
Binary Tuna Swarm Optimization Algorithm-Based
Feature Selection for Intrusion Detection Systems

Abdelouaheb Khiar, Smaine Mazouzi, Rohallah Benaboud, and Hichem Haouassi

Abstract—Feature selection is crucial for improving intrusion
detection systems by addressing the curse of dimensionality and
eliminating irrelevant features. However, applying continuous
metaheuristics—such as the Tuna Swarm Optimization (TSO)
algorithm—to this inherently binary problem requires effective
binarization strategies. This paper presents TUNA-FS, a novel
feature selection framework that employs a binary variant
of the TSO algorithm. The proposed method introduces an
adaptive V-shaped transfer function that dynamically manages
the binarization process, maintaining a balance between explo-
ration and exploitation throughout the search. Additionally, a
multi-objective fitness function is used to jointly optimize key
objectives: enhancing detection accuracy, reducing false alarms,
and minimizing the number of selected features. The effectiveness
of the approach is validated through comprehensive experiments
on the NSL-KDD and CIC-IDS2017 benchmark datasets. Results
demonstrate that the method achieves substantial feature reduc-
tion while maintaining high detection performance across multi-
ple classifiers, including support vector machines, decision trees,
random forests, and k-nearest neighbors. Comparative analysis
against state-of-the-art methods confirms the competitiveness and
balanced performance of the proposed framework, positioning
it as an effective technique for enhancing intrusion detection
efficiency and accuracy.

Index Terms—Feature Selection, Binary Tuna Swarm Opti-
mization, Intrusion Detection System, Adaptive Transfer Func-
tion, Multi-objective Optimization, Network Security.

I. INTRODUCTION

In today’s interconnected digital landscape, cybersecurity
threats have reached unprecedented levels, with global cyber-
crime costs projected to exceed $10.5 trillion annually by
2025 [1]. Intrusion Detection Systems (IDS) have become
indispensable tools for safeguarding network infrastructures.
These systems play a critical role in identifying and mitigating
malicious activities, ensuring the integrity, confidentiality, and
availability of sensitive data [2].

Intrusion Detection Systems are broadly categorized into
tow types: signature based and anomaly-based approaches.

Manuscript received June 4, 2025; revised June 27, 2025. Date of publica-
tion September 30, 2025. Date of current version September 30, 2025. The
associate editor prof. Hrvoje Karna has been coordinating the review of this
manuscript and approved it for publication.

A. Khiar is with the Department of Mathematics and Computer Sci-
ence, University of Oum El Bouaghi, Oum El Bouaghi, Algeria and
ICOSI Laboratory, Abbes Laghrour University, Khenchela, Algeria (email:
khiar abdelouaheb@univ-khenchela.dz).

S. Mazouzi is with the LICUS Laboratory, University of Skikda, Skikda,
Algeria (e-mail: s.mazouzi@univ-skikda.dz).

R. Benaboud is with the ReLa(CS)2 Laboratory, University of Oum El
Bouaghi, Oum El Bouaghi, Algeria (e-mail: benaboud.rohallah@univ-oeb.dz).

H. Haouassi is with the ICOSI Laboratory, Abbes Laghrour University,
Khenchela, Algeria (e-mail: haouassi.hichem@univ-khenchela.dz).

Digital Object Identifier (DOI): 10.24138/jcomss-2025-0083

Signature-based, also known as misuse detection, relies on
predefined patterns or signatures of known attacks. While
highly effective at detecting well-documented threats, this
approach is inherently limited in its ability to identify zero-
day attacks or polymorphic malware, which do not match
existing signatures [3]. Furthermore, signature-based systems
require frequent updates to their rule sets, often necessitating
manual intervention by security experts, which can be both
time-consuming and resource-intensive [4].

In contrast, anomaly-based systems leverage statistical anal-
ysis and machine learning to detect deviations from normal
network behavior, enabling the identification of zero-day at-
tacks [5]. Despite their advantages, anomaly-based systems
face significant challenges, including high false-positive rates
when distinguishing between legitimate traffic variations and
actual threats [6], effectiveness heavily dependent on training
feature quality, and increasing complexity due to exponential
growth in network traffic from IoT devices, cloud computing,
and big data applications [4].

The ”curse of dimensionality” presents a particular chal-
lenge, as network traffic data contains numerous fea-
tures—from basic connection details to complex met-
rics—many of which are redundant or irrelevant [2]. Feature
selection (FS) has emerged as a key strategy to address these
issues by identifying the most relevant attributes, thereby
improving detection accuracy, computational efficiency, and
model interpretability [2].

Feature selection plays a pivotal role in the development
of efficient and accurate IDS. In real-world network traffic
datasets, the presence of a large number of features—many of
which may be irrelevant or redundant—can hinder the perfor-
mance of machine learning models. These high-dimensional
datasets not only increase computational cost but also in-
troduce noise, leading to overfitting and degraded detection
accuracy. Therefore, identifying a minimal yet informative
subset of features is essential to reduce complexity while
maintaining or improving the system’s detection capability.

Given the combinatorial nature of feature selection, tradi-
tional exhaustive search methods are computationally infea-
sible, especially for large datasets. As a result, metaheuris-
tic optimization techniques have gained significant attention.
These algorithms aim to efficiently explore the search space
of feature subsets to find near-optimal solutions. Popular
metaheuristics such as Genetic Algorithms, Particle Swarm
Optimization (PSO), Ant Colony Optimization, and their many
variants have been successfully applied to feature selection
tasks [7]–[9]. Their ability to balance exploration and ex-

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025 383

1845-6421/12/2025-0083 © 2025 CCIS

ploitation makes them particularly suitable for navigating the
complex and high-dimensional feature spaces encountered in
intrusion detection applications.

Inspired by the collective foraging behaviour of tuna, the
TSO algorithm has emerged as a powerful metaheuristic for
FS in intrusion detection. Its global search capabilities and
adaptability to high-dimensional optimization problems make
it particularly suited for addressing modern cybersecurity
challenges [10]–[12]. Recent studies highlight TSO’s ability
to balance exploration and exploitation, enabling efficient FS
while maintaining detection accuracy [13].

A fundamental limitation in applying continuous optimiza-
tion algorithms like TSO to feature selection —a binary
decision problem— lies in the ineffective exploration of dis-
crete search spaces. Conventional binarization methods, such
as fixed thresholding [14], [15], force continuous solutions
into binary formats, often resulting in premature convergence
or suboptimal feature subsets. Our Binary TSO (BTSO)
algorithm introduces enhanced transfer functions that adapt
dynamically to the binarization process based on the TSO
evolution to address this limitation.

Furthermore, a critical aspect of feature selection in intru-
sion detection is the definition of the fitness function, which
guides the optimization process by evaluating the quality of
feature subsets. The fitness function must balance multiple
objectives, such as maximizing detection accuracy and mini-
mizing the number of selected features [16], [17].

This paper presents a new feature selection framework
for intrusion detection, based on a binary version of the
Tuna Swarm Optimization algorithm. The proposed method
efficiently explores high-dimensional search spaces to iden-
tify compact, relevant feature subsets that improve detection
performance. The key contributions include:

• A novel Binary Tuna Swarm Optimization algorithm
with an adaptive V-shaped transfer function for effective
feature selection in IDS.

• A dynamic binarization strategy that balances exploration
and exploitation during optimization.

• A multi-objective fitness function optimizing detection
accuracy, false alarm rate, and feature sparsity.

