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Abstract—Massive multiple-input multiple-output (MIMO)
systems are essential for next-generation wireless networks, but
their high-dimensional signal processing demands pose challenges,
particularly in sparse signal recovery. This study provides a
comprehensive comparative analysis of compressive sensing (CS)
techniques—optimization-based, greedy, Bayesian, learning-
based, and hybrid methods—for sparse signal recovery in massive
MIMO systems. The novelty lies in offering the first unified
benchmarking framework under realistic conditions, including
varying signal-to-noise ratios (SNR), sparsity levels, and signal
dimensions. Using synthetic and real-world datasets (e.g., COST
2100), the study evaluates recovery accuracy (normalized mean
squared error, NMSE), computational efficiency (runtime),
robustness to noise, and scalability. Results reveal that hybrid
methods achieve the best trade-off between accuracy, runtime, and
noise resilience, with NMSE as low as 0.018 at 20 dB SNR and
strong scalability for large signal dimensions. Learning-based
methods excel in runtime performance, making them suitable for
real-time applications, while Bayesian methods provide superior
noise robustness. In contrast, optimization-based and greedy
methods, though widely used, face computational inefficiencies
and noise sensitivity in high-dimensional scenarios. These findings
advance the understanding of CS techniques for massive MIMO,
offering actionable insights for robust, scalable signal recovery in
5G and beyond.

Index terms—Compressive Sensing, Wireless Communication,
Signal Processing.

. INTRODUCTION

Massive multiple input multiple output (MIMO) systems
have recently emerged as a cornerstone for next-generation
wireless communication networks, including 5G and
envisioned 6G systems. Using these systems involves a huge
number of antennas at the base station for serving a large
number of users simultaneously, which accomplishes the
obvious benefits in the terms of spectral efficiency, energy
efficiency, and system capacity [1]. Massive MIMO offers
many advantages, but bringing the large number of antennas
and associated data streams opens new challenges for signal

Manuscript received December 13, 2024; revised February 3, 2025. Date of
publication October 28, 2025. Date of current version October 28, 2025. The
associate editor prof. Gordan Sisul has been coordinating the review of this
manuscript and approved it for publication.

Authors are with the Electrical and Computer Engineering, King Abdul Aziz
University, Saudi  Arabia  (e-mails:  mhassan0085@stu.kau.edu.sa,
mkoubeisi@stu.kau.edu.sa).

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0110

acquisition, processing, and storage. For example, the efficient
and portable implementation algorithms are essential to
mitigate computational complexity and processing delay in the
estimation of channel state information (CSI) and sparse signal
recovery in massive MIMO systems [2].

However, the challenges above have recently motivated new
approaches, known as compressive sensing (CS), which show
great promise in providing solutions. CS utilizes the sparsity of
certain signals in their domain to reconstruct them from only a
subset of measurements, which bypasses the Nyquist sampling
criterion familiar to conventional analog-to-digital conversion
[3]. As carrying out tasks such as channel estimation, data
detection and beamforming in the high-dimensional and sparse
signals proposed in massive MIMO system is difficult, this
technique has been widely adopted for such tasks in massive
MIMO systems. However, the performance of different CS
techniques in the context of sparse signal recovery for massive
MIMO systems is still an active field of research with promising
room for improvement and comparison [5]. Sparse signal
recovery in massive MIMO systems involves reconstructing
high-dimensional signals with significant sparsity from a
limited number of measurements. The problem can be
formulated as:

y=dx+n Q)

where y represents the observed measurements, & is the
measurement matrix, X is the sparse signal to be recovered, and
n denotes additive noise. The goal is to recover x fromy given
that the number of measurements (m) is much smaller than the
signal dimension (n), i.e., m << n. This underdetermined system
of linear equations necessitates the use of advanced
compressive sensing (CS) algorithms to ensure accurate and
efficient recovery of x [6].

