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Abstract—Massive multiple-input multiple-output (MIMO) 

systems are essential for next-generation wireless networks, but 

their high-dimensional signal processing demands pose challenges, 

particularly in sparse signal recovery. This study provides a 

comprehensive comparative analysis of compressive sensing (CS) 

techniques—optimization-based, greedy, Bayesian, learning-

based, and hybrid methods—for sparse signal recovery in massive 

MIMO systems. The novelty lies in offering the first unified 

benchmarking framework under realistic conditions, including 

varying signal-to-noise ratios (SNR), sparsity levels, and signal 

dimensions. Using synthetic and real-world datasets (e.g., COST 

2100), the study evaluates recovery accuracy (normalized mean 

squared error, NMSE), computational efficiency (runtime), 

robustness to noise, and scalability. Results reveal that hybrid 

methods achieve the best trade-off between accuracy, runtime, and 

noise resilience, with NMSE as low as 0.018 at 20 dB SNR and 

strong scalability for large signal dimensions. Learning-based 

methods excel in runtime performance, making them suitable for 

real-time applications, while Bayesian methods provide superior 

noise robustness. In contrast, optimization-based and greedy 

methods, though widely used, face computational inefficiencies 

and noise sensitivity in high-dimensional scenarios. These findings 

advance the understanding of CS techniques for massive MIMO, 

offering actionable insights for robust, scalable signal recovery in 

5G and beyond. 

  Index terms—Compressive Sensing, Wireless Communication, 

Signal Processing. 

I. INTRODUCTION

Massive multiple input multiple output (MIMO) systems 

have recently emerged as a cornerstone for next-generation 

wireless communication networks, including 5G and 

envisioned 6G systems. Using these systems involves a huge 

number of antennas at the base station for serving a large 

number of users simultaneously, which accomplishes the 

obvious benefits in the terms of spectral efficiency, energy 

efficiency, and system capacity [1]. Massive MIMO offers 

many advantages, but bringing the large number of antennas 

and associated data streams opens new challenges for signal 
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acquisition, processing, and storage. For example, the efficient 

and portable implementation algorithms are essential to 

mitigate computational complexity and processing delay in the 

estimation of channel state information (CSI) and sparse signal 

recovery in massive MIMO systems [2]. 

However, the challenges above have recently motivated new 

approaches, known as compressive sensing (CS), which show 

great promise in providing solutions. CS utilizes the sparsity of 

certain signals in their domain to reconstruct them from only a 

subset of measurements, which bypasses the Nyquist sampling 

criterion familiar to conventional analog-to-digital conversion 

[3]. As carrying out tasks such as channel estimation, data 

detection and beamforming in the high-dimensional and sparse 

signals proposed in massive MIMO system is difficult, this 

technique has been widely adopted for such tasks in massive 

MIMO systems. However, the performance of different CS 

techniques in the context of sparse signal recovery for massive 

MIMO systems is still an active field of research with promising 

room for improvement and comparison [5]. Sparse signal 

recovery in massive MIMO systems involves reconstructing 

high-dimensional signals with significant sparsity from a 

limited number of measurements. The problem can be 

formulated as: 

𝑦 =  Φ 𝑥 + 𝑛 (1) 

where 𝑦 represents the observed measurements, Φ is the 

measurement matrix, x is the sparse signal to be recovered, and 

n denotes additive noise. The goal is to recover x from y  given 

that the number of measurements (m) is much smaller than the 

signal dimension (n), i.e., m << n. This underdetermined system 

of linear equations necessitates the use of advanced 

compressive sensing (CS) algorithms to ensure accurate and 

efficient recovery of x  [6]. 

While a variety of compressive sensing techniques have been 

proposed in recent years, including convex optimization-based 

methods (e.g., Basis Pursuit), greedy algorithms (e.g., 

Orthogonal Matching Pursuit), and machine learning-based 

approaches, there is a lack of systematic and comprehensive 

comparative studies that evaluate their performance in the 

specific context of massive MIMO systems [7]. Most existing 

works focus on individual techniques under idealized 

conditions or limited system configurations, leaving a gap in 

understanding their relative strengths and weaknesses under 

realistic settings such as varying signal-to-noise ratios (SNRs), 

channel sparsity levels, and measurement matrix designs [8].
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Furthermore, the emergence of hybrid techniques that combine 

traditional CS with deep learning methods has introduced new 

possibilities but also increased the complexity of evaluating 

their applicability and performance [9]. 

