
Formal Verification of the Correctness and
Soundness of a Pomset-to-LTS Transformation

Algorithm
Asma Bezza, Rohallah Benaboud, Toufik-Messaoud Maarouk, and Rabea Ameur-Boulifa

Abstract—In this paper, we present a comprehensive proof
of the correctness and soundness of our previously published
algorithm for transforming partially ordered multisets (Pomsets)
into labeled transition systems (LTS). Our approach rigorously
ensures that the transformation algorithm preserves the be-
havioral semantics of the original Pomset, ensuring that the
resulting LTS accurately represents the concurrent and sequential
dependencies inherent in the Pomset. We employ Hoare logic to
formally verify the correctness of the algorithm, proving that
every valid Pomset is transformed into a corresponding LTS
without loss of information. Additionally, we provide detailed
proofs of soundness, showing that the algorithm produces an LTS
if and only if the input is a valid Pomset. This algorithm was
initially proposed as part of our new refinement proof approach,
which has already been published. However, the correctness of the
algorithm had not been formally proven until now. These results
confirm the reliability and robustness of our transformation
algorithm, making it a valuable tool for modeling and analyzing
concurrent systems.

Index Terms—Formal verification, Correctness, soundness,
Pomset, LTS, Hoare-logic.

I. INTRODUCTION

SOftware is a crucial aspect of nearly all aspects of
life. Today, dependency on software programs remains

increasing, especially in important domains, wherein harm to
human health, effects on the surroundings, or giant financial
results can be because of malfunctioning software programs
and systems. The ubiquitous presence of software leads to the
requirement of being able to prove its correctness. Correctness
is an important factor in software engineering. Particularly
in embedded systems, ensuring the implementation satisfies
the required specification is crucial. Delivering the program
together with a formal proof of its correctness with respect

Manuscript received March 3, 2025; revised April 17, 2025. Date of
publication October 20, 2025. Date of current version October 20, 2025.

A. Bezza is with the Department of Mathematics and Computer Science,
University of Oum El Bouaghi 04000, Algeria and Department of Mathemat-
ics and Computer Science, ICOSI Lab, University Abbes Laghrour Khenchela,
BP 1252 EL Houria, Algeria (e-mail: bezza.asma@univ-khenchela.dz).

R. Benaboud is with the Research Laboratory on Computer Sci-
ence’s Complex Systems (RelaCS2), Department of Mathematics and Com-
puter Science, University of Oum El Bouaghi 04000, Algeria (e-mail:
benaboud.rohallah@univ-oeb.dz).

T.-M. Maarouk is with the Department of Mathematics and Computer
Science, ICOSI Lab, University Abbes Laghrour Khenchela, BP 1252 EL
Houria, Algeria (e-mail: maarouk.toufik@univ-khenchela.dz).

R. Ameur-Boulifa is with the LTCI, Télécom Paris, Institut Polytechnique
de Paris, France (e-mail: rabea.ameur-boulifa@telecom-paristech.fr).

Digital Object Identifier (DOI): 10.24138/jcomss-2025-0028

to some specification guarantees a correct program, whereas
tests can only reduce errors.
Among the various formal verification techniques available,
Hoare’s logic, introduced in 1969, stands out as a powerful
formalism for reasoning about the correctness of computer
programs [1] [2].

The essence of Hoare logic lies in its ability to pro-
vide a mathematical framework for proving the correctness,
soundness, and completeness of algorithms—ensuring that a
program behaves as intended. By establishing preconditions
and postconditions, developers can delineate the expected
state of computation before and after a program’s execution.
Preconditions serve as a contract, stipulating the requirements
that must be met before a function or a procedure is invoked.
On the other hand, postconditions define the state of the system
after the execution, essentially describing the effects of the
computation or the changes brought about by the program
segment. The successful application of Hoare logic not only
validates the algorithm but also demonstrates the practical
utility of formal methods in software development.

The research we present here provides full proof that our
algorithm for turning partially ordered multisets (Pomsets) into
labeled transition systems (LTS) is correct and sound. Initially
proposed as part of our novel refinement proof approach [3].

A Pomset is a mathematical concept utilized for repre-
senting systems when certain events occur sequentially while
others may occur independently or concurrently. A Pomset
facilitates partial ordering of events, distinguishing it from
a basic sequence and rendering it suitable for representing
concurrency. Originally theoretical, Pomsets have practical
uses in distributed systems, concurrent programming, work-
flow management, and formal verification, where comprehend-
ing dependencies and potential parallelism between tasks is
crucial.

To illustrate the applicability of our approach, consider a
distributed workflow system for handling online orders. The
process involves multiple tasks such as payment verification,
stock checking, packaging, invoice printing, and shipping.
Many of these tasks have natural dependencies (e.g., packaging
must wait for payment and stock validation), while others can
be performed concurrently (e.g., stock checking and invoice
printing). Modeling such a system using Pomsets allows us
to precisely capture these partial orders and concurrency
relations. This enables formal reasoning about correctness

404 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

1845-6421/12/2025-0028 © 2025 CCIS

properties such as deadlock-freedom, causal consistency, and
potential optimizations in task scheduling.

Let us consider a real-world example of a workflow in an
e-commerce company:

Process objective

Managing a customer order.

Process steps

1) Verify payment (A)
2) Check item availability (B)
3) Prepare packaging (C)
4) Print invoice (D)
5) Ship the order (E)

Constraints

Tasks A (payment) and B (stock checking) can be per-
formed in parallel.
Task C (packaging) can only start after both payment and
stock are validated → it depends on A and B.
Task D (invoice printing) can be done as soon as A is
completed.
Task E (shipping) depends on both C and D.