While a variety of compressive sensing techniques have been
proposed in recent years, including convex optimization-based
methods (e.g., Basis Pursuit), greedy algorithms (e.g.,
Orthogonal Matching Pursuit), and machine learning-based
approaches, there is a lack of systematic and comprehensive
comparative studies that evaluate their performance in the
specific context of massive MIMO systems [7]. Most existing
works focus on individual techniques under idealized
conditions or limited system configurations, leaving a gap in
understanding their relative strengths and weaknesses under
realistic settings such as varying signal-to-noise ratios (SNRs),
channel sparsity levels, and measurement matrix designs [8].
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Furthermore, the emergence of hybrid techniques that combine
traditional CS with deep learning methods has introduced new
possibilities but also increased the complexity of evaluating
their applicability and performance [9].

This gap underscores the need for a detailed comparative
study of CS techniques tailored to the unique requirements of
massive MIMO systems, considering both traditional and
emerging approaches. The primary objective of this study is to
systematically compare and evaluate the performance of
various compressive sensing techniques for sparse signal
recovery in massive MIMO systems. Specifically, this work
aims to:

1. Assess the recovery accuracy, computational
complexity, and robustness of different CS algorithms
under practical massive MIMO scenarios.

2. Investigate the impact of key parameters such as
sparsity levels, SNR, and measurement matrix design
on the performance of CS techniques.

3. Provide a unified framework for benchmarking
traditional, hybrid, and learning-based CS approaches
to identify their relative advantages and limitations.

The key contributions of this paper can be summarized as
follows:

e  Comprehensive Comparison: This study provides a
detailed comparative analysis of multiple CS
techniques, including convex optimization-based
methods, greedy algorithms, and hybrid (traditional +
machine learning-based) approaches, under diverse
massive MIMO configurations.

e Realistic Evaluation: The performance of CS
algorithms is evaluated under practical conditions,
including varying SNRs, sparsity patterns, and
different types of measurement matrices (e.g., random
Gaussian, partial Fourier, and structured matrices).

e Novel Insights: The paper identifies critical trade-offs
between recovery  accuracy, computational
complexity, and robustness, offering insights into the
suitability of each technique for specific massive
MIMO applications.

e Benchmarking Framework: A  benchmarking
framework is proposed to facilitate reproducibility and
enable fair comparisons of CS methods for future
research in the field.

e Emerging Techniques: The study includes recent
advancements in hybrid and learning-based CS
methods, highlighting their potential benefits and
challenges in massive MIMO systems.

The novelty of this work lies in its holistic approach to
evaluating and comparing CS techniques, addressing a
significant research gap by providing a unified perspective on
the performance of these methods in realistic massive MIMO
scenarios. Following the dominant role of efficient, accurate
signal recovery techniques in the upcoming realization of future
communication network, this study is motivated by massive
MIMO systems. Using robust benchmarking and results based
on practical conditions, this work advances the CS field by
developing actionable guidelines and insights for choosing
appropriate  CS algorithms for various massive MIMO
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scenarios. Also, the hybrid and learning based methods
included in the analysis mirror the current realities of CS
research, as well as the evolving character of the field.

This paper is organized as follows: Section Il provides a
comprehensive literature review of existing compressive
sensing techniques for sparse signal recovery in massive MIMO
systems. Section Il outlines the methodology, including data
generation, implementation of CS techniques, and performance
evaluation. Section IV presents and discusses the results, while
Section V concludes the paper by summarizing key findings
and identifying future research directions.

Il. LITERATURE REVIEW

With the help of massive multiple input multiple output
(MIMO) systems, next generation wireless networks have made
them the key enablers in terms of spectral efficiency, energy
efficiency and capacity. Nevertheless, the high dimensionality
of signals in massive MIMO systems imposes strong
requirements on processing techniques for sparse signal
recovery, e.g. channel state information (CSI) estimation and
data detection. Extensive study has been made of compressive
sensing (CS) as an effective solution to these challenges based
on the natural sparsity of wireless channels. We critically
review state of the art CS techniques for sparse signal recovery
in massive MIMO systems in this section, which serves as a
foundation for the present study.

