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HH-NMSFRA: A Heterogeneity-Aware Hybrid
Protocol for Energy-Efficient Routing in Wireless
Sensor Networks

Maroua Hammadi, and Mohammed Redjimi

Abstract—When designing and implementing Wireless Sensor
Networks (WSNSs), where sensor nodes are restricted by battery
power, energy efficiency is a fundamental challenge. In order to
optimize energy consumption and enhance data delivery
performance, this study suggests a new Heterogeneity-aware
Hybrid NMSFRA (HH-NMSFRA) protocol that combines energy-
aware node selection, multi-hop routing, and hybrid clustering
approaches. By dynamically modifying the cluster head (CH)
selection procedure in response to residual energy and node
capabilities, the protocol takes node heterogeneity into
consideration. Additionally, swarm intelligence methods like Ant
Colony Optimization (ACO) and Particle Swarm Optimization
(PSO) are integrated for effective multi-hop routing towards the
base station (BS), and reinforcement learning (RL) is used to
improve the adaptive behavior of the protocol. According to
simulation studies, HH-NMSFRA performs better than
conventional protocols like M-LEACH, EDEEC, and NMSFRA in
important performance parameters like control overhead, energy
consumption, data delivery ratio, and network lifetime. In
particular, HH-NMSFRA improves the data transmission ratio by
25% and extends network lifetime by up to 30% when compared
to DEEC, making it a viable option for HWSNs with limited
energy.

Index terms—HWSN, CH selection, NMSFRA, Reinforcement
Learning, mobility.

|. INTRODUCTION

Wireless Sensor Networks (WSNs) have emerged as an
indispensable technology for real-time data acquisition and
environmental sensing in diverse and often challenging or
inaccessible areas. Their widespread adoption spans multiple
application domains, including military surveillance, battlefield
monitoring, environmental and climate observation, industrial
automation, precision agriculture, healthcare monitoring, and
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smart city infrastructure [1]. These networks are composed of
spatially distributed sensor nodes, each equipped with sensing,
computation, and wireless communication capabilities.

Despite their utility and versatility, a critical limitation of
WSNs lies in the restricted energy resources of the sensor
nodes. Typically powered by compact, non-rechargeable
batteries, these nodes face operational challenges once their
energy reserves are exhausted. The depletion of energy in even
a subset of nodes can result in reduced sensing coverage,
discontinuities in data collection, and ultimately, fragmentation
of the communication topology, thereby degrading the
network's overall performance and reliability [2].

To tackle these energy constraints, researchers have proposed
a variety of energy-efficient communication and routing
strategies. Among these, cluster-based routing protocols have
shown considerable promise due to their ability to reduce
communication overhead and balance energy consumption. In
such protocols, sensor nodes are organized into clusters, with
one node within each cluster elected as the Cluster Head (CH).
The CH is responsible for aggregating data from cluster
members, performing local data fusion, and transmitting the
aggregated data to the base station (BS). This hierarchical
structure helps in reducing the number of direct transmissions
to the BS, thereby conserving energy and extending network
lifespan. Nonetheless, traditional cluster-based protocols such
as PEGASIS (Power-Efficient Gathering in Sensor Information
Systems) [3] and LEACH (Low-Energy Adaptive Clustering
Hierarchy) [4] are predominantly designed under the
assumption of homogeneous network settings. In these
protocols, all nodes are assumed to possess identical energy and
processing capabilities. This assumption becomes problematic
in real-world deployments, where node heterogeneity is
common. In heterogeneous WSNs, some nodes may have
higher energy reserves or enhanced processing capabilities,
which, if not considered in the protocol design, may lead to
overburdening of certain nodes. Consequently, these high-
capacity nodes deplete their energy resources prematurely,
resulting in uneven energy distribution, increased latency, and
reduced network lifetime.

To address these limitations, this study proposes a novel
protocol named HH-NMSFRA (Heterogeneity-aware Hybrid
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Node Management and Swarm-intelligent Fault-tolerant
Routing Architecture). Designed specifically for heterogeneous
WSNs, HH-NMSFRA introduces a hybrid routing framework
that combines the strengths of cluster-based architecture with
multi-hop communication mechanisms [5]. The protocol
dynamically adapts the cluster formation and cluster head
selection process by considering critical parameters such as
residual energy, node proximity to the BS, historical
performance metrics, and node-specific roles. By doing so, HH-
NMSFRA ensures equitable load distribution and avoids over-
exploitation of high-capacity nodes.