Modeling with a Pomset

In this context, each task (A–E) is a labeled event.
The partial order relation between them is: A ⪯ C, B ⪯ C,
A ⪯ D, C ⪯ E, and D ⪯ E.
However, A and B can be executed in parallel, as can C and
D, as long as their respective dependencies are respected. This
Pomset captures the true concurrent behavior of the system
:not a strict linear sequence (like a trace), but a set of partially
ordered events representing causal dependencies.

This modeling approach enables a formal analysis of the
process’s correctness. For instance, it allows the detection
of missing or incorrect dependencies and the verification of
properties such as the absence of deadlocks or race conditions.
Moreover, Pomsets can be used to compare different versions
of a workflow: if a modification is introduced (e.g., postponing
task D to occur after task C), the resulting behavioral equiv-
alence or divergence can be formally assessed. Additionally,
this representation facilitates execution optimization by iden-
tifying independent tasks that can be performed in parallel,
thereby improving overall system efficiency.

The strength of Pomsets lies in their power of describing
events that are not completely linear but partially ordered.
This reflects more the reality of systems where activities can
occur in a concurrent way. Whereas the formal verification
of Pomsets poses several challenges due to their inherent
complexity and the limitations of existing verification tools.
Hence, the transformation from Pomsets to LTS is very
important, especially in embedded systems and concurrent
systems. This allows for a transition from a representation
of concurrent behaviors to a representation more suited for
formal analysis and verification, thereby facilitating the ap-
plication of several existing verification algorithms and tools

[4]. The transformation algorithm lacked a formal verification
of its correctness. Here, we address this gap by leveraging
Hoare logic to establish the algorithm’s validity. By applying
Hoare logic, we provide a structured and formal method to
demonstrate that the algorithm meets its specifications. This
proof not only shows that our algorithm is reliable, but it also
adds to the field of formal verification by showing how Hoare
logic can be used in real life to check complex transformations.

Our main contributions are:
• After we determine and demonstrate the invariants of the

two nested loops (proving the three properties: initializa-
tion, maintenance, and termination) of our algorithm, we
use Hoare’s axioms to prove partial correctness based on
the established invariants.

• We demonstrate termination based on the notion of a
variant. Proving the termination of the algorithm requires
proving the non-negativity of the two variants and their
decrement after each iteration. Thus, we conclude the
total correctness of the algorithm.

• We prove the soundness based on Hoare’s theorem.
• We calculate the algorithms’ spatial and temporal com-

plexity.
We structure the remainder of this paper as follows: We

review related works in section II. We present some theoretical
background on formal verification and our formal refinement
proof approach in section III. In section IV, we present in detail
the total correctness proof of the transformation algorithm.
Section V will then present the soundness proof. In Section
VI, we will present a complexity analysis. Finally, the paper
ends with a conclusion and future work.

II. RELATED WORKS

Recently, formal verification has gained significant momen-
tum. This is particularly true in embedded systems, where the
correction of late-stage errors can be costly, time-consuming,
and potentially lead to catastrophic consequences. The task of
proving the correctness of software through formal verification
has been a long-standing research focus. Nevertheless, formal
methods have yet to achieve widespread practical adoption in
this field.

Many works have dealt with the subject of program cor-
rectness, soundness, and completeness using different formal
verification methods, including Hoare logic formalism. We
briefly discuss some of the most relevant or recent articles
about this below.

The authors of [5] look at how to combine overapproximat-
ing and underapproximating logics using a new framework
they call Gradual Exact Logic (GEL). This framework aims
to bridge the gap between traditional program verification
methods (Hoare logic) and bug-finding techniques. In this
paper, both correctness and soundness are considered. Con-
cerning correctness, GEL inherits Hoare logic’s correctness
guarantees.

The evolution of Hoare logic has taken place in several
expansions and improvements to accommodate diverse pro-
gramming paradigms, including quantum computing. Quan-
tum Hoare Logic (QHL) has been developed to tackle the

A. BEZZA et al.: FORMAL VERIFICATION OF THE CORRECTNESS AND SOUNDNESS OF A POMSET-TO-LTS 405

distinct issues presented by quantum algorithms, including
superposition and involvement. This change keeps the core
ideas of Hoare logic while adding components for quantum
systems, making it easier to check quantum programs for
correctness. [2] [6].

The authors of [6] describe how to formalize quantum Hoare
Logic (QHL), which is an extension of classical Hoare logic
that can be used to reason about quantum programs. They
formalize the syntax and semantics of quantum programs in
Isabelle/HOL, an interactive theorem prover. They verify the
soundness and completeness of the deduction system’s partial
correctness for quantum programs. Then, they apply QHL to
verify the correctness of Grover’s search algorithm.

In the paper [7], a variant of quantum Hoare logic (QHL)
called applied quantum Hoare logic (aQHL) is presented. The
goal of this new logic is to make it easier to check quantum
programs by limiting QHL to a specific set of preconditions
and postconditions called projections. These projections make
the verification process more convenient, especially for de-
bugging and testing quantum programs. The usefulness of
aQHL is shown by how well it checks two complex quantum
algorithms: the Harrow-Hassidim-Lloyd (HHL) algorithm [8]
for verifying systems of linear equations and the quantum
Principal Component Analysis algorithm (qPCA) [9], which
uses quantum Hoare logic.The research by Anika Zaman and
Hiu Yung Wong ([8]) is mainly about making sure that
the HHL quantum algorithm works correctly and soundly
when it is used with IBM-Q hardware. The study verifies the
correctness of the HHL algorithm by comparing the results
obtained from the IBM-Q hardware implementation with those
from a MATLAB simulator. The authors make sure that the
errors found in the HHL algorithm are correctly recorded and
analyzed. This shows that the algorithm works as expected
when errors happen in different situations.

