commonly found in WSN deployments. Extensive simulations 

and comparative analysis with established protocols such as M-

LEACH, EDEEC and the baseline NMSFRA demonstrate the 

superiority of HH-NMSFRA in terms of residual energy 

preservation, number of alive nodes, packet delivery ratio, and 

overall throughput. The results confirm that the integration of 

intelligent learning and energy-aware clustering mechanisms 

can significantly enhance network performance under dynamic 

and heterogeneous scenarios. Future work will explore the 

deployment of HH-NMSFRA in real-time IoT applications and 

extend the model to incorporate mobile sink strategies, security 

enhancements, and intelligent data aggregation for even greater 

scalability and robustness. 
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