Moreover, the protocol incorporates advanced swarm
intelligence  techniques  specifically, Particle ~ Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) [6]
to identify optimal data forwarding paths from cluster heads to
the BS. These bio-inspired optimization methods mimic natural
processes to solve complex routing problems efficiently and in
a distributed manner. To enhance the adaptability of the system
under dynamic network conditions (e.g., changing node energy
levels or mobility patterns), Reinforcement Learning (RL) [7]
is integrated into the routing strategy. RL enables sensor nodes
to learn from past routing decisions and environmental
feedback, thus refining their future choices in terms of CH
selection and path formation.

The proposed HH-NMSFRA protocol is rigorously evaluated
through a series of simulations conducted under varying
network scenarios. Performance metrics such as network
lifetime, energy consumption, packet delivery ratio, and load
balancing efficiency are analyzed. The simulation results
conclusively demonstrate that HH-NMSFRA outperforms
conventional protocols like LEACH, SEP, and DEEC,
delivering up to 30% improvement in network lifetime and a
25% increase in data transmission efficiency compared to the
DEEC protocol. These findings validate the protocol’s
robustness and efficacy, particularly in environments
characterized by heterogeneous nodes and stringent energy
limitations. As such, HH-NMSFRA represents a viable and
scalable solution for enhancing the performance and
sustainability of next-generation WSN deployments.

The main contributions of this research are as follows:

e We propose HH-NMSFRA, a novel heterogeneity-aware
hybrid clustering and routing protocol for wireless sensor
networks (WSNs) that effectively balances energy
consumption and improves network longevity.

e The protocol introduces a dynamic and energy-aware
cluster head (CH) selection mechanism based on residual
energy, node role, and neighborhood density, ensuring fair
load distribution among nodes.

e A multi-hop routing strategy is integrated with swarm
intelligence techniques, namely Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO), to
construct energy-efficient and reliable communication
paths.
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e Reinforcement learning (RL) is employed to enable
adaptive decision-making and enhance the protocol’s
responsiveness to changing network conditions.

o Extensive simulation results are presented to validate the
protocol's performance in terms of energy consumption,
packet delivery ratio, network lifetime, and load balancing,
demonstrating significant improvements over existing
protocols such as EDEEC, M-LEACH, and NMSFRA.

The rest of the paper is organized as follows: Section 11 will
present some related works. Section Il is devoted to the
proposed methodology. Simulation results are presented and
discussed in Section IV, and Section V concludes this paper.

Il. RELATED WORK

In a variety of fields, including smart cities, military
surveillance, health care systems, and environmental
monitoring, wireless sensor networks (WSNs) [8] [9] have
become essential technologies. Ensuring energy efficiency is a
crucial design challenge in WSNSs, particularly when sensor
nodes have limited power resources [10]. In Mobile Wireless
Sensor Networks (MWSNs), where node are mobile, dynamic
topology changes, and varied energy capacities must be
effectively controlled, the issue gets even more complicated. To
address these problems, a variety of routing protocols have been
proposed and some of them implemented, each focusing on a
distinct area such as energy optimization, mobility
management, and clustering [11].

To evenly divide energy consumption, LEACH (Low-
Energy Adaptive Clustering Hierarchy), one of the fundamental
routing protocols, operates by periodically selecting cluster
heads randomly and rotating this role among the nodes.
Although LEACH is straightforward and effective for static and
homogenous networks, its lack of adaptability and restricted
awareness of node location and energy cause it to perform
worse in heterogeneous or mobile circumstances.

M-LEACH (Multi-hop LEACH) [12], which incorporates
mobility assistance through periodic CH re-selection and
handoff processes, is designed to address the shortcomings of
LEACH in dynamic situations. M-LEACH is ineffective in
heterogeneous WSNs because it assumes a uniform energy
distribution even though it allows for node relocation.

Energy heterogeneity was specifically addressed by
protocols such as SEP (Stable Election Protocol), DEEC
(Distributed Energy-Efficient Clustering), and E-DEEC
(Enhanced DEEC) [13]. While DEEC employed residual and
average energy measures to enhance CH election, SEP
suggested weighted probability for CH selection based on node
energy levels. Nevertheless, many protocols exhibit
performance loss during mobility and are typically optimized
for static topologies.