Probabilistic methods, such as probabilistic Relational
Hoare Logic (pRHL), make Hoare logic more useful when
dealing with randomness and keeping personal information
safe. [10] [11]. The article by Gilles Barth et al. [10] focuses
on the formal verification of quantum programs using rela-
tional program logic, which is based on a quantum analogue
of probabilistic couplings, which allows for the verification
of non-trivial properties of quantum programs. And the paper
by Tetsuya Sato ([11]) presents the formal verification of
differential privacy for databases using approximate relational
Hoare logic (apRHL).

A recent paper by Lena Vercht and Benjamin Kaminski [12]
provides a comprehensive examination of various Hoare-like
logics. The paper discusses the soundness and completeness
of the logical foundations of these Hoare-like logics. To check
the properties of these logics, the authors used two formal ver-
ification methods: predicate transformers, which are based on
Dijkstra’s weakest precondition, are used to express program
properties. And Kleen Algebra with Top and Tests (TopKat)
is used to model elements of a relational algebra (program
and its pre- and postconditions), allowing the expression of
program properties as equations between terms.

In the article [13], the authors utilized Hyper Hoare Logic,
a modification of classic Hoare logic that facilitates reasoning

about hyperproperties, which pertain to multiple program
executions. Hyper Hoare Logic extends assertions to features
of arbitrary state sets, facilitating the verification of both the
absence and presence of (combinations of) executions. The
authors demonstrate that this logic is both sound and complete,
and they illustrate its application through the Isabelle/HOL
theorem.

Other works have used other formal verification methods.
Among these works is the paper [14], which proposes that
reasoning about program incorrectness can be placed on a
logical footing, similar to correctness reasoning but different
from it. Correct reasoning requires forgetting information as
you go along, while incorrect reasoning requires forgetting
some paths. The paper talks about how the under-approximate
triple can be used to show that there are bugs and why
assertions about successful termination are needed even when
errors are the main concern. It also designs a specific logic,
the incorrectness logic, along with a semantics and proof
theory. The paper explores reasoning idioms, including making
connections to concerns in automatic program analysis. The
paper also discusses the soundness of the first two iteration
rules.

In [15], the authors present a methodology to increase the
reliability of the code synthesized through the use of large
language models (LLMs). The approach focuses on teaching
model checking and runtime verification (RV) algorithms,
demonstrating that LLMs can grasp dynamic programming
concepts for verification tasks.
Table I provides a comparative analysis of the studies dis-
cussed in this work, using specific evaluation criteria. We first
examine the formal verification method, which may include
Hoare logic, incorrectness logic, model checkers, or other
methods. The second criterion examines the formal properties
validated, including soundness, safety, correctness, and com-
pleteness.

III. THEORETICAL BACKGROUNDS

The algorithm to be verified was proposed in a previous
refinement proof approach for embedded systems [3]. The
details of the transformation algorithm from Pomset to LTS,
along with the refinement proof approach, are described in [3].

A brief description of the approach and the algorithm itself
is provided in this section. As well as terminologies about the
Hoare logic, which will be used in order to prove the correct-
ness and soundness of the algorithm. Before presenting the
refinement proof approach and the transformation algorithm
from Pomsets to LTSs, let’s first define a Pomset and an LTS:

Definition 1 (LTS). A labeled system of transitions is a
quintuplet: ⟨Q, q0, L, T ⟩ where:

• Q is the set of states.
• q0 ∈ Q is the initial state.
• L is the set of labels.
• T ⊆ Q× L×Q is the transition relation.

An element (q, α, q′) ∈ T will be noted q
α−→ q′.

406 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

TABLE I
COMPARISON OF WORKS ON FORMAL ALGORITHM VERIFICATION

Paper Verified Formal Prop-
erties

Formal verification
method

[5] correctness,
soundness

Hoare logic and incorrect-
ness logic

[10] Uniformity,
reliability, security Relational Program Logic

[6]
Correctness,
Soundness,
Completeness

Quantum Hoare Logic
(QHL)

[7]
Correctness,
Soundness,
Completeness

Quantum Hoare Logic
(QHL)

[8] Correctness,Soundness Applied Quantum Hoare
Logic (aQHL)

[16] Correctness Conformal Prediction
(CP)

[14] Incorrectness, Sound-
ness Incorrectness logic

[15] Correctness
Large Language Models
(LLMs), Model Checking,
Runtime Verification (RV)

[12]
Partial Correctness,
Total Correctness,
Incorrectness

Predicate Transformers
and (TopKAT)

[13]
Correctness,
Soundness,
Completeness

Hyper Hoare Logic

Definition 2 (Labeled Partial Order).
Called also LPO or a labeled partial order, it is a 4-tuple
⟨V,A,⪯, µ⟩ where:

• V a finite set of events.
• A a finite set of actions.
• ⪯⊆ V × V a relation of order on the set V .
• µ: V → A a surjective labeling function assigning an

action to an event.

A. Formal refinement proof approach

In order to prove communication refinement transformations
proposed by Mokrani in [17]. We have proposed a refinement
proof approach as presented in the figure 1.