• Comprehensive validation on NSL-KDD [18] and CIC-
IDS2017 [19] datasets, demonstrating superior perfor-
mance over state-of-the-art methods.

The remainder of the paper is structured as follows: Sec-
tion II reviews related work, Section III details the TSO
algorithm, and Section IV introduces the proposed BTSO-
based feature selection methodology and TUNA-FS frame-
work. Experimental results and discussions are presented in
Section V, and conclusions and future directions are given in
Section VI.

II. RELATED WORKS

Feature selection is a critical preprocessing step in de-
veloping high-performance IDS, particularly in environments
characterized by high-dimensional, noisy, and redundant net-
work traffic data. Effective FS enhances detection accu-
racy, reduces false positives, and lowers computational over-
head—making IDS models more suitable for real-time and

resource-constrained environments. This section reviews the
evolution of FS techniques, including conventional methods,
metaheuristic algorithms, hybrid models, and recent applica-
tions of TSO.

Traditional feature selection techniques are generally cate-
gorized into filter, wrapper, and embedded methods, each of-
fering distinct advantages and trade-offs. Filter-based methods
select features by applying statistical criteria independently of
the learning algorithm, which allows for fast execution and
good scalability [20]. However, they may overlook feature
interactions essential for detecting complex or stealthy attacks.
For instance, Information Gain (IG) has been widely adopted
for its computational efficiency. Mazighi et al. [21] applied IG
on the CICIDS-2017 dataset, achieving 93.4% accuracy with
19 selected features, though the false positive rate remained
high at 12%. Thaseen et al. [22] used Chi-squared filtering
on the NSL-KDD dataset, achieving a notable 99.23% accu-
racy. Similarly, Thockchom et al. [23] used correlation-based
filtering on UNSW-NB15 to select 18 features, resulting in
99.2% accuracy. Rahman et al. [24] conducted an exploratory
study on the impact of filter-based FS for malware detection
using simple classifiers, showing that optimized feature subsets
improve both efficiency and accuracy. Another study [25] ap-
plied IG, Pearson correlation, and ANOVA F-test on KDD99,
UNSW-NB15, and CICIDS-2017 datasets, further confirming
the effectiveness of filter-based FS.

Wrapper methods evaluate the quality of feature subsets
using a predictive model, often leading to higher accuracy but
at greater computational cost due to repeated model training
[26]. Lee et al. [27] applied sequential forward selection with
a random forest classifier, achieving 99.89% accuracy and a
4% false alarm rate using only 10 features. Yin et al. [28]
used recursive feature elimination on UNSW-NB15, selecting
23 features and improving classification accuracy to 84.24%,
though at the expense of increased computational time.

Embedded methods, in contrast, perform FS during model
training, balancing between performance and computational
efficiency. These techniques are model-dependent but offer
good generalization [17]. Karthick Kumar et al. [29] used
LASSO and ridge regression for FS in the context of botnet
detection on UNSW-NB15, leveraging regularization for auto-
matic feature pruning. Mohamed Yusof et al. [30] developed
a hybrid filter-wrapper model using Bayesian networks on
NSL-KDD, achieving detection rates between 86% and 100%,
depending on the attack category. Although these conventional
FS methods are widely applied, they struggle to scale in
modern network environments characterized by high data
volumes and dynamic behavior due to IoT, cloud computing,
and 5G technologies.

To address the scalability and search-space limitations of
traditional FS methods, metaheuristic algorithms have gained
popularity for their global search capabilities and adaptability
[9]. These algorithms mimic natural or physical processes
to explore large solution spaces effectively. Alazzam et al.
[31] applied the binary pigeon-inspired optimizer, reducing the
feature set to five features while maintaining a true positive
rate of 97.14%, although the false positive rate remained
high at 14.95%. Saeed and Jameel [32] employed PSO for

384 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

DDoS detection, selecting 19 features and achieving 99.52%
accuracy when combined with decision trees. Although PSO
converges quickly, it may suffer from premature convergence.
Selvakumar and Muneeswaran [33] proposed a hybrid FS ap-
proach combining mutual information filtering and the firefly
algorithm, selecting 10 features and achieving high accuracy
with C4.5 and Bayesian classifiers. Mazini et al. [34] utilized
the artificial bee colony algorithm combined with AdaBoost
to attain 98.9% accuracy and a 99.61% detection rate on
the NSL-KDD and ISCXIDS2012 datasets. Almomani [9]
provided a comparative evaluation of PSO, genetic algorithms,
grey wolf optimizer, and the firefly algorithm, showing that
genetic algorithms offered the highest true positive rate, while
PSO achieved the best overall accuracy. However, all methods
exhibited trade-offs in convergence speed, diversity preserva-
tion, and scalability.

Among recent advances, the Tuna Swarm Optimization
algorithm has emerged as a bio-inspired metaheuristic modeled
on the spiral and random foraging behaviors of tuna fish. TSO
effectively balances exploration and exploitation, making it
suitable for challenging optimization tasks like FS. Harwalkar
et al. [12] applied TSO for feature selection in an IoT-based
IDS, integrating it with LSTM networks, and achieved 99.98%
accuracy on NSL-KDD. Gowthami and Priscila [11] used TSO
with deep neural networks on the CICIDS-2017 dataset and
reported 99.5% accuracy with a reduced feature set. Qin et al.
[13] proposed a modified version of TSO to optimize decision
tree parameters for software-defined networking scenarios,
significantly improving classification accuracy and reducing
detection latency.

The current review highlights a wide range of feature selec-
tion approaches applied to IDS. Among them, TSO demon-
strates strong potential due to its dynamic search behavior and
adaptability. However, its binarization for FS problems and
its integration into multi-objective frameworks remain under-
explored. Addressing these challenges represents a promising
direction for developing more effective, scalable, and adaptive
intrusion detection systems and forms the core motivation for
the present research.

III. TUNA SWARM OPTIMIZATION ALGORITHM (TSO)

Tuna swarm optimization algorithm is a metaheuristic al-
gorithm inspired by tuna foraging behavior [10]. It mimics
cooperative hunting, balancing exploration and exploitation,
suitable for high-dimensional optimization [12]. TSO is based
on two main hunting patterns: spiral foraging (forming spirals
to drive prey) and parabolic foraging (encircling prey in a
parabolic formation). The effectiveness of TSO is demon-
strated in various domains, including feature selection for IDS
[13]. Its simplicity makes it a competitive metaheuristic.

A. Mathematical Formulation

1) Initialization: The algorithm initializes NP tuna indi-
viduals (Xi) randomly within bounds (lb, ub):

Xi = rand · (ub− lb) + lb, i = 1, 2, ..., NP (1)

2) Spiral Foraging: Positions are updated based on spiral
movement towards the best (Xbest) or a random tuna (Xrand):

Xt+1
i ={
α1 · (Xt

rand + β · |Xt
rand −Xt

i |) + α2 ·Xt
i , i = 1

α1 · (Xt
rand + β · |Xt

rand −Xt
i |) + α2 ·Xt

i−1, i > 1

if rand <
t

tmax
(2)

Xt+1
i ={
α1 · (Xt

best + β · |Xt
best −Xt

i |) + α2 ·Xt
i , i = 1

α1 · (Xt
best + β · |Xt

best −Xt
i |) + α2 ·Xt

i−1, i > 1

if rand ≥ t

tmax
(3)

Weight coefficients α1, α2 and spiral parameter β are calcu-
lated dynamically:

α1 = a+ (1− a)
t

tmax
(4)

α2 = (1− a)− (1− a)
t

tmax
(5)

β = ebl cos(2πb) (6)

l = e3 cos(((tmax+1/t)−1)π) (7)

where b is a random number uniformly distributed between 0
and 1.