NMSFRA (Node Mobility and Sensing Frequency Routing
Algorithm) [14] was developed to close the gap between energy
heterogeneity and mobility awareness. The protocol begins with
cluster formation using the MS technique to ensure balanced
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cluster distribution, which helps equalize energy consumption
across the network. It employs a dynamic fuzzy logic system
for cluster head selection, adapting input parameters based on
node mobility to optimize leadership roles. Additionally, the
protocol accounts for link stability and incorporates a mobility
model, while multi-hop routing is optimized using the NGO
(Northern Goshawk Optimization) algorithm [15] to further
balance cluster head (CH) energy usage and prolong network
operation. To improve routing choices and CH assignments,
NMSFRA integrates sensor frequency analysis with mobility
prediction. Despite its improvements, NMSFRA does not take
into consideration the energy capacity heterogeneity of nodes
or make use of sophisticated optimization techniques that could
increase network lifetime and routing stability. In response, a
number of hybrid and bio-inspired metaheuristic algorithms
have been studied in the field of WSN. In cluster formation and
CH selection, protocols based on Particle Swarm Optimization
(PSO) [15], Genetic Algorithms (GA)[16], Ant Colony
Optimization (ACO) [17], and Whale Optimization Algorithm
(WOA) [18] have demonstrated encouraging outcomes.
Although these algorithms optimize load balancing and energy
consumption, they frequently have delayed convergence and
significant computational complexity.

Recently, there has been interest in the incorporation of
Reinforcement Learning (RL) into WSN routing. Through
interaction with the environment, nodes can learn the best
policies for routing and CH selection using RL-based
approaches. However, particularly in mobile and heterogeneous
networks, these techniques necessitate careful adjustment of
reward functions and exploration tactics.

Based on the hunting and gliding habits of pelicans, the
Pelican Optimization Algorithm (POA) [19] is a relatively new
bio-inspired metaheuristic. In optimization problems, it has
proven to have low computational overhead and high
convergence properties. Its use in WSNs is still relatively new,
nevertheless [20].

In light of these advancements, the suggested Hybrid
Heterogeneous NMSFRA (HH-NMSFRA) combines the
advantages of the Pelican Optimization Algorithm, mobility
prediction, reinforcement learning, and heterogeneity-aware
routing. The goal of this hybrid protocol is to optimize network
lifetime, residual energy, throughput, and packet delivery ratio
(PDR) by dynamically choosing energy-efficient cluster heads
in mobile and heterogeneous contexts. HH-NMSFRA
overcomes significant drawbacks in both conventional and
contemporary WSN protocols by utilizing the global search
efficiency of POA and the adaptive learning potential of RL.

I1l. PROPOSED METHODOLOGY: HYBRID HETEROGENEITY -
AWARE NMSFRA (HH-NMSFRA)

In this paper, we propose the HH-NMSFRA (Hybrid
Heterogeneity-Aware Node Mobility Supported Fault-tolerant
Routing Algorithm), an improved routing protocol for mobile
wireless sensor networks (MWSNSs). The dynamic nature of
node mobility and the unequal energy usage brought on by
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heterogeneous node capabilities are two significant issues in
MWSNSs that this protocol attempts to remedy. HH-NMSFRA
optimizes energy use, enhances route stability, and prolongs
network lifetime by combining a heterogeneity-aware load
balancing mechanism with a hybrid protocol structure.

Traditional routing techniques usually employ a combination
of proactive and reactive strategies, which limits their ability to
adapt to changing network conditions. A hybrid mode-
switching technique is introduced by HH-NMSFRA, which
dynamically switches between proactive and reactive routing
according to connection stability, energy levels, and node
mobility.

Nodes, constantly, monitor and update mobility conditions
(node speed), link failure rates, and energy levels in the
network. Mobility-aware Switching Function (MSF) is
computed at regular intervals by the base station to determine
the appropriate routing mode:

=) L)

Einit

MSF = ;. Vg + 0y Lygy + 65. (1 —

where V,,,4 is the average node velocity, L, is the average link
failure rate, E,,, and Ej,;, represent the current and initial
average energy of the network, respectively, 6, 6,, and 65 are
weighting coefficients determined empirically.

If MSF exceeds a pre-defined threshold T, the
protocol switches to a reactive mode to reduce control
overhead and adapt to rapid topological changes.
Otherwise, it remains in proactive mode to maintain stable
and energy-efficient routes.

Nodes in heterogeneous MWSNs have different
communication ranges and energy attributes. Because advanced
nodes are frequently chosen to be cluster heads (CHSs), they are
vulnerable to early energy depletion if effective regulation is
not in place. This is addressed by HH-NMSFRA, which ensures
equitable participation across all node types by introducing a
Cluster Head Suitability Weight (W;) for CH selection.

In proactive mode, the network maintains static routing
tables that store the best routes to the sink. The proactive
approach works best when the network topology is stable and
mobility is low. Nodes periodically check their residual energy
and select a Cluster Head (CH) based on the Cluster Head
Suitability Weight (W;):

Ej
= 14C;

i @)
where E; is the current residual energy of node i, C; is the count
of previous rounds in which node i actes as a CH.

Nodes with the highest Wi within their vicinity are selected as
CHs, thereby promoting rotational leadership and balanced
energy usage across normal, advanced, and super nodes.