Fig. 1. Refinement proof process

Fig. 2. Example of a Pomset and his corresponding LTS

Given a Pomset P , we shall obtain, after refinement, a Pom-
set P ′. Using the transformation algorithm (see algorithm1),
we shall obtain two LTS, A and A′, corresponding, respec-
tively, to the Pomsets P and P ′. Thereafter, we can prove
that A is refined by A′ by applying Lanoix’s refinement proof
algorithm [4]. The following figure (2)presents an example of
the transformation to an LTS A = ⟨Q, q0, L, T ⟩ corresponding
to the Pomset Pom = (V,A,⪯, µ)

The Transformation Algorithm from Pomset to LTS:
As presented in the algorithm 1, it takes a Pomset
Pom = (V,A,⪯, µ) and produces an LTS A = (q0, Q, L, T).
Let us define Pred : V → N as the number of predecessors
of a node v, such that Pred(v) = |{v′ ∈ V |v′ ≺ v}|.
We designate by I a function that returns the set of initial
nodes of the Pomset Pom. An initial node is defined as
all nodes that constitute the abstract Pomset without any
refinement transformation.

Algorithm 1 Pomset to LTS transformation
Input: pom = {V,A,⪯, µ} // pom is a Pomset
Output: A = {q0, Q, L, T} // A is an LTS

1: n← length(V)
2: L← A
3: Q← {q0} ∪ {V }
4: T ← ∅ // T is initialized as an empty set
5: for i = 1 to n do
6: m← pred(vi)
7: if m ̸= 0 then
8: for j = 1 to m do
9: T ← T ∪ (vj , a, vi) //vj is a predecessor of vi

10: end for
11: if vi ⊆ I(pom) then
12: T ← ∪(q0, ϵ, vi)
13: end if
14: end if
15: if m = 0 or (m = 1 ∧ vi ⪯ vi ∧ µ(vi) = a) then
16: T ← T ∪ (q0, a, vi)
17: end if
18: end for

A. BEZZA et al.: FORMAL VERIFICATION OF THE CORRECTNESS AND SOUNDNESS OF A POMSET-TO-LTS 407

TABLE II
HOARE’S AXIOMATIC SYSTEM FOR PARTIAL CORRECTNESS [19]

[AssP] {P [x 7→ A[a]]}x := a{P}
[SkipP] {P}skip{P}
[CompP] {P}S1}Q}, {Q}S2{R}

{P}S1;S2}R}
[ifP] {β[b] ∧ P}S1{Q}, {¬β[b] ∧ P}S2{Q}

{P}if b then S1else S2{Q}
[whileP] {β[b] ∧ P}S{P}

{P}while b do S {¬β[b] ∧ P}
[ConsP] {P ′}S{Q′}

{P}S{Q}
if P ⇒ P ′ and Q′ ⇒ Q

B. Hoare Logic

Hoare logic ([18]) is a formal framework for reasoning
inductively about the correctness of computer programs. Hoare
logic has established the basis for formal methods in software
development. It is based on preconditions, postconditions,
and loop invariants. Preconditions are conditions that must
be true before the execution of a program or a program
segment. They represent the assumptions about the initial state
of the program. On the other hand, postconditions refer to the
conditions that must hold true following the execution of a
program or a specific segment of it. They represent what the
program guarantees to achieve. Invariants are conditions that
remain true throughout the execution of a loop or a block
of code. They help in reasoning about loops and recursive
functions [19].

The correctness of an algorithm consists of demonstrating
that it works by answering these two questions: Did the
algorithm answer the question correctly? In other words, did it
calculate the correct result? And therefore corresponds to the
partial correction. The second question is: does the algorithm
terminate, or does it loop indefinitely? The answer implies
that the algorithm responds within a finite time frame. Here
we talk about termination. Thus, total correctness is partial
correctness plus termination. These aspects can be written
formally as a Hoare triple [20]:

{P}S{Q}

The formulas P and Q represent the precondition and the
postcondition, respectively, while S represents the program.
Pre- and postconditions are formulas in first-order logic.
An inference system made up of axioms and rules [19] is
shown in the table II. It specifies the partial correctness
assertions. We will use this table in the next section to prove
the partial correctness of our algorithm.

IV. CORRECTNESS PROOF OF THE TRANSFORMATION
ALGORITHM

Based on Hoare logic, an algorithm’s correctness is demon-
strated using a loop invariant. The algorithm must align this
invariant, which is a property or a set of properties of type
boolean, with its goal. It must remain true both before and
after each transformation step. This property should describe
the main idea of the transformation and make sure that the
LTS transitions correctly reflect the order of events in the
Pomset. In the following section, we will describe the steps

to find and prove the loop invariants of the transformation
algorithm 1. To prove a piece of code containing a while
(or for) loop, it is essential to identify an invariant, denoted
as inv. It is crucial to establish that this invariant holds
before the loop’s first iteration, that each following iteration
maintains the invariant, and that the invariant finally provides
a significant property to confirm the algorithm’s correctness
at the loop’s termination. Therefore, to establish an invariant,
we must prove the following result.

Theorem 1. Partial correctness via a loop invariant Let be
b the loop condition, C: the body of the loop, post is the
postcondition,pre is the precondition, and inv is the loop
invariant. An algorithm with a loop is said to be partially
correct if and only if its invariant satisfies the following three
lemmas:

Lemma 1. : Initialization: The invariant must holds prior to
the first iteration of the loop. Which means {inv ∧ b}C{inv}
must be provable.

Lemma 2. Maintenance : Assume the invariant holds before
an iteration k then, it must hold before the next iteration k+1.
In other word: the invariant inv must be strong enough to
imply the postcondition {inv ∧ ¬b} ⇒ post.

Lemma 3. : Termination: the invariant holds when the loop
terminates {pre⇒ inv}.

To prove this theorem we will prove the three lemmas for
each loop of the algorithm.

A. Find and prove the loops invariants

As it is shown in the algorithm 1, contains two nested loops:
1) Outer loop: iterates over the nodes vi ∈ V (indexed by

i).
2) Inner loop: Iterates over the predecessors m of each node

vi.
In the following, we will find and prove the invariants of the
two loops, staring by the outer loop (see algorithm 1 lines
9-18).