This gap underscores the need for a detailed comparative 

study of CS techniques tailored to the unique requirements of 

massive MIMO systems, considering both traditional and 

emerging approaches. The primary objective of this study is to 

systematically compare and evaluate the performance of 

various compressive sensing techniques for sparse signal 

recovery in massive MIMO systems. Specifically, this work 

aims to: 

1. Assess the recovery accuracy, computational 

complexity, and robustness of different CS algorithms 

under practical massive MIMO scenarios. 

2. Investigate the impact of key parameters such as 

sparsity levels, SNR, and measurement matrix design 

on the performance of CS techniques. 

3. Provide a unified framework for benchmarking 

traditional, hybrid, and learning-based CS approaches 

to identify their relative advantages and limitations. 

 

The key contributions of this paper can be summarized as 

follows: 

• Comprehensive Comparison: This study provides a 

detailed comparative analysis of multiple CS 

techniques, including convex optimization-based 

methods, greedy algorithms, and hybrid (traditional + 

machine learning-based) approaches, under diverse 

massive MIMO configurations. 

• Realistic Evaluation: The performance of CS 

algorithms is evaluated under practical conditions, 

including varying SNRs, sparsity patterns, and 

different types of measurement matrices (e.g., random 

Gaussian, partial Fourier, and structured matrices). 

• Novel Insights: The paper identifies critical trade-offs 

between recovery accuracy, computational 

complexity, and robustness, offering insights into the 

suitability of each technique for specific massive 

MIMO applications. 

• Benchmarking Framework: A benchmarking 

framework is proposed to facilitate reproducibility and 

enable fair comparisons of CS methods for future 

research in the field. 

• Emerging Techniques: The study includes recent 

advancements in hybrid and learning-based CS 

methods, highlighting their potential benefits and 

challenges in massive MIMO systems. 

 

The novelty of this work lies in its holistic approach to 

evaluating and comparing CS techniques, addressing a 

significant research gap by providing a unified perspective on 

the performance of these methods in realistic massive MIMO 

scenarios. Following the dominant role of efficient, accurate 

signal recovery techniques in the upcoming realization of future 

communication network, this study is motivated by massive 

MIMO systems. Using robust benchmarking and results based 

on practical conditions, this work advances the CS field by 

developing actionable guidelines and insights for choosing 

appropriate CS algorithms for various massive MIMO 

scenarios. Also, the hybrid and learning based methods 

included in the analysis mirror the current realities of CS 

research, as well as the evolving character of the field. 

This paper is organized as follows: Section II provides a 

comprehensive literature review of existing compressive 

sensing techniques for sparse signal recovery in massive MIMO 

systems. Section III outlines the methodology, including data 

generation, implementation of CS techniques, and performance 

evaluation. Section IV presents and discusses the results, while 

Section V concludes the paper by summarizing key findings 

and identifying future research directions. 

 

II.  LITERATURE REVIEW 
 

With the help of massive multiple input multiple output 

(MIMO) systems, next generation wireless networks have made 

them the key enablers in terms of spectral efficiency, energy 

efficiency and capacity. Nevertheless, the high dimensionality 

of signals in massive MIMO systems imposes strong 

requirements on processing techniques for sparse signal 

recovery, e.g. channel state information (CSI) estimation and 

data detection. Extensive study has been made of compressive 

sensing (CS) as an effective solution to these challenges based 

on the natural sparsity of wireless channels. We critically 

review state of the art CS techniques for sparse signal recovery 

in massive MIMO systems in this section, which serves as a 

foundation for the present study. 

Sparse signal recovery utilizing Basis Pursuit (BP) and 

LASSO based optimization techniques have seen much use. 