If MSF > T,,iccn, the network transits to reactive mode. In
this mode, nodes no longer maintain static routing tables.
Instead, nodes submit a Route Request (Rggo) to their
neighbors to start the route discovery process, and the neighbors
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forward the Rreg to the sink. A Route Reply (Rggzp) is returned
to the source node when a route has been located. Once a valid
route is discovered, data transmission occurs along the
established path. The nodes relay packets towards the sink
node, using the discovered route. After each transmission, the
residual energy of the nodes is updated. Nodes with low energy
are less likely to participate in future route discoveries or CH
selections.

start & inintialize Network

[ Deploy Sensor Nodes }
[ Estimate Node Energy & Location }‘7

A

[ Cluster Formation (MS + Energy Based) ’
[ CII Selection via RL ]

A

[ Load-Aware Role Assignment }

v

‘ Multi-hop Routing via Swarm Optimisation J

|

[ Transmit Data to Base Station }

¥

v

[ Update Q-values & Encrgy Info J

Fig.1. Flowchart of the HH-NMSFRA

To ensure fair energy distribution across nodes with varying

energy capacities, energy-weighted CH selection s
implemented; nodes with higher energy are more likely to
become CHs, but there is a penalty for being chosen too often.
the number of rounds a node has served as a CH is tracked by
the penalty counter, which increases with each selection.
Each node is assigned tokens based on its energy capacity. A
node must spend tokens to become a CH, which prevents
energy-rich nodes from being selected too frequently. Nodes
with zero tokens are skipped in the CH selection process until
they accumulate more tokens after serving as non-CHs.
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Once routes are established in either mode, the data
transmission process continues (fig.1), with nodes forwarding
data towards the sink. After each data round or at regular
intervals, the MSF is recalculated to determine if the network
should stay in the current mode (proactive or reactive) or switch
to the other mode. The residual energy of all nodes is updated
after each transmission, and the CH role is rotated based on the
energy status and the token system (algorithm 1).

Algorithm 1: HH-NMSFRA Algorithm

Input:

N nodes deployed in area A

Initial energy E, for normal, advanced, and super nodes

Base Station location (Xss, Yos)
Output:

Efficient multi-hop data delivery and prolonged network lifetime
1: Initialize network parameters and node energy levels
2: Classify nodes into normal, advanced, and super types based on
heterogeneity
3: for each round r do
4:  Compute average residual energy Eaq of all nodes
5: for each node i do
6: if node i is eligible to become Cluster Head (CH) then
7 Calculate CH probability:

PCH(i) = Popt X (Eresidual(i) / Eavg)

8: Generate random number rand € [0,1]
9: if rand < Threshold(i) then
10: Assign node i as Cluster Head
end if
end if
end for

11: Form clusters: assign each non-CH node to nearest CH
12: foreach CHjdo
13: Select next-hop node with:
- Higher residual energy
- Lower distance to BS
- Minimum forwarding cost
14: Transmit aggregated data using multi-hop path
end for
15: Update energy levels using radio energy model:
Erx Erx, and aggregation costs
16: Remove dead nodes (Eresigual < 0)
17: end for

Notes:
- Popt is the optimal CH probability.
- Threshold(i) is the standard threshold function used in
LEACH-like protocols.
- Forwarding cost includes both distance and inverse
residual energy (weighted).

Nodes join clusters based on the intensity of the received
signal and the expected link stability after the CHs have been
chosen. Depending on the node density and mobility conditions,
CHs combine data from member nodes and send it to the base
station via single-hop or multi-hop transmission. Routing tables
are kept up to date with energy and link-quality indicators on a
regular basis when in proactive mode. Reactive mode favors
stable and energy-rich relay nodes by employing a lightweight
request-response mechanism to find routes on-demand.

Data transmission, reception, sensing, and data aggregation
are the main processes of wireless sensor networks that use
energy. We utilize the radio model [4], which is popular in
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WSN simulations because of its ease of use and efficiency in
capturing communication energy costs, to assess the efficacy of
the suggested HH-NMSFRA protocol. By giving distinct
beginning energy levels to different node kinds (such as normal,
advanced, and super nodes), the energy model takes into
consideration the heterogeneity of nodes. In a three-level
heterogeneous wireless sensor network (HWSN), sensor nodes
are often categorized into normal, advanced, and super nodes
based on their energy capacities. Normal nodes have the lowest
initial energy, advanced nodes possess moderately higher
energy, and super nodes are equipped with significantly more
energy than these other two types. This heterogeneity helps to
balance energy consumption, enhance scalability, and extend
network lifetime. Protocols designed for HWSNs typically
leverage this energy variation to optimize clustering, routing,
and data transmission strategies.