1) Define the Outer Loop Invariant:
• Initial case : At the start, we have T = ∅, which means

length(T) = 0.
• After the i th iteration : we have two cases for each node

vi:
Case 1 : if

pred(vi) ̸= 0

(lines 5-11) . If the node has one or greater than one
predecessor

(m = pred(vi) ≥ 1)

, the inner loop executes m time. That means in each
iteration of the inner loop adds at least one transaction to
T . length(T) = length(T) +m.
Case 2: if pred(vi) = 0 or 1 (lines 13-15). If a node has
no predecessors (m = 0) or only one self-predecessor
(m = 0 ∧ vi ⪯ vi), exactly one transaction added to
T ⇒ length(T) = length(T) + 1.

408 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

So, the length(T) can be expressed by i, which repre-
sents the number of nodes processed by the algorithm.
And the variable m = pred(vi), which represents the
number of predecessors of a node vi . To resume, at the
end of the i-th iteration we have the following expression:

length(T) =
n∑

i=1

{
1, if pred(vi) = 0 or 1,
pred(vi), otherwise

.

length(T) = pred(v1) + pred(v2) + ...+ pred(vi) + q

Such as q represents the number of transitions added with
the condition pred(vi) = 0 or 1. which means q is the
number of nodes where pred(vi) = 0 or pred(vi) = 1.
And since these transactions will be with the initial node
q0. So, at least we will have one transaction which relate
the node q0 with any other node vi. Hence, the predicate
of the invariant can be refined as follows:

length(T) =
n∑

i=1

pred(vi) + q

And since q ≥ 1 and pred(vi) = m. So, we have:

invouter = length(T) ≥
n∑

i=1

pred(vi) + 1 (1)

2) Proof of the Outer Loop Invariant:: To prove the outer
invariant, we must prove the satisfaction of the three lemmas
cited above:

Proof. initialization - Before the first iteration of the loop we
have i = 0, which means no nodes have been processed yet
so the set T is empty; length(T) = 0 = i. The invariant at
this point length(T) =

∑
(contributions of nodes from i = 1

to 0) = 0. This is trivially true since no nodes have been
processed yet. - After the first iteration (i = 1), node v1 is
processed: m = pred(v1) (number of predecessors of nodev1).
Lets examine the cases:

• If pred(v1) = 0 (no predecessors), 1 transaction is added.
• If pred(v1) ≥ 1 (more than one predecessor), m =

pred(v1). m transactions are added.
So, after processing node v1, the invariant is length(T) =∑

1(if m = 0 or 1),m(if m ≥ 1) . This is true because for
v1, the correct contribution (either 1 or pred(v1) has been
added to the set T).That means length(T) ≥ pred(v1) + 1 is
provable. Thus, the loop invariant invouter holds initially.

Proof. Maintenance: To show that each iteration maintains the
invariant, we suppose that it holds for i = k , then we prove
that it holds if i = k + 1. For i = k, we have: length(T) =∑n

i=k pred(vi) +m

length(T) =

{
1, if pred(vi) = 0 or pred(vi) = 1,

pred(vi), otherwise.

for i = 1 to k
This implies length(T) ≥

∑k
i=1 pred(vi). If i = k + 1 then

we have:

length(T) = length(T)for k nodes + length(T)for the node k+1

so:
length(T) ≥

∑
pred(vi)for node v1to vk+1

Proof. Termination At the end of the loop (i = n), all nodes
(i = 1 to n) have been processed. The invariant guarantees:
According to the invariant, the set T must contains at least
n transitions. So, length(T) ≥ pred(vi). This matches the
postcondition, proving that the loop correctly computes the
length of the set T .

3) Define the Inner Loop Invariant: - The initial case:
at the start of j − th iteration of the inner loop, the set
T contains all transitions for the predecessors of vi up to
the j − 1 − th predecessor. So, we have T = T0 where
length(T0) = pred(v1) + pred(v2) + ... + pred(vj−1). That
means, the algorithm has processed j − 1 predecessors of vi.
And, each predecessor contributes one transition to T .
- During the j − th iteration: a transition for m[j] (the curent
predecessor) is added to T , such that:

length(T) >= length(T0) + (j)

such as length(T0) =
∑i−1

k=1 pred(vk) + 1

invinner = {length(T) ≥ (
i−1∑
k=1

pred(vk) + 1) + (j)} (2)

4) Proof of the Inner Loop Invariant: Similarly, we must
prove the three previously cited lemmas for the inner loop
invariant.

Proof. Initialisation At the begenning of the inner loop
(j = 1), no predecessors of vi have been processed yet, so
the summation remains unchanged, and length(T) reflects
transitions from v1, v2, ..., vi−1. Which means length(T) =
length(T0) = invouter. Thus, the inner loop invariant
invinner holds initially.

Proof. Maintenance - Assume the invariant holds at the start
of j − th iteration. -during the iteration, a transition for j
is added to T , increasing length(T) by 1. -By the end of
the iteration, length(T) reflects correctly the transitions for j
predecessors of vi.

Proof. Termination -When j = m + 1, all predecessors
of vi have been processed. The summation correctly in-
cludes all m predecessors of vi. That means, length(T) ≥∑n

i=1 pred(vi) +m reflects correctly the postcondition.