These methods solve convex optimization problems to 

minimize the error between observed and estimated signals, 

while imposing an sparsity constraint. For instance [10] derived 

a Basis Pursuit algorithm for channel estimation in massive 

MIMO with sparse channels, showing high recovery accuracy 

in an ideal case. Similarly, [11] proposed a LASSO based 

method for signal recovery, which is more robust to noise 

compared to the convergent gradient method, but has a very 

high computational complexity, such that it is not suitable for 

real time applications in massive MIMO. 

These are greedy algorithms (such as Orthogonal Matching 

Pursuit (OMP) and Compressive Sampling Matching Pursuit 

(CoSaMP)), which step by step select signal components that 

can best approximately reconstruct the observed data. These 

methods are computationally more efficient than optimization 

based methods, which are appealing for real time 

implementation. For example, BP was compared with an OMP 

based sparse channel estimation method for massive MIMO 

suggested in [12] where faster recovery times were achieved for 

massive MIMO than what [12] performed. Nevertheless, the 

study in [13] has shown that OMP has problems with accurate 

recovery in highly noisy environments or when sparsity level is 

unknown. 

Prior statistical knowledge of signal sparsity is exploited with 

Bayesian compressive sensing (BCS) approaches to improve 

recovery performance. In [14] we applied BCS for massive 

MIMO channel estimation, and showed robust performance 

under varying channel conditions. Bayesian methods, however, 

require accurate prior knowledge about the signal, which may 

not be available in real life scenarios [15]. 
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Over recent years, machine learning based compressive 

sensing techniques have garnered a lot of attention. The 

methods use neural networks to learn mappings from 

compressed measurements to sparse signals. As an example, 

[16] developed a deep learning based sparse channel estimation 

approach for massive MIMO, outperforming previous methods 

in recovering accuracy. In fact, in [17] they also introduced a 

hybrid deep learning and OMP algorithm which interpolates the 

accuracy of neural networks with the efficiency of greedy 

methods. [18] However, during its training phases, such 

methods are computationally expensive, and require large 

training datasets. 

By combining traditional CS methods together with machine 

learning ones, Hybrid methods take advantages of both 

paradigms. As an example, in [19], they developed a hybrid 

Bayesian and deep learning framework that perform high 

accuracy and robust sparse signal recovery. [20] also proposed 

a hybrid OMP and neural network model, which has high 

recovery accuracy at the cost of computational efficiency. 

However, these methods often involve extra design complexity, 

and still, need a huge amount of training data. The review of 

existing methods reveals several limitations that underline the 

need for the present study: 

1. Limited Comparative Analyses: Most studies focus on 

individual techniques or narrow subsets of methods, 

lacking systematic comparisons across diverse CS 

approaches under realistic massive MIMO conditions 

[21]. 

2. Simplified Assumptions: Many works assume 

idealized conditions, such as perfect channel sparsity 

or high SNR, which do not reflect the complexities of 

practical wireless environments [22]. 

3. Emerging Techniques Not Fully Explored: Hybrid and 

learning-based methods are still in their early stages, 

with limited evaluations of their trade-offs and 

performance in massive MIMO systems [23]. 

4. Lack of Unified Benchmarks: There is no unified 

framework for benchmarking CS algorithms, making 

it difficult to assess their relative strengths and 

weaknesses consistently [24]. 

The present study addresses these gaps by providing a 

comprehensive comparative analysis of compressive sensing 

techniques for sparse signal recovery in massive MIMO 

systems. Key novelties include: 

• A systematic evaluation of optimization-based, 

greedy, Bayesian, learning-based, and hybrid methods 

under realistic massive MIMO settings. 

• Comparative analysis of recovery accuracy, 

computational complexity, and robustness across 

diverse scenarios, including varying SNR, sparsity 

levels, and measurement matrix designs. 

• Introduction of a unified benchmarking framework to 

facilitate reproducibility and fair comparisons of CS 

techniques. 

• Inclusion of emerging hybrid and learning-based 

methods, highlighting their potential advantages and 

limitations in massive MIMO applications. 

 

Existing works are reviewed, which show significant progress 

compressive sensing for sparse signal recovery in massive 

MIMO systems. Yet, there exists no comprehensive 

comparison, realistic evaluation, or clear benchmarking 

framework unifying the studies of the field. In this work, we fill 

these gaps by systematically evaluating diverse CS techniques 

under practical conditions and offering new perspectives on CS 

performance tradeoffs. 