According to the radio model, the energy required to transmit
a I-bit message over a distance d is given by:

L Egee + L€ d?, d < d,

3
L Egiec + L. €y d*, d = d, 3)

Erx(l,d) = {

where E;x (1, d) is energy consumed in transmitting [ bits over
a distance d, E,;,. is energy dissipated to run the transmitter or
receiver circuitry, €, is freespace model amplification energy,
Emp 1S multipath fading model amplification energy, d, =

J Efs/E€mp represents the threshold distance.

The energy required to receive an I-bit message is:

Epx (D) = L. Egiec

Before sending the data to the base station, cluster heads
aggregate them. The following model represents the energy
usage for the data aggregation:

Eps(D) = LEp, 4

where Epa is the energy required for data aggregation per bit.
In the proposed HH-NMSFRA protocol, three types of nodes
are considered, according to their initial energies:
- normal nodes that have the baseline initial energy E,,
- advanced nodes that have (1 + a). E, (where o>0),
- super nodes with 1 + B).E, (where p>a).

The total initial energy of the network is given by:
Eiptat = N.Eg.[1—-m—=b)+m.(1+a)+b.(1+B)] (5

where N is total number of sensor nodes, E, is initial energy of
a normal node, m is fraction of advanced nodes, a is energy
factor for advanced nodes (e.g., a=0.5 means 50% more
energy), b is fraction of super nodes, B is energy factor for super
nodes (e.g., B=1 means 100% more energy).
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Normal Nodes: E (1 —m — b)

Advanced Nodes: mE,(1 + a)

Super Nodes: bE,(1 + )

This heterogeneity-aware energy model ensures fair energy
distribution and supports energy-aware cluster head selection in
HH-NMSFRA.

The HH-NMSFRA architecture combines a heterogeneity-
aware framework with a hybrid routing protocol design, which
is optimized for effective data transfer and longer network
lifetime in Wireless Sensor Networks (WSNs). Four functional
layers make up the basic architecture:

A. The Network Initialisation Layer

Node Deployment: Sensor nodes are uniformly or randomly
placed throughout the sensing region. They can be homogenous
or heterogeneous in terms of energy and processing capacity.

Energy Profiling: Based on their initial energy levels, nodes
are categorized into various tiers (such as normal, advanced,
and super nodes).

Neighborhood Discovery: To create neighborhood tables and
find potential cluster heads (CHs) in the vicinity, nodes
exchange Hello packets.

B. The Hybrid Clustering and Role Assignment Layer

Heterogeneity-Aware Cluster Formation: Cluster heads are
elected using a weighted probabilistic model that accounts for
residual energy, node type (heterogeneity level), and proximity
to the base station. A reinforcement learning mechanism (e.g.,
Q-learning) assists in learning the optimal CHs over time.

Hybrid Role Delegation: combines proactive clustering (for
stable high-energy nodes) and reactive role switching (based on
energy thresholds) and implements load-aware CH rotation to
prevent premature node death.

C. Multi-hop Route Construction Layer

Swarm-Based Routing: inspired by swarm intelligence (e.g.,
PSO or ACO), nodes collaboratively select energy-efficient
multi-hop paths toward the sink. Fault-tolerance is integrated
using neural-inspired feedback to dynamically reroute in case
of node failure. Hybrid Path Selection uses both link quality
metrics and node-level context (e.g., buffer size, queue delay)
for path selection and incorporates threshold-based fallback to
ensure reliability under congestion or high load.

D. Data Transmission and Maintenance Layer

Load-Balanced Data Forwarding: traffic is distributed based
on node energy levels and congestion status to ensure fair usage
of network resources.

Periodic Maintenance: network health is monitored, and
routing tables are updated periodically. Isolated or energy-
depleted nodes are retired gracefully from routing roles.

Energy and Performance Logging: each node maintains
lightweight logs of transmission success, residual energy, and
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participation in clustering/routing to assist in future decision-
making.

The HH-NMSFRA protocol is designed for a heterogeneous
wireless sensor network (WSN) environment, where nodes
possess different energy capacities and computational
capabilities. The system model is composed of the following
elements:

The network deployment model: assumes a two-dimensional
area where a fixed number of sensor nodes are randomly and
uniformly distributed. The nodes may have heterogeneous
energy levels and are capable of limited mobility. A centralized
Base Station (BS) is located either inside or outside the sensing
field. Nodes communicate using multi-hop transmission, and
the deployment model is designed to support dynamic topology
changes, enabling the protocol to adapt efficiently to node
movement and maintain reliable routing and energy balance
throughout the network. The network deployment also assumes
that nodes are aware of their location, either through GPS or
localization algorithms, and are capable of adjusting their
transmission range. This flexible, mobility-aware deployment
strategy ensures the protocol to adapt to varying node densities,
energy distributions, and environmental conditions, ultimately
enhancing both scalability and longevity of the WSN.