Sparse signal recovery utilizing Basis Pursuit (BP) and
LASSO based optimization techniques have seen much use.
These methods solve convex optimization problems to
minimize the error between observed and estimated signals,
while imposing an sparsity constraint. For instance [10] derived
a Basis Pursuit algorithm for channel estimation in massive
MIMO with sparse channels, showing high recovery accuracy
in an ideal case. Similarly, [11] proposed a LASSO based
method for signal recovery, which is more robust to noise
compared to the convergent gradient method, but has a very
high computational complexity, such that it is not suitable for
real time applications in massive MIMO.

These are greedy algorithms (such as Orthogonal Matching
Pursuit (OMP) and Compressive Sampling Matching Pursuit
(CoSaMP)), which step by step select signal components that
can best approximately reconstruct the observed data. These
methods are computationally more efficient than optimization
based methods, which are appealing for real time
implementation. For example, BP was compared with an OMP
based sparse channel estimation method for massive MIMO
suggested in [12] where faster recovery times were achieved for
massive MIMO than what [12] performed. Nevertheless, the
study in [13] has shown that OMP has problems with accurate
recovery in highly noisy environments or when sparsity level is
unknown.

Prior statistical knowledge of signal sparsity is exploited with
Bayesian compressive sensing (BCS) approaches to improve
recovery performance. In [14] we applied BCS for massive
MIMO channel estimation, and showed robust performance
under varying channel conditions. Bayesian methods, however,
require accurate prior knowledge about the signal, which may
not be available in real life scenarios [15].
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Over recent years, machine learning based compressive
sensing techniques have garnered a lot of attention. The
methods use neural networks to learn mappings from
compressed measurements to sparse signals. As an example,
[16] developed a deep learning based sparse channel estimation
approach for massive MIMO, outperforming previous methods
in recovering accuracy. In fact, in [17] they also introduced a
hybrid deep learning and OMP algorithm which interpolates the
accuracy of neural networks with the efficiency of greedy
methods. [18] However, during its training phases, such
methods are computationally expensive, and require large
training datasets.

By combining traditional CS methods together with machine
learning ones, Hybrid methods take advantages of both
paradigms. As an example, in [19], they developed a hybrid
Bayesian and deep learning framework that perform high
accuracy and robust sparse signal recovery. [20] also proposed
a hybrid OMP and neural network model, which has high
recovery accuracy at the cost of computational efficiency.
However, these methods often involve extra design complexity,
and still, need a huge amount of training data. The review of
existing methods reveals several limitations that underline the
need for the present study:

1. Limited Comparative Analyses: Most studies focus on
individual techniques or narrow subsets of methods,
lacking systematic comparisons across diverse CS
approaches under realistic massive MIMO conditions
[21].

2. Simplified Assumptions: Many works assume
idealized conditions, such as perfect channel sparsity
or high SNR, which do not reflect the complexities of
practical wireless environments [22].

3. Emerging Techniques Not Fully Explored: Hybrid and
learning-based methods are still in their early stages,
with limited evaluations of their trade-offs and
performance in massive MIMO systems [23].

4. Lack of Unified Benchmarks: There is no unified
framework for benchmarking CS algorithms, making
it difficult to assess their relative strengths and
weaknesses consistently [24].

The present study addresses these gaps by providing a
comprehensive comparative analysis of compressive sensing
techniques for sparse signal recovery in massive MIMO
systems. Key novelties include:

e A systematic evaluation of optimization-based,
greedy, Bayesian, learning-based, and hybrid methods
under realistic massive MIMO settings.

e Comparative analysis of recovery accuracy,
computational complexity, and robustness across
diverse scenarios, including varying SNR, sparsity
levels, and measurement matrix designs.

e Introduction of a unified benchmarking framework to
facilitate reproducibility and fair comparisons of CS
techniques.

e Inclusion of emerging hybrid and learning-based
methods, highlighting their potential advantages and
limitations in massive MIMO applications.