B. Using the Invariants to prove the Algorithm Correctness

In this section, we will prove the correctness of the algo-
rithm. We use the axiomatic semantics for verifivation to prove
the algorithm correctness. Hence, we shall prove the following
assertions:

{n = length(V) ∧ L = A ∧ length(Q) = n+ 1}

T := ∅

A. BEZZA et al.: FORMAL VERIFICATION OF THE CORRECTNESS AND SOUNDNESS OF A POMSET-TO-LTS 409

for j = 1 to m do

m← pred(vi)

for j = 1 to m do

T := T ∪ (vj , a, vi) EndFor

if vi ∈ I(Pom) then

T := T ∪ (q0, ϵ, vi) EndIf EndFor

{length(T) ≥ (length(⪯) + 1) ∧ L = A ∧ length(Q) = n+ 1}
(3)

The inference of this algorithm proceeds in a number of
stages. After we have defined the predicates invouter and
invinner that are the invariants of the outer and inner loops
respectivly. We shall now consider the bodies of the loops.
We start by the condition expressed by the lines (12-14)in the
transformation algorithm (1.
From [skipp] (see the tableII),we have:

⊢p {i ≤ n}skip{i ≤ n}

We put b1 = pred(v1) ̸= 0 ∧ (pred(vi) = 1 ∧ vi ⪯ vi) Since
(¬β[b1] ∧ i ≤ n} ⇒ {i ≤ n}, we can apply the rule of
consequence [Consp] and get:

⊢p {¬β[b1] ∧ i ≤ n}Skip{i ≤ n} (4)

And from [Assp] we have:

{β[b] ∧ i ≤ n}T := T ∪ (q0, v, a){i ≤ n} (5)

We can now apply the rule [ifp] for the two above assertions
4 and 5, and we get:

{i ≤ n}

b1 then T := T ∪ (q0, vi, a)

skip endIf

{i ≤ n}

Now we consider the conditionnel asserssion expressed by
lines (11-13)(see1)let be b2 = v ∈ I(Pom) and P2 = j ≤
m ∧ i ≤ n. By applying the rule[Assp] we get:

⊢p {β[b2] ∧P2}T := T∪(q0, ϵ, v){P2 ∧T = T ∪ (q0, ϵ,v)}
(6)

And from [Skipp], we have:

⊢p {P2}Skip{P2}

And since P2 ∧ T = T ∪ (q0, ϵ, v) ⇒ P2, we can apply the
consequence rule [Consp] and get:

⊢p {P2}skip{P2 ∧T = T ∪ (q0, ϵ,v)} (7)

We are now in a position to use the rule for the conditional
[ifp] to the two assertions above 6 and 7 and get:

⊢p {β[b2] ∧P2}

if (b)then T := T ∪ (q0, ϵ, v)else skip endIf (8)

{P2 ∧T = T ∪ (q0, ϵ,v)}

Now we consider the inner loop assertion expressed by lines
(8-10). We have defined the predicate invinner(see2), that is
the invariant of this loop. Considering the body of the loop.
Using [assp], we get:

⊢p {invinner[T← T ∪ (vj,a,vi)]}

T := T ∪ (vj , a, vi)

{invinner}

It is easy to verify

(¬j ≥ m) ∧ invinner ⇒ (invinner[T ← T ∪ (vj , a, vi)])

So, using the rule [consp] we get:

⊢p {¬(j ≥m) ∧ invinner}T := T ∪ (vj , a, vi){invinner}

We are now in a position to use the rule [whilep] and get:

⊢p {invinner}

for j = 1to m do

T := T ∪ (vj , a, vi) EndFor

{¬(¬(j ≥m) ∧ invinner)}

Clearly we have:

¬(¬(j ≥ m) ∧ invinner)⇒ (j > m ∧ invinner)

So, applying the rule consp we get:

⊢p {invinner}

for j = 1to m doT := T ∪ (vj , a, vi) EndFor (9)

{j > m ∧ invinner}

We shall now apply the axiom [compp] to the two assertions
above 9 and 8, and we get:

⊢p {i ≤ n}

for j = 1 to m do

T := T ∪ (vj , a, vi) EndFor

if vi ∈ I(Pom) then

T := T ∪ (q0, ϵ, vi) EndIf

{i ≤ n ∧ j > m} (10)

Using [assp], we get:

⊢p {invouter[m← pred(vi)] ∧ length(T) ≥ 0 ∧ i ≤ n}

m← pred(vi) (11)

{length(T) ≥ 0 ∧ i ≤ n}

So, by applying the rule [Compp] to the two above assertions
11 and 10, we get:

⊢p {i ≤ n ∧ length(T) ≥ 0}

m← pred(vi)

for j = 1 to m do

410 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

T := T ∪ (vj , a, vi) EndFor

if vi ∈ I(Pom) then

T := T ∪ (q0, ϵ, vi) EndIf

{i ≤ n ∧ j > m ∧ length(T) ≥ 0}

Then, we can apply the rule [whilep] and get:

⊢p {i ≤ n ∧ length(T) ≥ 0} ∧ invouter

m← pred(vi)

for j = 1 to m do

T := T ∪ (vj , a, vi) EndFor

if vi ∈ I(Pom) then

T := T ∪ (q0, ϵ, vi) EndIf

{i ≤ n ∧ j > m ∧ length(T) ≥ 0 ∧ invouter}

We shall now consider the lines (1-4) in the algorithm 1. By
applying the axiom [assp] to the statement T := ∅, we get:

⊢p {invouter[T 7→ ∅]}T := ∅{invinner}

Using that:

{n = length(V)∧L = A∧length(Q) = n+1} ⇒ {invouter}

Together with [ConspP], we get:

⊢P {n = length(V) ∧ L = A ∧ length(Q) = n+ 1}

T := ∅

{invouter}

Finally, we can use the rule [ConspP] and the equation 3
as required. Hence, we can say now that the transformation
algorithm 1 is correct.
The next step is to prove the termination of the algorithm since
partial correctness + termination = Total Correctness

C. Termination Proof

To prove the Termination of an algorithm, the following
result will be proved.