3) Parabolic Foraging: Tunas follow a parabolic path to-
wards Xbest:

Xt+1
i =

Xt
best + rand · (Xt

best −Xt
i)

+ TP · p2 · (Xt
best −Xt

i),
if rand < 0.5

Xt
best + TP · p2 ·Xt

i , if rand ≥ 0.5

(8)

where TP ∈ {−1, 1} and path parameter p is:

p = (1− t

tmax
)(t/tmax) (9)

B. Algorithmic Procedure

The TSO process is outlined in Algorithm 1.
TSO uses two parameters: a controls the balance between

exploration/exploitation via α1, α2; z controls the probability
of random re-initialization versus foraging. Empirical studies
suggest a = 0.7 and z = 0.05 are often optimal [10]. TSO’s
robustness and efficiency have been validated [10], [12], [13],
establishing it as competitive for complex tasks like FS.

IV. TUNA-FS FRAMEWORK

This section details our proposed framework, TUNA-FS,
which is designed to be highly practical and applicable in
real-world scenarios. TUNA-FS is an adaptation of the TSO
algorithm that specifically addresses the challenges of feature
selection in intrusion detection. We first introduce our Binary

A. KHIAR et al.: BINARY TUNA SWARM OPTIMIZATION ALGORITHM-BASED FEATURE SELECTION 385

Algorithm 1 Tuna Swarm Optimization (TSO)

1: Initialize population Xi (i = 1..N) randomly.
2: Set parameters a, z.
3: while termination criterion not met do
4: Calculate fitness for each tuna.
5: Update Xbest position and value.
6: for each tuna do
7: Update α1, α2, p using Eqs. (4), (5), (9).
8: if rand < z then ▷ Random initialization
9: Update position using Eq. (1).

10: else ▷ Foraging
11: if rand < 0.5 then ▷ Spiral Foraging
12: if t/tmax < rand then
13: Update using Eq. (2)
14: else
15: Update using Eq. (3)
16: end if
17: else ▷ Parabolic Foraging
18: Update using Eq. (8).
19: end if
20: end if
21: end for
22: t = t+ 1.
23: end while
24: return Xbest and f(Xbest).

TSO variant, which features an adaptive V-shaped transfer
function and binarization rule designed to navigate the discrete
search space effectively. Finally, we present the multi-objective
fitness function, a key component of our framework tailored to
meet the conflicting demands of real-world IDS deployment.

A. Binary TSO Algorithm (BTSO)

In a binary problem, solutions must be encoded as binary
vectors where each bit represents whether a feature is selected
(1) or not (0). This binary nature creates a fundamental
challenge when applying continuous-domain algorithms to
discrete search spaces.

The key challenge lies in the movement mechanism of
the original TSO algorithm. While tuna in TSO can move
freely in continuous space using equations (2), (3) and (8) to
update real-valued position, binary optimization requires tuna
to navigate a hypercube where only two values (0 and 1) are
permitted for each dimension. In this discrete landscape, tuna
cannot simply adjust their positions incrementally but must
instead make binary decisions to flip or maintain each bit.

To solve this problem, we used a mechanism to map
real-valued positions to {0,1}. Transfer functions have been
successfully employed to binarize various metaheuristic op-
timization algorithms, including PSO [14], [35], WOA [36],
and GWO [37].

1) Binarization Strategy: Adaptive V-Shaped Transfer
Function: Transfer functions were first introduced by Kennedy
et al. [14] to bridge continuous and binary optimization
spaces. These functions map continuous metaheuristic outputs
to probabilities in [0,1], preserving search dynamics while

−5 0 5
0

0.5

1

x

T
V
(x

)
Pr

ob

(a) Early Phase (τ = 1).
Shallow V-shape increases

exploration.

−5 0 5
0

0.5

1

x

(b) Late Phase (τ = 10).
Steep V-shape enforces exploitation.

Fig. 1. Evolution of the adaptive V-shaped TF TV (x) = | tanh(τ · x)|.

enabling binary solutions. While conventional TF have proven
useful [37]–[39], recent studies demonstrate that adaptive –
time-varying – transfer functions offer superior performance
in avoiding local optima stagnation [40]–[42].

a) Mathematical Formulation: The adaptive V-shaped
TF is:

TV (x
t
i) =

∣∣tanh (τ(t) · xt
i

)∣∣ (10)

where τ(t) controls the slope steepness, evolving over time t:

τ(t) = τmin + (τmax − τmin) ·
(

t

tmax

)
(11)

We set τmin = 1 and τmax = 10. Figure 1 illustrates its
evolution.

b) Binarization Rule: While transfer functions map con-
tinuous values to probabilities, binarization rules determine
how these probabilities are converted to binary solutions.
We propose a decision behavior that preserves exploitation
solution while enabling controlled exploration. The following
rule converts TF probabilities values to binary decisions:

Bx
(t+1)
i =

{
¬Bx

(t)
i if rand < TV (X

t+1
i)

Bx
(t)
i otherwise

(12)

where Bx
(t)
i is the current binary value of the j-th dimension

of tuna i, Xt+1
i is the updated continuous position from TSO,

TV is the adaptive V-shaped transfer function, ¬ is the bit flip
(logical NOT), and rand ∈ [0, 1].

2) Algorithm Integration: The BTSO algorithm integrates
the TSO foraging strategies with the adaptive transfer function
and binarization rule, as shown in Algorithm 2.

The BTSO algorithm (Algorithm 2) maintains the core
behavioral principles of the TSO algorithm but introduces
specialized mechanisms to handle binary solution encoding
and discrete movement patterns.

In terms of computational complexity, TUNA-FS has a time
complexity of approximately O(NP×tmax×C), where NP is
the population size, tmax is the number of iterations, and C is
the cost of evaluating a candidate solution using a classifier.
The binarization process and the adaptive transfer function
introduce negligible computational overhead.

386 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

Algorithm 2 Binary Tuna Swarm Optimization (BTSO)

Require: NP tunas, tmax, a, z, τmin, τmax
Ensure: Optimal binary feature subset BXbest

1: Initialize continuous positions Xi ∈ [−L,L]D and binary
positions BXi.

2: Evaluate initial fitness f(BXi), find BXbest.
3: for t = 1 to tmax do
4: Compute τ(t) using Eq. (11).
5: for each tuna i do
6: Update continuous position Xt+1

i via TSO forag-
ing (Eqs. 2, 3, 8).

7: for each dimension j = 1 to D do
8: Calculate probability Pi = TV (X

t+1
i) using

Eq. (10).
9: Generate binary value BX

(t+1)
i using Eq. (12).

10: end for
11: Evaluate fitness f(BXt+1

i) using Eq. (13).
12: if f(BXt+1

i) is better than f(BXbest) then
13: Update BXbest = BXt+1

i .
14: end if
15: end for
16: end for
17: return BXbest and f(BXbest).

B. FS with Binary TSO for IDS

Our TUNA-FS framework applies the BTSO algorithm to
identify the most relevant feature subset for IDS. The search is
driven by evaluating candidate subsets using a tailored fitness
function described below. The subset yielding the best fitness
upon BTSO convergence is chosen as the optimal set for
training the final IDS classifier.