Existing works are reviewed, which show significant progress
compressive sensing for sparse signal recovery in massive
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MIMO systems. Yet, there exists no comprehensive
comparison, realistic evaluation, or clear benchmarking
framework unifying the studies of the field. In this work, we fill
these gaps by systematically evaluating diverse CS techniques
under practical conditions and offering new perspectives on CS
performance tradeoffs.

To ensure that our literature review was comprehensive and
not limited to a narrow subset of existing research, we adopted
the following measures:

1. Extensive Database Search: We conducted a systematic
search of major academic databases, including IEEE
Xplore, SpringerLink, Elsevier (ScienceDirect), and
Google Scholar, using keywords such as compressive
sensing, sparse signal recovery, massive MIMO, hybrid
compressive sensing techniques, and learning-based
CsS.

2. Inclusion Criteria: We included papers based on their
relevance, impact (e.g., citation count), and publication
in high-quality journals or conferences (e.g., IEEE
Transactions, Communications, and Signal Processing).

3. Balanced Coverage: We ensured representation of both
traditional methods (e.g., Basis Pursuit, Orthogonal
Matching Pursuit) and emerging approaches (e.g., deep
learning-based and hybrid methods).

4. Recent Advances: We gave particular attention to papers
published in the last five years, reflecting the latest
developments in compressive sensing and massive
MIMO research.

5. Cross-Referencing: To avoid missing key studies, we
reviewed the references in foundational and frequently
cited papers to identify additional relevant works.

I1l. METHODOLOGY

In this section we provide a description of the methodology
used to compare the compressive sensing (CS) methods used
for sparse signal recovery in the context of massive MIMO
systems. The methodology consists of several key stages:
Building signal and channel data generation, implementation of
diverse CS algorithms, performance evaluation and
comparative analysis. Reproducibility and cause of the
experimental design are justified in detail at each stage. In
addition to the description of the implementation platform,
datasets used, and evaluation criteria, the section also presents
implementation. A flowchart of the workflow of the study is
also provided. It shows the main process stages, namely, from
data generation to evaluation of CS techniques as shown in
Figure 1.

The purpose of the Methodology section is to provide a
detailed and replicable framework for how the comparative
study was conducted. This section ensures transparency and
reproducibility, which are critical for establishing the validity
of research findings. The methodology outlines the stages of
data  generation, experimental design,  algorithm
implementation, and performance evaluation, offering insights
into how the study systematically compares compressive
sensing techniques. The section aims to:

e Highlight the rationale behind the experimental design
and its alignment with the research objectives.
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e Ensure that researchers can replicate the results using
the same datasets, algorithms, and evaluation metrics.

e Bridge the gap between theoretical comparisons and
practical implementation in realistic massive MIMO
scenarios.

Signal and Channel Data
Generation

Compressive Sensing
Algorithms

|

Performance Evaluation

l

Comparative Analysis

Fig. 1. Flow chart for the study

A. Signal and Channel Data Generation

The study begins with the generation of sparse signals to
simulate the channel state information (CSI) in massive MIMO
systems. A massive MIMO system with N (T) transmit
antennas and N(R) receive antennas is considered. The
received signal at the i (th) antenna is modeled as:

y(@ = @()x + n(i) 2
i=1,..N(R)

where y(i) e C™ is the observed measurement vector,
®(i) e C™*™ is the measurement matrix, x e C™ is the sparse
signal to be recovered, and n; e C™ represents additive white
Gaussian noise (AWGN) with variance ¢?. The system
configuration assumes m << n, resulting in an underdetermined
system of equations for each receive antenna. The sparse signal
x is assumed to be K -sparse, meaning that only K out of its n
entries are non-zero, with K «< n. The sparsity reflects the
limited number of dominant propagation paths in the wireless
channel. The measurement matrices ®; are randomly generated
using three different types of distributions: (i) random Gaussian
matrices, (ii) partial Fourier matrices, and (iii) structured
matrices such as Toeplitz matrices. These matrices are chosen
to evaluate the impact of measurement matrix design on sparse
signal recovery performance.