Theorem 2. Termination If there exists a function V (x) that
maps the state x to a natural number such that:

• V (x) is always non-negative.
• V (x) strictly decreases on each loop iteration. Then, the

loop must terminate after a finite number of iterations.

Proof. To prove the termination, first we have to find a variant
(called also ranking function) for each loop. Then prove the
decrease of these variants.
We define Vouter as the variant of the outer loop and Vinner

as the variant of the inner loop.
• The outer loop runs exactly n times, which is trivially

bounded. So, the variant function is defined as:
Vouter = (n− i) where n = length(V) is the number of
nodes, and i is a natural number which increments at each

iteration. So, the outer loop ensures that (n−i) decreases
by 1 per iteration. Hence, the outer loop terminates.

• The inner loop depends on m = pred(vi) which
is bounded (the number of predecessors of a node
vi)because it cannot exceed the number of nodes n, which
means that m ≤ n, so the variant function for this loop
is defined as follows:
Vinner = m− j deceases by 1 per iteration. So the inner
loop also terminates.

We can say mow, the algorithm is partially correct and
terminates so the algorithm is totally correct.

V. SOUNDNESS PROOF

After proving the partial correctness of our algorithm using
Hoare logic, proving its soundness requires showing that our
reasoning is valid and that all derivations made using Hoare
logic are correct.
We have:

Theorem 3. Soundness For all partial correctness assertions
{P}S{Q} we have:

|=p {P}S{Q} If and only if ⊢p {P}S{Q}

We have to prove the following lemma:

Lemma 4. The inference system of (tableII)is sound that is
for every partial correctness formula {p}A{Q} we have:

⊢P {p}A{Q} ⇒|=P {p}A{Q}

Proof. Proving soundness means that if we can derive
{p}A{Q} (a Hoare using the rules of Hoare logic (see table
of axioms II), then the algorithm actually behaves correctly
in all execution paths, assuming the precondition holds. In
other words, since {p}Our transformation algorithm{Q} is
provable (the equation equation3), then running the algorithm
from a state satisfying P will always lead to a state satisfying
Q, provided that the algorithm terminates as required.

VI. COMPLEXITY ANALYSIS OF THE POMSET TO LTS
TRANSFORMATION ALGORITHM

This section presents the analysis of the spatial and temporal
complexity of our algorithm.

A. Temporal Analysis

Let n = |V | be the number of nodes in the Pomset and d
the average degree of the nodes.

1) Initialization step:

• n←− |V |: O(1)
• L←− A: O(1)
• Q←− {q0} ∪ V : O(n)
• T ←− ∅: O(1)

The total complexity of initialization step: O(n)

A. BEZZA et al.: FORMAL VERIFICATION OF THE CORRECTNESS AND SOUNDNESS OF A POMSET-TO-LTS 411

2) Main Loop: (n iterations)
• Retrieval of predecessors m ←− pred(vi): assumed to

be O(1) on average.
• If m ̸= 0:

– Loop over the m predecessors: O(m).
– Add an initial transition if vi ∈ I(pom): O(1).

• If m = 0 or special condition (m = 1∧vi ⪯ vi∧µ(vi) =
a): adding a transition in O(1)

Complexity of one iteration: O(m), where m is the number
of predecessors of vi. Since m ≤ d, the complexity becomes
O(d) per iteration.

3) Total Complexity: The loop runs n times, so the overall
complexity is:

O(nd) (12)

Special cases::
• Best case (linear chain): O(n).
• Worst case (dense, complete Pomset): O(n2).

B. Spatial Analysis

1) Data Structures:
• Q = q0 ∪ V :O(n).
• L = A: negligible.
• T (set of transitions): O(nd).
• ⪯ (partial order relation):

– Adjacency matrix: O(n2).
– Adjacency list: O(nd).

• µ (labeling function):O(n).
2) Total Space Complexity:
• Optimized case (adjacency list, sparse Pomset): O(nd).
• Worst case (adjacency matrix, dense Pomset): O(n2)

VII. CONCLUSION AND FUTURE WORKS

In conclusion, the research paper establishes the correct-
ness and soundness of the algorithm for converting Pomsets
to LTS. The algorithm’s rigorous demonstration ensures the
preservation of behavioral properties and dependencies from
the original Pomset to the resulting LTS. Hoare logic is
used for formal verification, ensuring every valid Pomset is
transformed into an LTS without information loss. Detailed
proofs confirm that the algorithm generates an LTS only
for valid Pomsets, capturing all behaviors expressible in the
Pomset. These results confirm the reliability and robustness
of our transformation algorithm, making it a valuable tool for
modeling and analyzing concurrent systems. In this paper, we
used Hoare logic to give our previously suggested transfor-
mation algorithm from Pomsets to LTS a formal verification.
The demonstration of the algorithm’s partial correctness was
based on the invariants proof. Then we have demonstrated the
termination of the algorithm using the variant. Consequently,
we have proven the algorithm’s total correctness. Finally, we
deduced the algorithm’s soundness. In our future work, we
plan to continue working on the completeness proof of our
algorithm. Additionally, we want to make our algorithm and
our refinement proof approach more flexible, so we plan to
add the idea of time to it. This will cause timed automata

to be generated instead of LTS. This extension allows us
to effectively capture the dynamic behavior of real-world
systems, such as real-time controllers and embedded systems.

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Software Pioneers, pp. 367–383, 2002.

[2] X. Le, S. Lin, J. Sun, and D. Sanán, “A quantum interpretation
of separating conjunction for local reasoning of quantum programs
based on separation logic,” Proceedings of the Acm on Programming
Languages, vol. 6, pp. 1–27, 2022.