1) Detection Metrics for Final Evaluation: To evaluate the
final performance of the IDS using the TUNA-FS selected
feature subset, we adopt standard metrics [9]:

• Accuracy: Overall correctness.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: Proportion of predicted intrusions that are
correct.

Precision =
TP

TP + FP

• Detection Rate/Recall: Proportion of actual intrusions
detected.

Recall =
TP

TP + FN

• False Alarm Rate (FAR): False Positive Rate (FP-Rate),
proportion of normal instances misclassified as intrusions.

FAR =
FP

FP + TN

• F1-Score: Harmonic mean of Precision and Recall.

F1− Score = 2× Precision×Recall

Precision+Recall

where TP, TN, FP, and FN are True Positives, True Negatives,
False Positives and False Negatives, respectively.

2) Fitness Function Design: The selection of evaluation
metrics for IDS depends on several key factors: Characteristics
of the dataset, Security Requirements, Operational Context,
and Cost Considerations. In typical network traffic, normal
instances vastly outnumber intrusion attempts. In such sce-
narios, a naive classifier that always predicts ”normal” would
achieve nearly 100% accuracy, despite being utterly useless for
detecting intrusions. On the other hand, the emphasis is often
on minimizing FAR while effectively detecting intrusions. Our
fitness function integrates three core objectives:

• Detection Performance & Balance: Using macro-
averaged F1-Score (F1macro) for robustness to imbalance.

• False Alarm Minimization: Rewarding low FAR using
(1− FAR).

• Feature Sparsity: Encouraging fewer features (|S|) using
(1− |S|/D), where D is the total feature count.

The fitness function to be maximized is:

Max Fitness = ω1 · F1macro + ω2 · (1− FAR)+

ω3 · (1− |S|/D) (13)

where ω1, ω2, ω3 are configurable weights (
∑

ωi = 1) cali-
brated via sensitivity analysis to prioritize objectives.

C. Algorithm complexity

The computational complexity of the BTSO algorithm can
be approximated by analyzing its key components. Let C
be the cost of the objective function, typically dominated
by the classification algorithm used for fitness evaluation.
During initialization, each of the NP tuna agents is assigned a
continuous and a binary position vector of length D, resulting
in a complexity of O(NP · D). In the subsequent step,
the initial fitness of each agent is evaluated, contributing an
additional cost of O(NP · C).

The primary computational load arises from the itera-
tive optimization loop, which executes for tmax iterations.
Within each iteration, the continuous positions of all tuna
agents are updated over D dimensions, incurring a cost of
O(tmax ·NP ·D). After each update, the binarization process
is performed, involving an adaptive transfer function and
thresholding, followed by fitness evaluation for each agent.
These steps also contribute O(D) per tuna per iteration. Across
the population and all iterations, this results in an additional
cost of O(tmax ·NP ·D · C).

Assuming C is constant and dominated by the classifier,
the overall time complexity of BTSO can be approximated
as O(tmax · NP · D), indicating that the algorithm scales
linearly with the number of features, population size, and
iterations—making it computationally efficient for medium-
to large-scale feature selection tasks. This theoretical analysis
is supported by the empirical runtime results reported in
Tables IV and V, which show that TUNA-FS significantly
reduces execution time across multiple classifiers and datasets.

A. KHIAR et al.: BINARY TUNA SWARM OPTIMIZATION ALGORITHM-BASED FEATURE SELECTION 387

V. EXPERIMENTAL SETUP AND DISCUSSION

This section details the experimental validation of the
TUNA-FS framework. We conducted comprehensive experi-
ments on benchmark datasets in a computational environment
with 2x Intel Xeon PLATINUM 8160 @ 2.40GHz, 128GB
RAM, NVIDIA RTX 3500 with 12GB memory, Python 3.9.10,
scikit-learn 1.4. The BTSO algorithm was implemented from
MealPy in Python [43].

A. Datasets

For this study, we utilized two widely recognized datasets
for IDS: NSL-KDD [18] and CIC-2017 [19]. Both datasets
have been extensively used as benchmarks in the cybersecurity
research community for evaluating intrusion detection systems.

B. Evaluation Classifiers

A two-stage classifier approach was used. During the BTSO
optimization phase, feature subset fitness was evaluated using
a Linear Support Vector Classifier (SVC) with L2 regular-
ization for efficiency. To assess the final performance and
generalizability of the feature subsets selected by TUNA-FS,
we employed a panel of diverse classifiers: Random Forest
(RF), k-Nearest Neighbors (k-NN), and Decision Tree (DT).

C. Convergence Analysis and Parameter Sensitivity

The convergence characteristics and parameter sensitivity
of TUNA-FS are examined via the fitness evolution plots in
Figure 2. These compare performance on NSL-KDD (dashed
lines) and CIC-IDS2017 (solid lines) datasets under vary-
ing population sizes (NP, by color) and maximum iterations
(tmax=50, 100, 200 in sub-figures a, b, c).

The convergence plots in Figure 2 confirm that TUNA-
FS effectively improves solutions over time. Examining the
influence of maximum iterations (tmax), a substantial improve-
ment in fitness is evident when increasing from tmax = 50
(Fig. 2 (a)) to tmax = 100 (Fig. 2 (b)). For instance,
top configurations (NP=30/50) on CIC-IDS2017 typically rise
from fitness levels around 0.85-0.87 to approximately 0.92-
0.94. The convergence rate often slows noticeably after 70-80
iterations within the tmax = 100 runs. Further extending the
search to tmax = 200 (Fig. 2 (c)) results in relatively minor
additional fitness gains, with top performance stabilizing near
0.93-0.95 for CIC-IDS2017, highlighting diminishing returns
for iterations beyond 100-150.

Population size plays a significant role in avoiding local
optima and achieving high-quality solutions. Smaller popula-
tions, especially NP=10, consistently demonstrate premature
convergence, often stagnating well below the potential opti-
mum (e.g., failing to exceed 0.89 fitness on CIC-IDS2017 in

TABLE I
CHARACTERISTICS OF THE BENCHMARK DATASETS.

Dataset Instances Features Attack Types Attack
Ratio (%)

NSL-KDD 125,973 41 4 46.5
CIC-IDS2017 2,830,743 78 14 19.7

Fig. 2 (c)). In contrast, larger populations (NP=30 and NP=50)
facilitate more thorough exploration, leading to significantly
better final fitness values across all tmax settings compared
to NP=10 and NP=20. A crucial observation, especially in
Figures 2 (b) and (c), is that the peak performance achieved
by NP=30 is often very close to, or indistinguishable from,

0 10 20 30 40 50
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fi
tn

es
s S

co
re

CIC, NP=10
KDD, NP=10
CIC, NP=20
KDD, NP=20

CIC, NP=30
KDD, NP=30
CIC, NP=50
KDD, NP=50

(a) Fitness Evolution tmax = 50

0 20 40 60 80 100
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fi
tn

es
s S

co
re

CIC, NP=10
KDD, NP=10
CIC, NP=20
KDD, NP=20

CIC, NP=30
KDD, NP=30
CIC, NP=50
KDD, NP=50

(b) Fitness Evolution tmax = 100

0 25 50 75 100 125 150 175 200
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fi
tn

es
s S

co
re

CIC, NP=10
KDD, NP=10
CIC, NP=20
KDD, NP=20

CIC, NP=30
KDD, NP=30
CIC, NP=50
KDD, NP=50

(c) Fitness Evolution tmax = 200

Fig. 2. TUNA-FS convergence for varying tmax and NP values. in
CIC-IDS2017, NSL-KDD

The fitness values are obtained using a Linear SVC with L2 regularization

388 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

that achieved by NP=50 (e.g., both hover around 0.94-0.95 on
NSL-KDD in Fig. 2 (c)).