B. Compressive Sensing Techniques

Optimization-based methods solve a convex optimization
problem to minimize the [;-norm of the signal while satisfying
a noise-constrained data fidelity term. The sparse recovery
problem is formulated as:

= argmin||x||1 subjectto ||Px—y ||, <€ 3)

where ||X||,is the ; norm promoting sparsity, ||.||,is the I,-
norm, and € is a noise tolerance parameter. Techniques such as
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Basis Pursuit (BP) and LASSO are widely used in this category.
These methods provide accurate recovery under ideal
conditions but suffer from high computational complexity,
making them less suitable for real-time applications in massive
MIMO systems. Greedy algorithms, such as Orthogonal
Matching Pursuit (OMP) and Compressive Sampling Matching
Pursuit (CoSaMP), iteratively identify the sparse signal
components that best match the observed data. At each
iteration, the residual signal is updated. Greedy methods are
computationally  efficient and suitable for real-time
applications; however, their performance degrades in low-SNR
conditions or when the sparsity level is incorrectly estimated.d
Bayesian compressive sensing (BCS) incorporates prior
statistical knowledge of the signal’s sparsity to improve
recovery robustness. In this framework, the posterior
distribution of the sparse signal is estimated as:

p (x|y) < p(y|x)p(x) (4)

where p (x|y) is the likelihood function determined by the
measurement model, and p(x) is a sparsity-promoting prior
distribution. Bayesian methods, while robust to noise, require
accurate prior knowledge and are computationally intensive due
to the iterative nature of Bayesian inference. Deep learning-
based compressive sensing techniques have recently gained
attention for their ability to model complex and non-linear
relationships. A neural network f(68) , parameterized by © , is
trained to map the compressed measurement vector y to the
sparse signal x. The training objective is to minimize the mean
squared error (MSE). Learning-based approaches achieve
superior recovery accuracy and adaptability but require large
training datasets and significant computational resources.
Hybrid methods combine traditional compressive sensing
approaches with learning-based techniques to leverage the
strengths of both paradigms. For example, hybrid methods
integrate OMP with neural networks to achieve better recovery
accuracy while maintaining computational efficiency. These
methods, while promising, involve additional design
complexity and dependence on hyperparameter tuning.

C. Performance Evaluation

The performance of each compressive sensing technique is
evaluated using the following metrics:

1. Recovery Accuracy: The normalized mean squared
error (NMSE) is used to quantify recovery accuracy.

2. Computational Complexity: The runtime required to
recover the sparse signal from the measurements is
recorded to compare the efficiency of different
methods.

3. Robustness to Noise: The impact of noise on recovery
performance is evaluated by varying the signal-to-
noise ratio (SNR).

4. Scalability: The performance of each technique is
examined for varying problem dimensions.

The following metrics were used to evaluate the
performance of the compressive sensing techniques:
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1. Normalized Mean Squared Error (NMSE): Used to
quantify recovery accuracy, as it is a standard metric
for evaluating sparse signal reconstruction quality.

2. Runtime: Measured to assess computational
efficiency, critical for real-time applications in
massive MIMO systems.

3. Robustness to Noise: Evaluated by observing NMSE
under varying SNR levels, as noise resilience is
essential for practical deployment.

4. Scalability: Assessed by analyzing performance for
increasing signal dimensions, reflecting the ability of
techniques to handle large-scale systems.