To ensure that our literature review was comprehensive and 

not limited to a narrow subset of existing research, we adopted 

the following measures: 

1. Extensive Database Search: We conducted a systematic 

search of major academic databases, including IEEE 

Xplore, SpringerLink, Elsevier (ScienceDirect), and 

Google Scholar, using keywords such as compressive 

sensing, sparse signal recovery, massive MIMO, hybrid 

compressive sensing techniques, and learning-based 

CS. 

2. Inclusion Criteria: We included papers based on their 

relevance, impact (e.g., citation count), and publication 

in high-quality journals or conferences (e.g., IEEE 

Transactions, Communications, and Signal Processing). 

3. Balanced Coverage: We ensured representation of both 

traditional methods (e.g., Basis Pursuit, Orthogonal 

Matching Pursuit) and emerging approaches (e.g., deep 

learning-based and hybrid methods). 

4. Recent Advances: We gave particular attention to papers 

published in the last five years, reflecting the latest 

developments in compressive sensing and massive 

MIMO research. 

5. Cross-Referencing: To avoid missing key studies, we 

reviewed the references in foundational and frequently 

cited papers to identify additional relevant works. 

 

III.  METHODOLOGY  
 

In this section we provide a description of the methodology 

used to compare the compressive sensing (CS) methods used 

for sparse signal recovery in the context of massive MIMO 

systems. The methodology consists of several key stages: 

Building signal and channel data generation, implementation of 

diverse CS algorithms, performance evaluation and 

comparative analysis. Reproducibility and cause of the 

experimental design are justified in detail at each stage. In 

addition to the description of the implementation platform, 

datasets used, and evaluation criteria, the section also presents 

implementation. A flowchart of the workflow of the study is 

also provided. It shows the main process stages, namely, from 

data generation to evaluation of CS techniques as shown in 

Figure 1. 

The purpose of the Methodology section is to provide a 

detailed and replicable framework for how the comparative 

study was conducted. This section ensures transparency and 

reproducibility, which are critical for establishing the validity 

of research findings. The methodology outlines the stages of 

data generation, experimental design, algorithm 

implementation, and performance evaluation, offering insights 

into how the study systematically compares compressive 

sensing techniques. The section aims to: 

• Highlight the rationale behind the experimental design 

and its alignment with the research objectives. 
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• Ensure that researchers can replicate the results using 

the same datasets, algorithms, and evaluation metrics. 

• Bridge the gap between theoretical comparisons and 

practical implementation in realistic massive MIMO 

scenarios. 
 

 
 

Fig. 1. Flow chart for the study 

 

A. Signal and Channel Data Generation 
 

The study begins with the generation of sparse signals to 

simulate the channel state information (CSI) in massive MIMO 

systems. A massive MIMO system with 𝑵 (𝑻) transmit 

antennas and 𝑵(𝑹) receive antennas is considered. The 

received signal at the 𝒊 (𝒕𝒉) antenna is modeled as: 

 

𝒚(𝒊) = 𝚽(𝒊)𝒙 + 𝒏(𝒊)    
𝒊 = 𝟏, . . 𝑵(𝑹) 

 

(2) 

where 𝑦(𝑖) 𝜖 𝐶𝑚 is the observed measurement vector,  

Φ(𝑖) 𝜖 𝐶𝑚 𝑥 𝑛 is the measurement matrix, 𝑥 𝜖 𝐶𝑛 is the sparse 

signal to be recovered, and 𝑛𝑖  𝜖 𝐶𝑚  represents additive white 

Gaussian noise (AWGN) with variance 𝜎2. The system 

configuration assumes 𝑚 ≪ 𝑛, resulting in an underdetermined 

system of equations for each receive antenna. The sparse signal 

𝑥  is assumed to be K -sparse, meaning that only 𝐾 out of its 𝑛  

entries are non-zero, with 𝐾 ≪ 𝑛. The sparsity reflects the 

limited number of dominant propagation paths in the wireless 

channel. The measurement matrices Φ𝑖 are randomly generated 

using three different types of distributions: (i) random Gaussian 

matrices, (ii) partial Fourier matrices, and (iii) structured 

matrices such as Toeplitz matrices. These matrices are chosen 

to evaluate the impact of measurement matrix design on sparse 

signal recovery performance. 