The underlying dataset also impacts performance. TUNA-
FS generally converges faster and reaches slightly higher
fitness scores on the NSL-KDD dataset (dashed lines) than
on the larger, more complex CIC-IDS2017 dataset (solid
lines). For example, comparing NP=30 runs at tmax = 100
(Fig. 2 (b)), fitness reaches approximately 0.95 on NSL-
KDD versus around 0.93 on CIC-IDS2017. The differentiation
in performance between the various population sizes is also
more evident on the CIC-IDS2017 dataset, suggesting its
optimization landscape is more sensitive to the search agent
count.

Considering the trade-off between convergence quality and
computational cost, tmax = 100 captures the majority of
performance gains efficiently. Since NP=30 achieves robust
results similar to NP=50 with less overhead, the configuration
tmax = 100 and NP = 30 was selected as a balanced and
effective setting for subsequent comparative experiments.

D. Sensitivity Analysis of Transfer Function Parameters

The adaptive V-shaped transfer function’s parameters, τmin
and τmax, govern the dynamic behavior of the binarization
process. Their impact on feature selection performance was
systematically analyzed on the NSL-KDD dataset, with results
summarized in Table II. This analysis focused on the trade-offs
between overall fitness, F1-score, FP-Rate, and feature subset
cardinality.

Examination of τmin (while τmax was held at 6.0) reveals dis-
tinct performance characteristics. A τmin value of 1.5 emerged
as particularly effective, achieving the highest overall fitness
(0.9539) and a desirable balance by selecting only 8 features
with a competitive F1-Score (0.9726) and FP-Rate (0.0374).
Lowering τmin to 0.5, while yielding a slightly higher F1-
Score, resulted in a substantially larger feature set (19 features)
and an increased FP-Rate, suggesting overly broad initial
exploration. Conversely, a τmin of 1.0, though achieving a low
FP-Rate, compromised overall fitness. This indicates that τmin
critically tunes the initial exploration phase: a value of 1.5

TABLE II
SENSITIVITY ANALYSIS OF TF PARAMETERS ON NSL-KDD.

Varying τmin (τmax = 6.0 fixed)

τmin Fitness F1-Score FP-Rate Features

0.5 0.9337 0.9861 0.0512 19
1.0 0.9120 0.9361 0.0215 16
1.5 0.9539 0.9726 0.0374 8
2.0 0.9511 0.9848 0.0452 12

Varying τmax (τmin = 1.0 fixed)

τmax Fitness F1-Score FP-Rate Features

1.0* 0.9497 0.9801 0.0480 11
4.0 0.9434 0.9960 0.0493 18
6.0 0.9503 0.9899 0.0422 14
8.0 0.9605 0.9817 0.0237 9

10.0 0.9422 0.9797 0.0594 13
12.0 0.9485 0.9815 0.0709 10

*Non-adaptive baseline. Metrics averaged over 20 runs.

provides a robust starting point for exploration without over-
selecting features on the NSL-KDD dataset.

The influence of τmax was investigated with τmin fixed at
1.0. The configuration with τmax = 8.0 demonstrated superior
performance, attaining the highest fitness (0.9605), the low-
est FP-Rate (0.0237), and a compact 9-feature subset. This
significantly outperformed the non-adaptive baseline (where
τmax was also 1.0), which, despite good performance, could
not match the balance achieved when allowing τ to adapt to a
higher maximum. Increasing τmax beyond 8.0 (e.g., to 10.0 or
12.0) did not yield further improvements and, in some cases,
slightly degraded performance, particularly the FP-Rate. This
underscores the benefit of a sufficiently high τmax to drive
the algorithm towards stronger exploitation in its later stages,
thereby refining the selected feature subset effectively.

Collectively, these results affirm the utility of the adaptive
V-shaped transfer function. The dynamic adjustment of the
TF’s slope, controlled by τmin and τmax, allows for a more
sophisticated balance between exploration and exploitation
compared to a static TF. Based on this sensitivity analysis, the
parameter settings of τmin = 1.5 and τmax = 8.0 were identified
as providing a compelling trade-off between high fitness,
low false alarm rates, and feature sparsity for the NSL-KDD
dataset, guiding their selection for subsequent evaluations.

E. Fitness Function Weights Analysis

The sensitivity analysis for the fitness function weights (ω1

for performance/balance, ω2 for low FP-Rate, ω3 for spar-
sity), presented in Table III, demonstrates the inherent trade-
offs in feature selection for IDS. For instance, the perfectly
balanced configuration [0.33, 0.33, 0.33] prioritizes sparsity
most effectively, yielding the minimal feature set size of 7
features. However, this comes at a significant cost to other
metrics, resulting in the lowest accuracy (96.58%) and the
highest, potentially unacceptable, FP-Rate (10.98%) among
the tested configurations. Conversely, prioritizing only perfor-
mance (ω3 = 0) leads to high accuracy (99.44%) but requires
a large number of features (25). These results highlight that the
weight configuration ω1 = 0.8, ω2 = 0.1, ω3 = 0.1 achieves
high accuracy (99.14%), the lowest observed FP-Rate (3.07%),
and excellent sparsity using only 9 features. Although the ideal
weight selection depends on specific application priorities,
the [0.8, 0.1, 0.1] setting shows a superior combination of
desirable metrics in this evaluation.

In summary, our parameter analysis establishes optimal
settings for BTSO in feature selection for intrusion detection.

TABLE III
SENSITIVITY ANALYSIS OF FITNESS FUNCTION WEIGHTS ON NSL-KDD.

ω1 ω2 ω3 Accuracy FP-Rate (%) # Feats

0.33 0.33 0.33 96.58 10.98 7
0.80 0.20 0.00 99.44 6.48 25
0.70 0.10 0.20 98.42 8.26 10
0.60 0.20 0.20 97.91 3.74 15
0.50 0.30 0.20 97.46 3.82 11
0.80 0.10 0.10 99.14 3.07 9
0.70 0.20 0.10 98.66 4.23 12
0.60 0.30 0.10 94.02 3.10 13

A. KHIAR et al.: BINARY TUNA SWARM OPTIMIZATION ALGORITHM-BASED FEATURE SELECTION 389

The parameters NP = 30, tmax = 100, τmin = 1.5, τmax = 8.0
(based on Table II best values), and fitness weights ω1 = 0.8,
ω2 = 0.1, ω3 = 0.1 provide a strong balance between detection
accuracy, false alarm reduction, and computational efficiency,
based on the sensitivity analyses performed on NSL-KDD.

F. Performance Evaluation

The performance evaluation results, presented in Figure 3,
illustrate the effectiveness of TUNA-FS feature selection
across different classifiers and datasets. On the more com-
plex CIC-IDS2017 dataset (Fig. 3(a)), applying TUNA-FS
maintains the already high accuracy levels achieved with the
full feature set (lines remain close, generally above 0.95)
while slightly reducing the FP-Rate for most classifiers (red
bars slightly lower or equal to orange bars). This demon-
strates TUNA-FS’s ability to significantly reduce dimensional-
ity without sacrificing performance on contemporary datasets.