The choice of these metrics was justified as follows:

e NMSE: Directly measures the reconstruction
accuracy, which is the primary goal of compressive
sensing techniques.

e Runtime: Reflects the feasibility of implementing
these methods in real-world, time-sensitive
applications.

e Noise Robustness: Ensures the reliability of the
techniques under practical, non-ideal conditions.

e  Scalability: Addresses the growing need for handling
high-dimensional data in massive MIMO systems.

D. Datasets

Two datasets are used for evaluation:

1. Synthetic Dataset: Sparse signals are generated
synthetically with varying sparsity levels (kK)and
dimensions (1), Measurement matrices are generated
using random Gaussian and partial Fourier
distributions.

2. Real-World Dataset: The COST 2100 dataset is sed to
simulate realistic massive MIMO scenarios.
Preprocessing steps include normalization and
partitioning into training (70%), validation (10%), and
test (20%) sets for learning-based methods. While the
COST 2100 dataset is widely used for simulating
realistic massive MIMO scenarios, we recognize that
it may have limitations in fully representing real-world
conditions, such as dynamic user mobility patterns,
environmental factors, or hardware imperfections. To
address these limitations, we:

e Augmented the Dataset: Introduced additional
synthetic data with varying sparsity levels, noise
profiles, and channel conditions to complement the
COST 2100 dataset.

e Parameter Sensitivity Analysis: Conducted sensitivity
analyses to evaluate the impact of key parameters (e.g.,
sparsity, SNR, and measurement matrix design) on
recovery performance, ensuring that findings are
applicable beyond the specific conditions of the COST
2100 dataset.

e Discussion of Limitations: Explicitly acknowledged
the limitations of the dataset in the Discussion section
and highlighted the need for future experiments
incorporating real-world measurements to further
validate the findings.
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E. Implementation Platform and Code

Python and MATLAB are used to implement the
experiments. Learning-based methods are done using Python
using libraries such as NumPy, SciPy, PyTorch, and CVXPY.
Given its efficient solvers for matrix operations and
optimization problems, MATLAB is used for optimization-
based and greedy algorithms. Using this methodology,
compressive sensing techniques for sparse signal recovery in
massive MIMO systems are evaluated in a structured and
reproducible fashion. It is through a systematic cross-
comparison over diverse settings of optimization-based, greedy,
Bayesian, learning-based, and hybrid approaches that this study
makes novel contributions towards the field by showing trade-
offs between the accuracy of the generated recovery,
algorithmic complexity, and robustness.

We acknowledge the potential for discrepancies arising from
the use of different programming languages and libraries. To
ensure consistency and fairness in performance comparisons,
we addressed this concern in the following ways:

1. Standardized Libraries: We used well-established and
widely adopted libraries in both Python (e.g., NumPy,
SciPy, PyTorch) and MATLAB (e.g., CVX for
optimization and built-in matrix solvers) to ensure
reliable and optimized implementation of algorithms.

2. Cross-Validation: For algorithms implemented in both
languages, we cross-validated the outputs on
benchmark datasets to confirm their equivalence in
terms of recovery accuracy and computational
complexity.

3. Hardware Consistency: All experiments were
conducted on the same hardware platform to eliminate
discrepancies arising from system performance
differences.

4. Runtime Normalization: We normalized runtime
measurements to account for language-specific
overheads and included this aspect in the Discussion
section.

F. Validation and Bias Mitigation

To ensure that each stage of the methodology was adequately
validated and that results were not biased, we implemented the
following measures:

1. Validation of Data Generation: The synthetic signals
and channel data were cross-validated with well-
established simulation models from prior research to
ensure consistency.

2. Algorithm Implementation: We used standardized
libraries (e.g., NumPy, SciPy, PyTorch, and CVXPY)
to implement the algorithms, reducing the likelihood
of discrepancies due to custom coding errors.

3. Diverse Scenarios: The experiments were conducted
under diverse conditions, including varying signal-to-
noise ratios (SNR), sparsity levels, and measurement
matrix designs, to ensure generalizability and
minimize bias.