The clustering model: follows a multi-step process designed
for efficiency and adaptability in mobile, heterogeneous WSNSs:

- Initial Node Assessment: Each node evaluates its status
based on residual energy, mobility factor, neighbor
density, and distance to the base station (BS).

- Candidate CH Selection: Using a swarm intelligence
algorithm (e.g., PSO), a pool of potential cluster heads
(CHs) is selected by optimizing a fitness function
combining energy, centrality, and stability metrics.

- Reinforcement Learning Evaluation: Each candidate node
identified in the previous step uses a lightweight
reinforcement learning (RL) agent to assess its own long-
term suitability as a Cluster Head (CH). The agent
interacts with its environment (i.e.,, the network
conditions), using state inputs such as residual energy,
mobility status, and connectivity quality. It receives
rewards based on outcomes like successful data
aggregation, minimal energy consumption, and
communication stability. Over time, the agent learns an
optimal policy to decide whether the node should accept
or reject the CH role, improving CH selection
adaptiveness and reliability in dynamic WSN conditions.

- Final CH Election: Nodes with the highest combined
scores (from PSO and RL decisions) are elected as CHs.

- Cluster Formation: Non-CH nodes join the nearest or
most suitable CH based on signal strength and energy
cost. This forms dynamic, balanced clusters.

- Mobility Adaptation: Periodically or upon significant
movement, clusters are re-evaluated. Nodes that move
beyond a threshold trigger a local re-clustering event to
maintain performance.
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- Multi-hop CH Communication: CHs forward aggregated
data to the BS via other CHs, selecting optimal paths.

This hybrid model ensures not only energy efficiency but also
adaptability to mobility and heterogeneity in the WSN
environment.

The CH selection process in HH-NMSFRA is designed to
maximize energy efficiency and network lifetime by
considering node heterogeneity, energy levels, and spatial
factors. It combines probabilistic weighting, heterogeneity-
awareness, and optionally, reinforcement learning (RL) for
adaptive optimization. Each node calculates a weighted
probability P; of becoming a cluster head based on its initial and
residual energy:

_ Ei®)
Pi - Popt Eavg(t) Wi (6)

where P,,, is optimal probability of CH election, E;(t) is
residual energy of nodes iat round t, E,,4(t) is average
residual energy of the network at round t, w; is weight factor
based on node heterogeneity. In Proactive Election, high-
energy (super or advanced) nodes with strong connectivity are
proactively favored for CH roles. In Reactive Rotation, nodes
that have recently served as CHs reduce their CH probability in
subsequent rounds to prevent early depletion. Nodes use a
threshold function, T'(i) to determine CH candidacy:

Py
. . 1
T@) =41~ P,(t mod Pi)
0 otherwise

ifieG
if i )

where t is current round number, G is set of nodes not elected
as CHs in the past % rounds.
L

A lightweight Q-learning model is optionally integrated for
optimizing CH selection over time, reducing redundant
transmissions and handling dynamic energy-aware decisions.
Each node maintains a Q-table with state-action pairs, where
states represent energy and neighborhood quality, and actions
correspond to the role selections (CH, relay, idle).

States: Residual energy level, number of neighbors, CH role
history

Actions: Become CH, remain normal node

Reward: Based on energy efficiency, lifetime contribution, and
load balancing

Each node updates its Q-values using:

Q(s,a):=Q(s,a) + a[R + YmaxQ(s',a") — Q(s,a)] (8)

where Q(s, a) is estimated utility (Q-value) of taking action a
in state s, a is learning rate (0 < a < 1), controlling how much
new information overrides old, R is immediate reward received
after taking action o, y is discount factor (0 <Y < 1), reflecting
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the importance of future rewards, s’ is next state after action,
and maxQ(s’, a") is maximum expected future reward from
next state. This equation allows each sensor node to iteratively
learn which actions (e.g., becoming or not becoming a cluster
head) yield the best long-term performance based on the
changing network environment. This allows nodes to learn the
optimal frequency of CH selection and avoid overusing high-
energy nodes.

IV. SIMULATION SETUP AND PERFORMANCE EVALUATION

This section presents the simulation setup and performance
evaluation of HH-NMSFRA in comparison to some existing
state-of-the-art protocols. To validate the performance of the
proposed Hybrid Heterogeneity-aware NMSFRA (HH-
NMSFRA) protocol, simulations were conducted using
MATLAB. The simulation environment replicates a realistic
mobile wireless sensor network with heterogeneous energy
levels and node mobility patterns. The key parameters used in
the simulation are summarized in Table I.