The benefits are more striking on the NSL-KDD dataset
(Fig. 3(b)). Here, using the TUNA-FS selected features con-
sistently leads to a marked improvement in accuracy across all
classifiers (green line significantly above blue dashed line, of-
ten exceeding 0.99), particularly noticeable for DT and KNN,

DT RF SVC KNN
Classifier

0.00

0.02

0.04

0.06

0.08

FP
-R

at
e

FP-Rate (Without FS)
FP-Rate (With FS)

Accuracy (Without FS)
Accuracy (With FS)

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

(a) CIC-IDS2017

DT RF SVC KNN
Classifier

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

FP
-R

at
e

FP-Rate (Without FS)
FP-Rate (With FS)

Accuracy (Without FS)
Accuracy (With FS)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

(b) NSL-KDD

Fig. 3. Performance comparison using Full Features vs. TUNA-FS.

TABLE IV
TRAINING AND TESTING TIME ON NSL-KDD (SECONDS)

Classifier Training Time Testing Time

Full (41) TUNA-FS (9) Full (41) TUNA-FS (9)

SVM 4.2325 1.2956 0.6872 0.2311
(-69.4%) (-66.4%)

DT 1.1542 0.3517 0.1742 0.0541
(-69.5%) (-69.0%)

k-NN 6.2174 1.3254 1.0759 0.2384
(-78.7%) (-77.8%)

RF 9.9541 3.214 1.4355 0.5215
(-67.7%) (-63.7%)

Note: Reduction percentages shown in parentheses.

which performed less well with the full set. Concurrently,
a substantial reduction in the FP-Rate is observed for all
classifiers (red bars are much lower than orange bars, often
halved or more). This strongly suggests TUNA-FS effectively
eliminates noisy or redundant features from NSL-KDD that
hindered both accuracy and generated excessive false alarms.
Collectively, these results validate TUNA-FS as a valuable
approach, enhancing classifier efficiency and effectiveness by
identifying impactful feature subsets tailored to the dataset
characteristics.

Overall, these results validate the efficacy of the TUNA-FS
framework. It demonstrably enhances classifier performance
by selecting relevant features, leading to significantly im-
proved accuracy and lower false alarm rates on datasets like
NSL-KDD, while maintaining high performance levels and
reducing dimensionality on more modern datasets like CIC-
IDS2017.

We comprehensively evaluated runtime efficiency gains
across all classifiers and datasets. Tables IV and V compare the
training and testing times for each classifier for the NSL-KDD
and CIC-IDS2017 datasets, before and after applying TUNA-
FS, reporting absolute times and percentage reductions. As
shown, the use of the proposed framework leads to substantial
reductions in computational time across all classifiers. On
NSL-KDD, training time was reduced by up to 78.7% (k-
NN), and testing time by up to 77.8%. Similar improvements
are observed on CIC-IDS2017, where training time dropped
by over 79% and testing time by over 76%. These gains
are primarily due to the dimensionality reduction achieved by
TUNA-FS, which reduces the number of input features while
preserving classification performance. This demonstrates that
the framework not only improves detection quality but also
significantly reduces computational overhead, making it suit-
able for time-sensitive or resource-constrained environments.

G. Comparison with state-of-the-art

Table VI compares TUNA-FS against contemporary FS
methods. Direct comparison requires caution due to method-
ological variations.

TUNA-FS demonstrates clear advantages over filter meth-
ods [21], [22], offering comparable or better accuracy and sig-
nificantly lower FP-Rates with fewer features. Against wrap-
per/hybrid methods [9], [28], [32], TUNA-FS provides com-
petitive accuracy with substantial feature reduction on bench-

390 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

TABLE V
TRAINING AND TESTING TIME ON CIC-IDS2017 (SECONDS)

Classifier Training Time Testing Time

Full (78) TUNA-FS (21) Full (78) TUNA-FS (21)

SVM 105.1652 29.3358 14.2181 4.1257
(-72.1%) (-71.0%)

DT 26.4381 7.2145 3.2846 0.9354
(-72.7%) (-71.5%)

k-NN 158.498 33.1504 21.541 5.1283
(-79.1%) (-76.2%)

RF 219.2381 72.2519 29.1181 9.7462
(-67.0%) (-66.5%)

Note: Reduction percentages shown in parentheses.

mark datasets. Compared to other metaheuristics, TUNA-FS
achieves a superior balance; unlike Binary PIO [31] which
sacrificed FP-Rate for sparsity, TUNA-FS maintains a low FP-
Rate (e.g., 3.07% on NSL-KDD) with high accuracy (99.14%)
and a compact feature set (9 features). Relative to other TSO-
based methods often using deep learning [11] or improved
TSO variants [13], TUNA-FS shows strong performance using
standard classifiers, validating the effectiveness of the BTSO
adaptation for FS.

The comprehensive experiments validate the effectiveness
of the proposed TUNA-FS framework. Convergence analysis
(Figure 2) showed robust optimization, guiding the selection
of tmax = 100 and NP = 30 for balanced performance and
efficiency. Sensitivity analyses (Tables II, III) confirmed the
impact of the adaptive TF parameters and fitness weights,
establishing optimal parameters for balancing accuracy, FAR,
and sparsity. Performance evaluations (Figure 3) demonstrated
clear benefits over using full feature sets, notably improving
accuracy and reducing FAR on NSL-KDD, while efficiently
reducing dimensionality on CIC-IDS2017. The SOTA com-
parison (Table VI) further established TUNA-FS’s competi-
tiveness, showcasing its ability to achieve a strong balance
between high accuracy, low FAR, and significant feature
reduction compared to diverse existing techniques.

VI. CONCLUSION

The present paper introduced TUNA-FS, a feature selection
framework for intrusion detection, using a novel binary Tuna
Swarm Bptimization algorithm. TUNA-FS effectively adapts
the TSO algorithm for discrete feature selection tasks in
IDS by incorporating an adaptive V-shaped TF and a multi-
objective fitness function. Experimental validation on NSL-
KDD and CIC-IDS2017 datasets confirmed robust conver-
gence and identified optimal parameters. TUNA-FS signifi-
cantly improves upon baseline performance, notably achieving
99.14% accuracy with only 9 features and 3.07% FP-Rate on
NSL-KDD (using SVM), and 95.72% accuracy with 21 fea-
tures and 7.78% FP-Rate on CIC-IDS2017. Comparisons with
state-of-the-art methods established TUNA-FS as a competi-
tive approach, offering a superior balance between accuracy,
false alarm reduction, and dimensionality reduction. TUNA-FS
provides an effective solution for enhancing IDS performance
and efficiency.

In conclusion, the TUNA-FS framework offers a robust,
effective, and well-balanced solution for feature selection in

network intrusion detection. It successfully identifies com-
pact, high-impact feature subsets that demonstrably enhance
classifier performance and computational efficiency. While
acknowledging limitations such as dataset dependency and
the computational cost inherent in wrapper methods, the
presented evidence strongly supports TUNA-FS as a valuable
contribution to the network security field.

Future research directions could involve applying TUNA-FS
to more recent and large-scale datasets, including those from
IoT or industrial control system environments. Investigating
online or incremental versions of TUNA-FS for adapting
to evolving network traffic patterns would be highly rele-
vant. Exploring hybridization strategies could yield further
improvements, such as combining TUNA-FS with fast filter
methods for initial dimensionality reduction or using ensemble
FS techniques based on multiple TUNA-FS runs. Further
investigation into different transfer function families or more
sophisticated binarization rules within the BTSO context could
also be fruitful. Finally, exploring the synergy between TUNA-
FS and advanced deep learning architectures could further
push the boundaries of intrusion detection performance.