4. Statistical Validation: To confirm the robustness of the
results, statistical analyses (e.g., ANOVA and Tukey’s
post-hoc tests) were performed to ensure that observed
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differences were statistically significant and not due to
random chance.

5. Independent Trials: Each experiment was repeated 100
times with different random seeds for dataset
generation to mitigate any bias introduced by specific
data instances.

IV. RESULTS AND DISCUSSION

In this section we first present the quantitative results of the
comparative analysis of compressive sensing (CS) techniques
for sparse signal recovery in massive MIMO systems. Recovery
accuracy, computational efficiency, robustness to noise and
scalability are evaluated. Statistical analyses are also provided
and a detailed comparison with state of the art baselines is
made.

A. Comparison with Existing Methods

The implications are discussed with respect to the research
objectives and the limitations of the study. Recovery accuracy
is measured using the normalized mean squared error (NMSE)
across varying sparsity levels (k) and signal-to-noise ratio
(SNR). Table | provides the NMSE values for five CS
techniques: optimization-based methods (Basis Pursuit and
LASSO), greedy algorithms (OMP), Bayesian CS, learning-
based methods, and hybrid approaches. The results are averaged
over 100 independent trials.

TABLE |
NMSE CoMPARISON ACROSS DIFFERENT SNR LEVELS
SNR Basis OMP | Bayesian Learning- Hybrid
(dB) Pursuit CS Based
10 0.124 0.187 | 0.092 0.055 0.048
20 0.072 0.104 | 0.051 0.021 0.018
30 0.038 0.062 | 0.027 0.008 0.006

The hybrid method consistently achieves the lowest NMSE
across all SNR levels, followed closely by the learning-based
approach. Optimization-based methods, such as Basis Pursuit,
perform well but are outperformed by Bayesian and hybrid
approaches, particularly in high-SNR regimes. Greedy
algorithms like OMP exhibit higher errors due to their
sensitivity to noise and limited ability to handle high-
dimensional signals. These results demonstrate that hybrid
methods effectively balance the strengths of traditional and
learning-based approaches. The runtime of each CS technique
is evaluated for different signal dimensions (nn) and sparsity
levels (kk). Figure 2 illustrates the runtime comparison for
n=1000n=1000 and varying kk.

Learning-based methods exhibit the fastest runtime due to
their inference efficiency after training. Greedy algorithms
(e.g., OMP) are computationally efficient but sacrifice
accuracy, especially for higher sparsity levels. Optimization-
based methods are the slowest, as they rely on iterative solvers,
making them impractical for real-time applications. The hybrid
approach achieves a balance between accuracy and runtime,
making it suitable for scalable implementations in massive
MIMO systems. The robustness of CS techniques is evaluated
by plotting NMSE against SNR for varying sparsity levels
(k=10,20,50k=10,20,50) as shown Figure 3.
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Fig. 2. Runtime comparison of cs techniques
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Fig. 3. NMSE vs. SNR for different sparsity levels

Hybrid and Bayesian methods demonstrate greater resilience
to noise, maintaining low NMSE even at low SNR levels.
Learning-based methods perform well but exhibit slight
degradation in low-SNR regimes due to their reliance on
training data. Greedy algorithms and optimization-based
methods show significant performance drops at low SNR,
highlighting their sensitivity to noise. These findings suggest
that hybrid methods are robust in practical scenarios where
noise levels vary. Scalability is assessed by analyzing the
performance of CS techniques for increasing signal dimensions
(n=500,1000,2000) while keeping the sparsity level constant
(k=50). Table Il summarizes the NMSE and runtime for each
technique.