 

B. Compressive Sensing Techniques 
 

Optimization-based methods solve a convex optimization 

problem to minimize the 𝑙1-norm of the signal while satisfying 

a noise-constrained data fidelity term. The sparse recovery 

problem is formulated as: 

 

𝑥 ̂ = arg min||𝑥||
1

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||Φ𝑥 − 𝑦 ||2 ≤ ∈  (3) 

where ||𝑋||1is the 𝑙1 norm promoting sparsity, ||. ||2is the 𝑙2-

norm, and 𝜖 is a noise tolerance parameter. Techniques such as 

Basis Pursuit (BP) and LASSO are widely used in this category. 

These methods provide accurate recovery under ideal 

conditions but suffer from high computational complexity, 

making them less suitable for real-time applications in massive 

MIMO systems. Greedy algorithms, such as Orthogonal 

Matching Pursuit (OMP) and Compressive Sampling Matching 

Pursuit (CoSaMP), iteratively identify the sparse signal 

components that best match the observed data. At each 

iteration, the residual signal is updated. Greedy methods are 

computationally efficient and suitable for real-time 

applications; however, their performance degrades in low-SNR 

conditions or when the sparsity level is incorrectly estimated.d 

Bayesian compressive sensing (BCS) incorporates prior 

statistical knowledge of the signal’s sparsity to improve 

recovery robustness. In this framework, the posterior 

distribution of the sparse signal is estimated as: 

 

𝑝 (𝑥|𝑦) ∝ 𝑝(𝑦|𝑥)𝑝(𝑥) (4) 

 

where 𝑝 (𝑥|𝑦) is the likelihood function determined by the 

measurement model, and 𝑝(𝑥) is a sparsity-promoting prior 

distribution. Bayesian methods, while robust to noise, require 

accurate prior knowledge and are computationally intensive due 

to the iterative nature of Bayesian inference. Deep learning-

based compressive sensing techniques have recently gained 

attention for their ability to model complex and non-linear 

relationships. A neural network 𝑓(𝜃) , parameterized by Θ , is 

trained to map the compressed measurement vector y to the 

sparse signal 𝑥. The training objective is to minimize the mean 

squared error (MSE). Learning-based approaches achieve 

superior recovery accuracy and adaptability but require large 

training datasets and significant computational resources. 

Hybrid methods combine traditional compressive sensing 

approaches with learning-based techniques to leverage the 

strengths of both paradigms. For example, hybrid methods 

integrate OMP with neural networks to achieve better recovery 

accuracy while maintaining computational efficiency. These 

methods, while promising, involve additional design 

complexity and dependence on hyperparameter tuning. 

 

C. Performance Evaluation 
 

The performance of each compressive sensing technique is 

evaluated using the following metrics: 

 

1. Recovery Accuracy: The normalized mean squared 

error (NMSE) is used to quantify recovery accuracy. 

2. Computational Complexity: The runtime required to 

recover the sparse signal from the measurements is 

recorded to compare the efficiency of different 

methods. 

3. Robustness to Noise: The impact of noise on recovery 

performance is evaluated by varying the signal-to-

noise ratio (SNR). 

4. Scalability: The performance of each technique is 

examined for varying problem dimensions. 

 

The following metrics were used to evaluate the 

performance of the compressive sensing techniques: 
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1. Normalized Mean Squared Error (NMSE): Used to 

quantify recovery accuracy, as it is a standard metric 

for evaluating sparse signal reconstruction quality. 

2. Runtime: Measured to assess computational 

efficiency, critical for real-time applications in 

massive MIMO systems. 

3. Robustness to Noise: Evaluated by observing NMSE 

under varying SNR levels, as noise resilience is 

essential for practical deployment. 

4. Scalability: Assessed by analyzing performance for 

increasing signal dimensions, reflecting the ability of 

techniques to handle large-scale systems. 

The choice of these metrics was justified as follows: 

• NMSE: Directly measures the reconstruction 

accuracy, which is the primary goal of compressive 

sensing techniques. 