REFERENCES

[1] S. Morgan, “2023 official cybercrime report,” 2023.
[Online]. Available: https://www.esentire.com/resources/library/
2023-official-cybercrime-report

[2] A. Thakkar and R. Lohiya, “A survey on intrusion detection system:
Feature selection, model, performance measures, application perspective,
challenges, and future research directions,” Artificial Intelligence Review,
vol. 55, no. 1, pp. 453–563, 2022.

[3] S. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Anomaly-based in-
trusion detection system through feature selection analysis and building
hybrid efficient model,” Journal of Computational Science, vol. 25, pp.
152–160, 2018.

[4] A. Fatani, A. Dahou, M. Abd Elaziz, M. A. Al-Qaness, S. Lu, S. A.
Alfadhli, and S. S. Alresheedi, “Enhancing intrusion detection systems
for IoT and cloud environments using a growth optimizer algorithm and
conventional neural networks,” Sensors, vol. 23, no. 9, p. 4430, 2023.

[5] P. Pitre, A. Gandhi, V. Konde, R. Adhao, and V. Pachghare, “An
intrusion detection system for zero-day attacks to reduce false positive
rates,” in 2022 International Conference for Advancement in Technology
(ICONAT), 2022, pp. 1–6.

[6] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: Techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, p. 20, 2019.

[7] S. S. Kareem, R. R. Mostafa, F. A. Hashim, and H. M. El-Bakry, “An
effective feature selection model using hybrid metaheuristic algorithms
for iot intrusion detection,” Sensors (Basel, Switzerland), vol. 22, no. 4,
p. 1396, 2022.

[8] N. K. Y. Gurukala and D. K. Verma, “Feature selection using particle
swarm optimization and ensemble-based machine learning models for
ransomware detection,” SN Computer Science, vol. 5, no. 8, p. 1093,
Nov. 2024.

[9] O. Almomani, “A feature selection model for network intrusion detection
system based on PSO, GWO, FFA and GA algorithms,” Symmetry,
vol. 12, no. 6, p. 1046, 2020.

[10] L. Xie, T. Han, H. Zhou, Z.-R. Zhang, B. Han, and A. Tang, “Tuna
swarm optimization: A novel swarm-based metaheuristic algorithm for
global optimization,” Computational Intelligence and Neuroscience, vol.
2021, pp. 1–22, 2021.

[11] G. Gowthami and S. S. Priscila, “Tuna swarm optimisation-based feature
selection and deep multimodal-sequential-hierarchical progressive net-
work for network intrusion detection approach,” International Journal
of Critical Computer-Based Systems, vol. 10, no. 4, pp. 355–374, 2023.

[12] S. S. Harwalkar, A. H. A. Hussein, B. V. Kumar, M. I. Habelalmateen,
and R. M. Victoria, “Intrusion detection in iot platform using tuna swarm
optimization with long short-term memory,” in International Conference
on Ambient Intelligence, Knowledge Informatics and Industrial Electron-
ics (AIKIIE), Nov. 2023, pp. 1–6.

A. KHIAR et al.: BINARY TUNA SWARM OPTIMIZATION ALGORITHM-BASED FEATURE SELECTION 391

TABLE VI
COMPARISON WITH STATE-OF-THE-ART FS METHODS FOR IDS.

Ref Technique/Algo Dataset(s) Performance # Feat.

[22] Chi-Squared (ensemble) NSL-KDD Acc=99.23%, FPR=5.2% 22
[21] Info. Gain (ensemble) CIC-IDS2017 (20%) Acc=93.4%, FPR=12% 19
[28] IGRF-RFE (MLP) UNSW-NB15 Acc=84.24% 23
[32] B-PSO (DT) Balanced dataset Acc=99.52% 19
[9] MI + Rules (J48) UNSW-NB15 Acc=90.48% 30
[31] Bin. PIO (DT) Multi TPR=97.1%, FPR=14.9% 5
[34] ABC (AdaBoost) NSL/ISCX Acc=98.9%, DR=99.6% 15
[11] TSO (DMS-HPN) UNSW-NB15/

CIC- IDS2017
Acc=99.5(CIC)%,
Acc=92.6(UNSW)%

18/22

[13] ITSO (DT) NSL-KDD Acc=+4.1% vs TSO -

This work TUNA-FS (BTSO) (SVM) NSL-KDD Acc=99.14%, FPR=3.07% 9
CIC-IDS2017 Acc=95.72%, FPR=7.78% 21

Note: Multi=Multiple Datasets Used, ’-’=Not Available.

[13] Z. Qin, H. Xu, Y. Jin, and L. Huang, “Multi-strategy improved tuna
swarm optimization algorithm for feature selection of network intrusion
detection,” in 3rd International Conference on Artificial Intelligence,
Automation, and High-Performance Computing (AIAHPC), vol. 12717.
Wuhan, China: SPIE, 2023, pp. 681–686.

[14] J. Kennedy and R. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Computational Cybernetics and Simulation 1997
IEEE International Conference on Systems , Man, and Cybernetics,
vol. 5, 1997, pp. 4104–4108 vol.5.

[15] C. Qiu, “A novel multi-swarm particle swarm optimization for feature
selection,” Genetic Programming and Evolvable Machines, vol. 20,
no. 4, pp. 503–529, 2019.

[16] S.-S. Hong, E.-j. Lee, and H. Kim, “An advanced fitness function
optimization algorithm for anomaly intrusion detection using feature
selection,” Applied Sciences, vol. 13, no. 8, p. 4958, 2023.

[17] M. Sharma and P. Kaur, “A comprehensive analysis of nature-inspired
meta-heuristic techniques for feature selection problem,” Archives of
Computational Methods in Engineering, vol. 28, no. 3, pp. 1103–1127,
2021.

[18] L. Dhanabal and S. P. Shantharajah, “A study on nsl-kdd dataset for
intrusion detection system based on classification algorithms,” Interna-
tional journal of advanced research in computer and communication
engineering, vol. 4, no. 6, pp. 446–452, 2015.

[19] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP), 2018, pp. 108–116.

[20] J. Kittler, P. Pudil, and P. Somol, “Advances in statistical feature
selection,” in Advances in Pattern Recognition — ICAPR 2001. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, vol. 2013, pp. 427–436.

[21] A. Mazighi, L. Ballihi, and G. Orhanou, “Improving intrusion detection
using machine learning algorithms with feature selection based on
information gain,” in IEEE International Conference on Advances in
Data-Driven Analytics And Intelligent Systems (ADACIS), 2023, pp. 1–
6.

[22] I. S. Thaseen, C. A. Kumar, and A. Ahmad, “Integrated intrusion
detection model using chi-square feature selection and ensemble of
Classifiers,” Arabian Journal for Science and Engineering, vol. 44, no. 4,
pp. 3357–3368, Apr. 2019.

[23] N. Thockchom, M. M. Singh, and U. Nandi, “A novel ensemble learning-
based model for network intrusion detection,” Complex & Intelligent
Systems, vol. 9, no. 5, pp. 5693–5714, 2023.

[24] M. A. Rahman, S. Islam, Y. S. Nugroho, F. Y. Al Irsyadi, and M. J.
Hossain, “An Exploratory Analysis of Feature Selection for Malware
Detection with Simple Machine Learning Algorithms,” Journal of Com-
munications Software and Systems, vol. 19, no. 3, pp. 207–219, 2023.