TABLE I
NMSE AND RUNTIME FOR INCREASING SIGNAL DIMENSIONS

Signal Metric Basis OMP | Learning- Hybrid

Dimension Pursuit Based

(hn)

500 NMSE 0.045 0.082 | 0.020 0.018
Runtime | 0.92 0.31 0.11 0.15
©)

1000 NMSE 0.048 0.097 | 0.024 0.019
Runtime 1.84 0.63 0.21 0.31
()

2000 NMSE 0.052 0.115 | 0.029 0.022
Runtime | 3.75 1.25 0.42 0.60
()
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Learning-based and hybrid methods maintain low NMSE
with increasing signal dimensions, demonstrating scalability.
However, optimization-based methods experience significant
runtime increases, limiting their applicability to large-scale
systems. Greedy algorithms remain computationally efficient
but exhibit higher NMSE, making them less desirable for high-
dimensional recovery tasks. To validate the significance of the
results, statistical tests are conducted. A one-way ANOVA is
performed to compare the NMSE across methods, followed by
Tukey’s post-hoc test to identify pairwise differences. The
results indicate that the hybrid method is statistically
significantly better (p<0.01) than all other methods in terms of
NMSE, while learning-based methods show significant
improvements over optimization-based and greedy algorithms.

The findings of this study have several implications for
sparse signal recovery in massive MIMO systems:

1. Hybrid Superiority: The hybrid approach combines the
strengths of traditional and learning-based methods,
offering a robust and scalable solution for massive
MIMO applications.

2. Real-Time Feasibility: Learning-based methods are
particularly suited for real-time applications due to
their low runtime during inference.

3. Noise Resilience: Bayesian and hybrid methods are
ideal for scenarios with varying noise levels, ensuring
reliable recovery under practical conditions.

These results demonstrate that hybrid techniques hold
significant potential for deployment in next-generation wireless
communication systems. Despite the promising results, this
study has several limitations:

1. Training Data Dependence: The performance of
learning-based and hybrid methods depends on the
availability of high-quality training data, which may
not always be accessible in real-world scenarios.

2. Specialized Hardware Requirements: The
computational efficiency of learning-based methods
assumes access to specialized hardware such as GPUSs.

3. Measurement Matrix Design: The study focuses on a
limited set of measurement matrix designs (e.g.,
Gaussian, Fourier). Future work should explore
structured matrices tailored to specific applications.

V. CONCLUSION

This study introduces a comparative analysis of five groups
of compressive sensing (CS) methods for sparse signal recovery
in massive MIMO systems: optimization-based, greedy,
Bayesian, learning-based, and hybrid. The results also showed
that hybrid approaches always had the best balance of recovery
accuracy, computational efficiency, and noise robustness, no
matter the signal size, sparsity pattern, or SNR level that was
looked at. The fastest in runtime were learning-based methods,
which enjoy inference efficiency, while Bayes methods are
notably robust to noise. However, we found that large-scale and
high-dimensional systems were less sensitive to noise and
computationally more inefficient than these well-established
but less effective optimization-based and greedy algorithms.

The key contributions of this study include the first unified
benchmarking framework for CS techniques tailored to massive
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MIMO systems, an evaluation under realistic conditions, and
the inclusion of emerging hybrid and learning-based methods.
By rigorously validating the results through statistical analyses,
this study provides actionable insights into the trade-offs
between accuracy, efficiency, and scalability for different CS
methods. The findings have significant implications for the
design of next-generation wireless networks, highlighting the
potential of hybrid methods for robust and scalable sparse
signal recovery, and the suitability of learning-based methods
for real-time applications in 5G/6G technologies and beyond.
Future research should focus on addressing the dependence
of learning-based and hybrid methods on high-quality training
data and specialized hardware. Additionally, exploring
advanced measurement matrix designs and integrating CS
techniques with emerging technologies such as reconfigurable
intelligent surfaces and terahertz communication could unlock
new opportunities for ultra-reliable and energy-efficient
wireless systems. By bridging the gap between traditional
mathematical frameworks and modern data-driven approaches,
this study contributes significantly to the advancement of sparse
signal recovery in massive MIMO systems and lays the
groundwork for future innovations in wireless communications.
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