• Runtime: Reflects the feasibility of implementing 

these methods in real-world, time-sensitive 

applications. 

• Noise Robustness: Ensures the reliability of the 

techniques under practical, non-ideal conditions. 

• Scalability: Addresses the growing need for handling 

high-dimensional data in massive MIMO systems. 

 

D. Datasets 
 

Two datasets are used for evaluation: 

 

1. Synthetic Dataset: Sparse signals are generated 

synthetically with varying sparsity levels and 

dimensions . Measurement matrices are generated 

using random Gaussian and partial Fourier 

distributions.  

2. Real-World Dataset: The COST 2100 dataset is sed to 

simulate realistic massive MIMO scenarios. 

Preprocessing steps include normalization and 

partitioning into training (70%), validation (10%), and 

test (20%) sets for learning-based methods. While the 

COST 2100 dataset is widely used for simulating 

realistic massive MIMO scenarios, we recognize that 

it may have limitations in fully representing real-world 

conditions, such as dynamic user mobility patterns, 

environmental factors, or hardware imperfections. To 

address these limitations, we: 

• Augmented the Dataset: Introduced additional 

synthetic data with varying sparsity levels, noise 

profiles, and channel conditions to complement the 

COST 2100 dataset. 

• Parameter Sensitivity Analysis: Conducted sensitivity 

analyses to evaluate the impact of key parameters (e.g., 

sparsity, SNR, and measurement matrix design) on 

recovery performance, ensuring that findings are 

applicable beyond the specific conditions of the COST 

2100 dataset. 

• Discussion of Limitations: Explicitly acknowledged 

the limitations of the dataset in the Discussion section 

and highlighted the need for future experiments 

incorporating real-world measurements to further 

validate the findings. 

 

E. Implementation Platform and Code 
 

Python and MATLAB are used to implement the 

experiments. Learning-based methods are done using Python 

using libraries such as NumPy, SciPy, PyTorch, and CVXPY. 

Given its efficient solvers for matrix operations and 

optimization problems, MATLAB is used for optimization-

based and greedy algorithms. Using this methodology, 

compressive sensing techniques for sparse signal recovery in 

massive MIMO systems are evaluated in a structured and 

reproducible fashion. It is through a systematic cross-

comparison over diverse settings of optimization-based, greedy, 

Bayesian, learning-based, and hybrid approaches that this study 

makes novel contributions towards the field by showing trade-

offs between the accuracy of the generated recovery, 

algorithmic complexity, and robustness. 

We acknowledge the potential for discrepancies arising from 

the use of different programming languages and libraries. To 

ensure consistency and fairness in performance comparisons, 

we addressed this concern in the following ways: 

1. Standardized Libraries: We used well-established and 

widely adopted libraries in both Python (e.g., NumPy, 

SciPy, PyTorch) and MATLAB (e.g., CVX for 

optimization and built-in matrix solvers) to ensure 

reliable and optimized implementation of algorithms. 

2. Cross-Validation: For algorithms implemented in both 

languages, we cross-validated the outputs on 

benchmark datasets to confirm their equivalence in 

terms of recovery accuracy and computational 

complexity. 

3. Hardware Consistency: All experiments were 

conducted on the same hardware platform to eliminate 

discrepancies arising from system performance 

differences. 

4. Runtime Normalization: We normalized runtime 

measurements to account for language-specific 

overheads and included this aspect in the Discussion 

section. 

 

F. Validation and Bias Mitigation  
 

To ensure that each stage of the methodology was adequately 

validated and that results were not biased, we implemented the 

following measures: 

1. Validation of Data Generation: The synthetic signals 

and channel data were cross-validated with well-

established simulation models from prior research to 

ensure consistency. 

2. Algorithm Implementation: We used standardized 

libraries (e.g., NumPy, SciPy, PyTorch, and CVXPY) 

to implement the algorithms, reducing the likelihood 

of discrepancies due to custom coding errors. 

3. Diverse Scenarios: The experiments were conducted 

under diverse conditions, including varying signal-to-

noise ratios (SNR), sparsity levels, and measurement 

matrix designs, to ensure generalizability and 

minimize bias. 