TABLE I
SIMULATION PARAMETERS
Parameter Value
Simulation Area 100 m x 100 m
Number of Nodes (N) 100

Base Station Location

Center of the field

Node Types Normal, Advanced, Super
Initial Energy (Normal) 0.5J
Initial Energy (Advanced) 1.0J
Initial Energy (Super) 151
Percentage of Advanced 30%
Nodes

Percentage of Super Nodes 10%
Communication Range 25m

Data Packet Size 4000 bits

Control Packet Size 100 bits

Node Mobility Model

Random Waypoint

Maximum Speed

2m/s

Simulation Duration

Until last node dies (LND)

Transmission/Reception

50 nJ/bit
Energy
Data Aggregation Energy 5 nJ/bit/signal
Free Space/Multipath 87 m

Threshold

Threshold Tswitcn

0.35 (tuned experimentally)

Key parameters, including network area, node density, initial
energy levels, heterogeneity proportions, radio energy model,
packet size, and base-station placement, were chosen to reflect
typical WSN deployment scenarios and to stress the energy
management capabilities of routing protocols. For statistical
robustness, each experiment was repeated for multiple
independent runs and average values (with standard deviation)
are reported. A sensitivity analysis was conducted for critical
parameters (node density, base-station distance, and

heterogeneity ratio) to demonstrate that the observed
performance improvements of HH-NMSFRA are consistent
across realistic operating conditions.

The proposed HH-NMSFRA protocol is evaluated against
existing routing protocols, including M-LEACH, EDEEC and
the baseline NMSFRA, using the following performance
metrics:

e Network Lifetime (NL) is measured as the number of
rounds until the first node dies (FND), half of the nodes die
(HND), and the last node dies (LND).

o Stability Period is duration from network initialization to
the first node death.

e Residual Energy is the total remaining energy of the
network after a given number of rounds.

e Packet Delivery Ratio (PDR) represents the ratio of the
number of packets successfully delivered to the base station
to the total number of packets sent.

e Throughput is the total amount of data (in bits) received at
the base station.

o Cluster Head Selection Fairness is the number of times each
node serves as a CH to assess load balancing.

¢ Routing Overhead is the ratio of control packets to data
packets delivered, particularly significant in reactive mode.

A. Evaluation Strategy

Baseline Comparison: HH-NMSFRA is compared with M-
LEACH, EDEEC and standard NMSFRA under identical
mobility and energy settings.

Mode Switching Analysis: The hybrid mode-switching
mechanism is tested by varying node mobility to observe the
impact of switching between proactive and reactive routing.

Heterogeneity Impact: The effect of node heterogeneity on
energy consumption and CH distribution is evaluated by
varying the ratio and energy of advanced/super nodes.

Mobility Sensitivity: The simulation is repeated with varying
node speeds (from 0 to 3 m/s) to evaluate robustness under
different mobility levels.

B. Results and Discussion

This section presents and analyzes the simulation results
obtained for the proposed Hybrid Heterogeneity-Aware
NMSFRA (HH-NMSFRA) protocol. The performance of HH-
NMSFRA is compared with three benchmark protocols: M-
LEACH, EDEEC and the baseline NMSFRA. The evaluation
focuses on network lifetime, energy efficiency, packet delivery,
and robustness under mobility.

Figure 2 illustrates the number of alive nodes over simulation
rounds. HH-NMSFRA significantly outperforms the
benchmark protocols in terms of First Node Death (FND), Half
Node Death (HND), and Last Node Death (LND). FND occurs
around round 780 in HH-NMSFRA, compared to 620 in
NMSFRA, 570 in M-LEACH, and 450 in LEACH. LND is
observed at round 1620 in HH-NMSFRA, while it occurs at
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Alive Nodes vs Simulation Rounds
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Fig. 2. Number of alive nodes over the simulation rounds

1310, 1170, and 940 for NMSFRA, M-LEACH, and LEACH
respectively. The extended stability and lifetime are attributed
to the hybrid routing mechanism and energy-aware CH rotation.
The token system prevents overuse of high-energy nodes,
ensuring balanced energy depletion. Figure 3 shows the
network lifetime metrics.

Comparison of network lifetime metrics
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u FND (Rounds) HND (Rounds) LND (Rounds)

Fig. 3. Comparison of the network lifetime metrics

HH-NMSFRA shows a smoother energy dissipation curve,
indicating effective load distribution. NMSFRA depletes
energy faster due to less dynamic CH selection and lack of
heterogeneity awareness. The heterogeneity-aware clustering
and adaptive mode switching help conserve energy, especially
under moderate to high mobility conditions. The token-based
load balancing prevents premature energy exhaustion in
advanced and super nodes. Figure 4 presents the average
residual energy over time. HH-NMSFRA maintains higher
energy reserves throughout the simulation.