[25] A. A. A. Mahmood, A. A. Hadi, and W. H. Al-Masoody, “Enhancing
network security: A study on classification models for intrusion detection
systems,” Journal of Communications Software and Systems, vol. 21,
no. 2, pp. 156–165, 2025.

[26] M. Samadi Bonab, A. Ghaffari, F. Soleimanian Gharehchopogh, and
P. Alemi, “A wrapper-based feature selection for improving performance
of intrusion detection systems,” International Journal of Communication
Systems, vol. 33, no. 12, p. e4434, 2020.

[27] J. Lee, D. Park, and C. Lee, “Feature selection algorithm for intrusions
detection system using sequential forward search and random forest

classifier,” KSII Transactions on Internet and Information Systems
(TIIS), vol. 11, no. 10, pp. 5132–5148, 2017.

[28] Y. Yin, J. Jang-Jaccard, W. Xu, A. Singh, J. Zhu, F. Sabrina, and J. Kwak,
“Igrf-rfe: A hybrid feature selection method for mlp-based network
intrusion detection on unsw-nb15 dataset,” Journal of Big Data, vol. 10,
no. 1, p. 15, 2023.

[29] A. Karthick Kumar, K. Vadivukkarasi, R. Dayana, and P. Malarvezhi,
“Botnet attacks detection using embedded feature selection methods for
secure iomt environment,” in Pervasive Computing and Social Network-
ing, G. Ranganathan, R. Bestak, and X. Fernando, Eds. Singapore:
Springer Nature, 2023, pp. 585–599.

[30] M. H. M. Yusof, M. R. Mokhtar, A. M. Zain, and C. Maple, “Embed-
ded feature selection method for a network-level behavioural analysis
detection model,” International Journal of Advanced Computer Science
and Applications (ijacsa), vol. 9, no. 12, 2018.

[31] H. Alazzam, A. Sharieh, and K. E. Sabri, “A feature selection algorithm
for intrusion detection system based on pigeon inspired optimizer,”
Expert systems with applications, vol. 148, p. 113249, 2020.

[32] A. A. Saeed and N. G. M. Jameel, “Intelligent feature selection using
particle swarm optimization algorithm with a decision tree for DDoS
attack detection,” International Journal of Advances in Intelligent Infor-
matics, vol. 7, no. 1, pp. 37–48, 2021.

[33] B. Selvakumar and K. Muneeswaran, “Firefly algorithm based fea-
ture selection for network intrusion detection,” Computers & Security,
vol. 81, pp. 148–155, 2019.

[34] M. Mazini, B. Shirazi, and I. Mahdavi, “Anomaly network-based intru-
sion detection system using a reliable hybrid artificial bee colony and
adaboost algorithms,” Journal of King Saud University - Computer and
Information Sciences, vol. 31, no. 4, pp. 541–553, Oct. 2019.

[35] A. R. Jordehi, “Binary particle swarm optimisation with quadratic
transfer function: A new binary optimisation algorithm for optimal
scheduling of appliances in smart homes,” Applied Soft Computing,
vol. 78, pp. 465–480, 2019.

[36] M. M. Mafarja and S. Mirjalili, “Hybrid whale optimization algorithm
with simulated annealing for feature selection,” Neurocomputing, vol.
260, pp. 302–312, 2017.

[37] E. Emary, H. M. Zawbaa, C. Grosan, and A. E. Hassenian, “Feature
subset selection approach by gray-wolf optimization,” in Afro-European
Conference for Industrial Advancement, A. Abraham, P. Krömer, and
V. Snasel, Eds. Addis-Abeba, Éthiopia: Springer International Publish-
ing, 2015, vol. 334, pp. 1–13.

[38] J. Lemus-Romani, B. Crawford, F. Cisternas-Caneo, R. Soto, and
M. Becerra-Rozas, “Binarization of metaheuristics: Is the transfer func-
tion really important,” Biomimetics, vol. 8, no. 5, p. 400, 2023.

[39] K. K. Ghosh, R. Guha, S. K. Bera, N. Kumar, and R. Sarkar, “S-
shaped versus v-shaped transfer functions for binary manta ray foraging
optimization in feature selection problem,” Neural Computing and
Applications, vol. 33, no. 17, pp. 11 027–11 041, Sep. 2021.

[40] N. Mohd Yusof, A. K. Muda, S. F. Pratama, and A. Abraham, “A
novel nonlinear time-varying sigmoid transfer function in binary whale
optimization algorithm for descriptors selection in drug classification,”
Molecular Diversity, vol. 27, no. 1, pp. 71–80, 2023.

[41] M. Mafarja, I. Aljarah, A. A. Heidari, H. Faris, P. Fournier-Viger, X. Li,
and S. Mirjalili, “Binary dragonfly optimization for feature selection
using time-varying transfer functions,” Knowledge-Based Systems, vol.
161, pp. 185–204, 2018.

392 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

[42] M. J. Islam, X. Li, and Y. Mei, “A time-varying transfer function for
balancing the exploration and exploitation ability of a binary pso,”
Applied Soft Computing, vol. 59, pp. 182–196, 2017.

[43] N. Van Thieu and S. Mirjalili, “Mealpy: An open-source library for latest
meta-heuristic algorithms in python,” Journal of Systems Architecture,
vol. 139, p. 102871, 2023.

Abdelouaheb Khiar is currently pursuing his Ph.D.
in Computer Science at the University of Oum
El Bouaghi, Algeria, and conducting research at
the ICOSI Laboratory, Abbes Laghrour University,
Khenchela. He earned his Magister degree in 2011.
Since 2012, he has served as an Assistant Professor
at Abbes Laghrour University, where he contributes
to research in artificial intelligence and cybersecu-
rity. His work focuses on metaheuristic optimization,
cybersecurity, and machine learning applications for
network security.

Smaine Mazouzi received the M.S. and Ph.D. de-
grees in computer science from the University of
Constantine, in 1996 and 2008, respectively. He is
currently a professor in Université 20 Août 1955-
Skikda, where he leads research at the LICUS Lab-
oratory. His fields of interest are pattern recognition,
machine vision, and computer security. His current
research concerns using distributed and complex
systems in image understanding and intrusion de-
tection.

Rohallah Benaboud is a senior lecturer at the
department of Mathematics and Computer Sciences
- University of Oum El Bouaghi (Algeria). He ob-
tained his PhD degree in Computer Science from
University Abdelhamid Mehri Constantine 2, Alge-
ria in 2016. He is currently a member of Distributed-
Intelligent Systems Engineering (DISE) team at
ReLa(CS)2 Laboratory - University of Oum El
Bouaghi. He published many articles in many In-
ternational Conferences and Journals. He supervises
many Master and License students. His research in-

terests include Internet of Things, Service Oriented Computing, Machine/Deep
Learning and Multi-Agents Systems.

Hichem Haouassi received his Ph.D. degree in com-
puter science from the University of Batna, Algeria
in 2012, and now he is a full professor in Abbas
Laghrour University, Khenchela, Algeria. His main
research interests are the Artificial intelligence, Data
mining, Methaheuristics and swarm-based optimiza-
tion, Feature selection, and classification.

A. KHIAR et al.: BINARY TUNA SWARM OPTIMIZATION ALGORITHM-BASED FEATURE SELECTION 393