4. Statistical Validation: To confirm the robustness of the 

results, statistical analyses (e.g., ANOVA and Tukey’s 

post-hoc tests) were performed to ensure that observed 
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differences were statistically significant and not due to 

random chance. 

5. Independent Trials: Each experiment was repeated 100 

times with different random seeds for dataset 

generation to mitigate any bias introduced by specific 

data instances. 
 

 

IV.  RESULTS AND DISCUSSION 
 

In this section we first present the quantitative results of the 

comparative analysis of compressive sensing (CS) techniques 

for sparse signal recovery in massive MIMO systems. Recovery 

accuracy, computational efficiency, robustness to noise and 

scalability are evaluated. Statistical analyses are also provided 

and a detailed comparison with state of the art baselines is 

made.  

 

A. Comparison with Existing Methods  
 

The implications are discussed with respect to the research 

objectives and the limitations of the study. Recovery accuracy 

is measured using the normalized mean squared error (NMSE) 

across varying sparsity levels (k) and signal-to-noise ratio 

(SNR). Table I provides the NMSE values for five CS 

techniques: optimization-based methods (Basis Pursuit and 

LASSO), greedy algorithms (OMP), Bayesian CS, learning-

based methods, and hybrid approaches. The results are averaged 

over 100 independent trials. 
 

TABLE I 

NMSE COMPARISON ACROSS DIFFERENT SNR LEVELS 
 

SNR 

(dB) 

Basis 

Pursuit 

OMP Bayesian 

CS 

Learning-

Based 

Hybrid 

10 0.124 0.187 0.092 0.055 0.048 

20 0.072 0.104 0.051 0.021 0.018 

30 0.038 0.062 0.027 0.008 0.006 

 

The hybrid method consistently achieves the lowest NMSE 

across all SNR levels, followed closely by the learning-based 

approach. Optimization-based methods, such as Basis Pursuit, 

perform well but are outperformed by Bayesian and hybrid 

approaches, particularly in high-SNR regimes. Greedy 

algorithms like OMP exhibit higher errors due to their 

sensitivity to noise and limited ability to handle high-

dimensional signals. These results demonstrate that hybrid 

methods effectively balance the strengths of traditional and 

learning-based approaches. The runtime of each CS technique 

is evaluated for different signal dimensions (nn) and sparsity 

levels (kk). Figure 2 illustrates the runtime comparison for 

n=1000n=1000 and varying kk. 

Learning-based methods exhibit the fastest runtime due to 

their inference efficiency after training. Greedy algorithms 

(e.g., OMP) are computationally efficient but sacrifice 

accuracy, especially for higher sparsity levels. Optimization-

based methods are the slowest, as they rely on iterative solvers, 

making them impractical for real-time applications. The hybrid 

approach achieves a balance between accuracy and runtime, 

making it suitable for scalable implementations in massive 

MIMO systems. The robustness of CS techniques is evaluated 

by plotting NMSE against SNR for varying sparsity levels 

(k=10,20,50k=10,20,50) as shown Figure 3. 

 
 

Fig. 2. Runtime comparison of cs techniques 

 
 

 
Fig. 3. NMSE vs. SNR for different sparsity levels 

 

Hybrid and Bayesian methods demonstrate greater resilience 

to noise, maintaining low NMSE even at low SNR levels. 

Learning-based methods perform well but exhibit slight 

degradation in low-SNR regimes due to their reliance on 

training data. Greedy algorithms and optimization-based 

methods show significant performance drops at low SNR, 

highlighting their sensitivity to noise. These findings suggest 

that hybrid methods are robust in practical scenarios where 

noise levels vary. Scalability is assessed by analyzing the 

performance of CS techniques for increasing signal dimensions 

(n=500,1000,2000) while keeping the sparsity level constant 

(k=50). Table II summarizes the NMSE and runtime for each 

technique. 
 