[3] A. Bezza, E. Merah, R. Ameur-Boulifa, R. Benaboud, and T. M.
Maarouk, “Formalization and refinement proof for embedded systems,”
in 2020 4th International Symposium on Informatics and its Applications
(ISIA), pp. 1–6, IEEE, 2020.

[4] A. Lanoix, “Verifier le raffinement de maniere compositionnelle,”
[5] C. Zimmerman and J. DiVincenzo, “Gradual exact logic: Unifying hoare

logic and incorrectness logic via gradual verification,” arXiv preprint
arXiv:2412.00339, 2024.

[6] J. Liu, B. Zhan, S. Wang, S. Ying, T. Liu, Y. Li, M. Ying, and N. Zhan,
“Formal verification of quantum algorithms using quantum hoare logic,”
in Computer Aided Verification: 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part
II 31, pp. 187–207, Springer, 2019.

[7] L. Zhou, N. Yu, and M. Ying, “An applied quantum hoare logic,” in
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 1149–1162, 2019.

[8] A. Zaman and H. Y. Wong, “Study of error propagation and generation
in harrow-hassidim-lloyd (hhl) quantum algorithm,” in 2022 IEEE Latin
American Electron Devices Conference (LAEDC), pp. 1–4, IEEE, 2022.

[9] C. He, J. Li, W. Liu, J. Peng, and Z. J. Wang, “A low-complexity
quantum principal component analysis algorithm,” IEEE transactions
on quantum engineering, vol. 3, pp. 1–13, 2022.

[10] G. Barthe, J. Hsu, M. Ying, N. Yu, and L. Zhou, “Relational proofs
for quantum programs,” Proceedings of the ACM on Programming
Languages, vol. 4, pp. 1–29, 2019.

[11] T. Sato, “Approximate relational hoare logic for continuous random
samplings,” Electronic Notes in Theoretical Computer Science, vol. 325,
pp. 277–298, 2016.

[12] L. Verscht and B. L. Kaminski, “A taxonomy of hoare-like logics:
Towards a holistic view using predicate transformers and kleene al-
gebras with top and tests,” Proceedings of the ACM on Programming
Languages, vol. 9, no. POPL, pp. 1782–1811, 2025.

[13] T. Dardinier and P. Müller, “Hyper hoare logic:(dis-) proving program
hyperproperties,” Proceedings of the ACM on Programming Languages,
vol. 8, no. PLDI, pp. 1485–1509, 2024.

[14] P. W. O’Hearn, “Incorrectness logic,” Proceedings of the ACM on
Programming Languages, vol. 4, no. POPL, pp. 1–32, 2019.

[15] I. Cohen and D. Peled, “Llm-based scheme for synthesis of formal
verification algorithms,” in International Conference on Bridging the
Gap between AI and Reality, pp. 167–182, Springer, 2024.

[16] L. Lindemann, X. Qin, J. V. Deshmukh, and G. J. Pappas, “Conformal
prediction for stl runtime verification,” in Proceedings of the ACM/IEEE
14th International Conference on Cyber-Physical Systems (with CPS-IoT
Week 2023), pp. 142–153, 2023.

[17] H. Mokrani, Assistance au raffinement dans la conception des systèmes
embarqués. PhD thesis, Télécom ParisTech, 2014.

[18] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[19] H. Nielson and F. Nielson, “Semantics with applications: A formal
introduction, revised edn.(july 1999),” 1992.

[20] M. Rainer-Harbach, Methods and tools for the formal verification of
software: an analysis and comparison. PhD thesis, 2011.

412 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 4, DECEMBER 2025

Asma Bezza is currently pursuing her Ph.D.
in Computer Science at the University of Oum
El Bouaghi, Algeria, and conducting research at
the ICOSI Laboratory, Abbes Laghrour University,
Khenchela. She earned her Magister degree in 2013.
Since 2014, she has served as an assistant professor
at Abbes Laghrour University, where she contributes
to research on e-learning, personalisation, formal
methods, and formal verification. H er work focuses
on formal refinement proof i n embedded systems.

Rohallah Benaboud is a senior lecturer at the
Department of Mathematics and Computer Sciences
- University of Oum El Bouaghi (Algeria). He
obtained his PhD degree in Computer Science
from University Abdelhamid Mehri Constantine 2,
Algeria in 2016. He is currently a member of
Distributed-Intelligent Systems Engineering (DISE)
team at ReLa(CS)2 Laboratory - University of
Oum El Bouaghi. Rohallah Benaboud has published
many articles in many International Conferences and
Journals. His research interests include Internet of

Things, Service Oriented Computing, Machine/Deep Learning and Multi-
Agents Systems.

Toufik Messaoud Maarouk is a Professor at
the Department of Computer Science, Faculty of
Sciences and Technology, at the University of
Khenchela, Algeria. He received his Ph.D. in Com-
puter Science from Constantine University, Algeria,
in 2012. He currently serves as the Director of the
ICOSI Laboratory . His research focuses on formal
methods for the specification and verification of
concurrent and distributed systems, with particular
emphasis on concurrency theory, formal semantics,
and process algebras. He has supervised several

doctoral theses in the fields of formal verification and multi-agent systems,
leading to applications in intelligent systems and real-time environments.

Ameur-Boulifa currently works at the Department
of Communications Electronics, Telecom Paris,
Institut Polytechnique de Paris. Rabéa does research
in the design, testing, and verification of reliable
computer systems. Her current projects include the
development of safe and secure embedded systems.

A. BEZZA et al.: FORMAL VERIFICATION OF THE CORRECTNESS AND SOUNDNESS OF A POMSET-TO-LTS 413