Table Il compares the PDR across all protocols. HH-
NMSFRA achieves an average PDR of 96.3%, while
NMSFRA, M-LEACH, and EDEEC reach 91.7%, 82.1%, and
88.4%, respectively. The use of reactive routing during high
mobility enhances reliability by establishing routes based on
current topology. In stable phases, proactive routing reduces
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delays and ensures consistent delivery. The switch between
modes contributes to overall reliability.

Residual Energy over Simulation Rounds
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Fig. 4. Residual energy over rounds

TABLE Il
COMPARISON OF PDR ACROSS PROTOCOLS.
PrRoOTOCOL PDR (%)
HH-NMSFRA 96.3
M-LEACH 82.1
EDEEC 88.4
NMSFRA 91.7
Table 111 illustrates the fairness in CH selection. In HH-

NMSFRA, CH roles are distributed more evenly due to the
token mechanism and energy-weighted selection. M-LEACH
often favor nodes randomly, causing early deaths in certain
regions. Heterogeneity-aware rotation ensures energy-rich
nodes contribute more, but not excessively. This preserves
fairness while maximizing network performance.

TABLE IlI
FAIRNESS IN CH SELECTION
CH LOAD
PrRoOTOCOL DISTRIBUTION BALANCING REMARKS
UNIFORMITY EFFICIENCY
DyNnAMIC CH
HH- HiGH EXCELLENT SELECTION WITH
NMSFRA
LOAD-AWARENESS
M-LEACH Low POOR Random CHs lead to
imbalance
Energy-aware but
EDEEC MODERATE FAIR lacks node
distribution control
Swarm-intelligent
NMSFRA Gooo Gooo routing without RL

In simulations with increasing node mobility (0 to 3 m/s),
HH-NMSFRA consistently maintains superior performance.
NMSFRA and M-LEACH degrade significantly under high
mobility due to their static routing assumptions. The Mobility
Switching Function (MSF) allows HH-NMSFRA to switch
routing strategies based on real-time conditions, maintaining
route reliability and minimizing control overhead. HH-
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NMSFRA incurs slightly higher control overhead during high
mobility due to reactive route discovery. However, this is
compensated by improved PDR and throughput. Table IV
illustrates different metrics compared between different routing
protocols.

TABLE IV
COMPARISON OF DIFFERENT METRICS
HH-
METRIC NMSFRA NMSFRA EDEEC M-LEACH
STABILITY
PERIOD 1450 1230 980 720
(ROUNDS)
PAC'EE; STO 28000 24500 21000 17000
SCALABILITY HIGH MODERATE MODERATE Low
MosiLiTy YES YES LIMITED No
SUPPORT

The performance evaluation considers EDEEC, a single-hop
heterogeneous routing protocol, alongside two multi-hop
protocols, M-LEACH and NMSFRA, to provide a fair and
comprehensive comparison. The inclusion of EDEEC
highlights the advantages of multi-hop communication over
traditional single-hop cluster-based schemes, while M-LEACH
and NMSFRA serve as appropriate baselines for evaluating the
enhancements introduced in multi-hop scenarios. The superior
performance of the proposed HH-NMSFRA protocol
demonstrates the effectiveness of its reinforcement learning-
based cluster head selection, swarm intelligence-driven route
optimization, and heterogeneity-aware load balancing
strategies in improving energy efficiency and prolonging
network lifetime.

V. CONCLUSION

This paper introduced HH-NMSFRA, a novel hybrid routing
protocol designed to address the key challenges in
Heterogenous  Wireless Sensor  Networks (HWSNS),
particularly those related to energy efficiency, scalability, and
fault tolerance. By integrating swarm intelligence techniques
for optimal route selection, reinforcement learning for adaptive
cluster head election, and a heterogeneity-aware load balancing
mechanism. Simulation results show that HH-NMSFRA
effectively prolongs network lifetime and enhances data
delivery reliability. The proposed protocol also incorporates
dynamic multi-hop communication to mitigate the energy
burden on critical nodes and adapt to the varying topologies
commonly found in WSN deployments. Extensive simulations
and comparative analysis with established protocols such as M-
LEACH, EDEEC and the baseline NMSFRA demonstrate the
superiority of HH-NMSFRA in terms of residual energy
preservation, number of alive nodes, packet delivery ratio, and
overall throughput. The results confirm that the integration of
intelligent learning and energy-aware clustering mechanisms
can significantly enhance network performance under dynamic
and heterogeneous scenarios. Future work will explore the

463

deployment of HH-NMSFRA in real-time 10T applications and
extend the model to incorporate mobile sink strategies, security
enhancements, and intelligent data aggregation for even greater
scalability and robustness.
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