TABLE II 

NMSE AND RUNTIME FOR INCREASING SIGNAL DIMENSIONS 
 

Signal 

Dimension 

(nn) 

Metric Basis 

Pursuit 

OMP Learning-

Based 

Hybrid 

500 NMSE 0.045 0.082 0.020 0.018 
 

Runtime 

(s) 

0.92 0.31 0.11 0.15 

1000 NMSE 0.048 0.097 0.024 0.019 
 

Runtime 

(s) 

1.84 0.63 0.21 0.31 

2000 NMSE 0.052 0.115 0.029 0.022 
 

Runtime 

(s) 

3.75 1.25 0.42 0.60 
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Learning-based and hybrid methods maintain low NMSE 

with increasing signal dimensions, demonstrating scalability. 

However, optimization-based methods experience significant 

runtime increases, limiting their applicability to large-scale 

systems. Greedy algorithms remain computationally efficient 

but exhibit higher NMSE, making them less desirable for high-

dimensional recovery tasks. To validate the significance of the 

results, statistical tests are conducted. A one-way ANOVA is 

performed to compare the NMSE across methods, followed by 

Tukey’s post-hoc test to identify pairwise differences. The 

results indicate that the hybrid method is statistically 

significantly better (p<0.01) than all other methods in terms of 

NMSE, while learning-based methods show significant 

improvements over optimization-based and greedy algorithms. 

The findings of this study have several implications for 

sparse signal recovery in massive MIMO systems: 

1. Hybrid Superiority: The hybrid approach combines the 

strengths of traditional and learning-based methods, 

offering a robust and scalable solution for massive 

MIMO applications. 

2. Real-Time Feasibility: Learning-based methods are 

particularly suited for real-time applications due to 

their low runtime during inference. 

3. Noise Resilience: Bayesian and hybrid methods are 

ideal for scenarios with varying noise levels, ensuring 

reliable recovery under practical conditions. 

 

These results demonstrate that hybrid techniques hold 

significant potential for deployment in next-generation wireless 

communication systems. Despite the promising results, this 

study has several limitations: 

1. Training Data Dependence: The performance of 

learning-based and hybrid methods depends on the 

availability of high-quality training data, which may 

not always be accessible in real-world scenarios. 

2. Specialized Hardware Requirements: The 

computational efficiency of learning-based methods 

assumes access to specialized hardware such as GPUs. 

3. Measurement Matrix Design: The study focuses on a 

limited set of measurement matrix designs (e.g., 

Gaussian, Fourier). Future work should explore 

structured matrices tailored to specific applications. 

 

V.  CONCLUSION 
 

This study introduces a comparative analysis of five groups 

of compressive sensing (CS) methods for sparse signal recovery 

in massive MIMO systems: optimization-based, greedy, 

Bayesian, learning-based, and hybrid. The results also showed 

that hybrid approaches always had the best balance of recovery 

accuracy, computational efficiency, and noise robustness, no 

matter the signal size, sparsity pattern, or SNR level that was 

looked at. The fastest in runtime were learning-based methods, 

which enjoy inference efficiency, while Bayes methods are 

notably robust to noise. However, we found that large-scale and 

high-dimensional systems were less sensitive to noise and 

computationally more inefficient than these well-established 

but less effective optimization-based and greedy algorithms. 

The key contributions of this study include the first unified 

benchmarking framework for CS techniques tailored to massive 

MIMO systems, an evaluation under realistic conditions, and 

the inclusion of emerging hybrid and learning-based methods. 

By rigorously validating the results through statistical analyses, 

this study provides actionable insights into the trade-offs 

between accuracy, efficiency, and scalability for different CS 

methods. The findings have significant implications for the 

design of next-generation wireless networks, highlighting the 

potential of hybrid methods for robust and scalable sparse 

signal recovery, and the suitability of learning-based methods 

for real-time applications in 5G/6G technologies and beyond. 

Future research should focus on addressing the dependence 

of learning-based and hybrid methods on high-quality training 

data and specialized hardware. Additionally, exploring 

advanced measurement matrix designs and integrating CS 

techniques with emerging technologies such as reconfigurable 

intelligent surfaces and terahertz communication could unlock 

new opportunities for ultra-reliable and energy-efficient 

wireless systems. By bridging the gap between traditional 

mathematical frameworks and modern data-driven approaches, 

this study contributes significantly to the advancement of sparse 

signal recovery in massive MIMO systems and lays the 

groundwork for future innovations in wireless communications. 
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