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Abstract—Containerized applications provide benefits such as
portability, security, and faster deployment, enabling organiza-
tions to adapt swiftly to dynamic business needs. Kubernetes
automates the deployment, scaling, and management of these
applications, with the Kubernetes autoscaler enhancing availabil-
ity and scalability by dynamically adjusting capacity to handle
unexpected traffic spikes or workloads. The Kubernetes scheduler
is also crucial for application autoscaling, as it schedules pods
across different nodes. However, most existing research addresses
autoscaling and scheduling separately. This work aims to inte-
grate these two aspects by developing a Mixed Integer Linear
Programming (ILP) model to minimize overall response time
while maximizing throughput in a Kubernetes cluster through
dynamic pod autoscaling and optimal scheduling. Additionally,
we design a Long-Short Term Memory (LSTM)-based horizontal
autoscaler and scheduler to efficiently manage pods during
autoscaling. We then integrate these algorithms and evaluate
their performance on a 9-node Kubernetes testbed. Results show
that this combined approach outperforms the default algorithms
in terms of response time and throughput across various traffic
scenarios.

Index Terms—Kubernetes, AutoScaling, Scheduling, LSTM,
HPA, VPA.

I. INTRODUCTION

Containerization is a technique for bundling all components
of an application into a container, which can then be executed
using an orchestration tool. It serves as an alternative to
virtualization, involving the encapsulation of software code,
libraries, packages, and dependencies. This encapsulation en-
sures that containers can run consistently and uniformly across
various infrastructure environments. Furthermore, container-
ization enables the deployment of multiple applications on a
single server with the same operating system. Kubernetes is
an important container orchestration platform. It is an open-
source solution designed to facilitate the management of con-
tainerized services and workloads while offering automation
capabilities.

Kubernetes employs two distinct types of autoscalers. The
Horizontal Pod Autoscaler (HPA) adjusts the pod count, in-
creasing or decreasing it as the workload grows or diminishes,
respectively. On the other hand, the Vertical Pod Autoscaler
(VPA) focuses on dynamically altering the CPU or RAM al-
location for pods based on workload demands. HPA primarily
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scales the number of pods to effectively manage computational
workloads. It monitors resource utilization, including CPU,
memory, or any custom metrics provided by metric servers.
HPA then modifies the pod replica count in response to
workload requests, creating new pods when demand exceeds
a predefined threshold and terminating pods when requests
fall below this threshold. However, default autoscalar has it
own disadvantages. Thus, numerous research studies have
been conducted on HPA, with a significant emphasis on
leveraging machine learning techniques to improve autoscaler
performance, as discussed in [1] and [2].
In the context of HPA, once the decision to scale has been
made, the next step involves scheduling the pods onto nodes.
The default scheduler in Kubernetes achieves this by maintain-
ing the desired state of the pod within the API server. This
default scheduling process relies on node ranking, wherein
each pod is assigned to an appropriate node based on a set of
criteria. These criteria encompass various node attributes such
as CPU usage rate, memory usage rate, power consumption,
and the total number of containers currently running on the
node. Nodes are filtered and ranked according to these prop-
erties, and the pod is then assigned to the most suitable node,
which is typically the highest-ranked one. However, default
scheduler has it own disadvantages. Thus, recent advancements
have introduced machine learning techniques to enhance the
performance of the Kubernetes scheduler, as discussed in [3]
and [4].

The majority of research in the literature has concentrated
on addressing autoscaling and scheduling as separate compo-
nents. The objective of this study is to develop a dynamic
algorithm that integrates Long-Short Term Memory (LSTM)-
based autoscaling and scheduling specifically for Kubernetes,
and then evaluate its performance against the default algo-
rithms. Our approach merges the LSTM-based autoscaler and
scheduler to enhance the overall performance of Kubernetes
clusters. To the best of our knowledge, this is only the second
research work except the work carried out in [5], to explore
the integration of both autoscaling and scheduling in the
context of Kubernetes. The contributions of the work are:

• Developed Mixed Integer Linear Programming (ILP)
model to minimize the overall response time while
maximizing throughput in a Kubernetes cluster through
dynamic pod autoscaling and optimal pod scheduling.

• Deployed a multi-node Kubernetes cluster using microk8s
and created a Prometheus adaptor to fetch/send custom
metrics from an two endpoints namely pod and node.
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• Designed and implemented an integrated dynamic hori-
zontal pod autoscaler and scheduler using LSTM.

• Evaluated the proposed autoscaler and scheduler with
default algorithms of Kubernetes.

The paper is structured as follows: Section II discusses var-
ious techniques used for Kubernetes autoscaling and schedul-
ing. Section III outlines the system design and provides
algorithms for each module. The findings of the proposed
work are presented in Section IV, while Section V contains
the study’s results and explores potential directions for future
research.

II. RELATED WORK

In this section, we discuss related works that deal with
Kubernetes, Horizontal Pod Autoscaling and Scheduling. Au-
thors in [6] combine grey system theory with the LSTM
neural network prediction method for container scheduling.
The experimental results demonstrate that this algorithm effec-
tively mitigates resource fragmentation issues in cluster worker
nodes and enhances the overall utilization of cluster resources.
Scheduling based solely on a single criterion can often lead
to suboptimal performance, as it limits the scheduler’s un-
derstanding of both the state of the cloud infrastructure and
the user’s requirements. Authors in [7] propose KCSS (Multi-
Criteria Container Scheduling System), which introduces a
multi-criteria node selection approach. This helps the sched-
uler with a comprehensive view of the cloud environment and
the user’s demands. The core idea behind KCSS is to carefully
choose the most suitable node for each newly submitted
container, striking a well-balanced compromise among various
criteria that pertain to both the cloud infrastructure and user
requirements. Authors consider six key criteria in the decision-
making process.

Authors in [8] formulate the problem of scheduling
container-based microservices as a multi-objective optimiza-
tion challenge. The aim of the work includes optimizing net-
work latency among microservices, enhancing the reliability
of microservice applications, and achieving load balancing
within the cluster. Using multiple metrics authors proposed
scheduling algorithm that leverages particle swarm optimiza-
tion techniques. The proposed approach effectively balance
the competing objectives and constraints in the microservice
deployment process within edge computing environments. In
[9], the authors introduced a custom Kubernetes scheduler tai-
lored to accommodate the unique demands of scheduling tasks
within Docker clusters. They outlined the scheduler’s archi-
tectural and design details and assessed its performance using
simulation experiments. The outcomes of their experiments
demonstrated that their custom scheduler surpassed the default
Kubernetes scheduler in both resource utilization and job
completion time. The authors in [10] offer an extensive survey
of the existing research landscape concerning Docker cluster
scheduling. Additionally, they introduce a promising solution
to address the associated challenges. Authors in [11] devised
an energy-efficient container-based scheduling approach to
efficiently handle a diverse range of tasks in both IoT and non-
IoT networks. The proposed method leverages the accelerated

particle swarm optimization technique to swiftly identify the
most suitable container for each task while minimizing delays.
The proposed approach excels in deploying containers onto
optimal cloud servers through an optimal scheduling strategy,
further enhancing resource utilization.

Authors in [12] propose autoscaling mechanism based on
the both Service Level Objective (SLO) violation prevention
and recovery. The SLO violation mechanism adapts autoscal-
ing thresholds according to SLO compliance. This component
dynamically selects the appropriate CPU threshold, cooldown
intervals, and the number of replicas based on the velocity of
the load. The recovery component of the solution rectify SLO
violations that may occur due to delays or resource underes-
timation. It achieves this by provisioning additional resources
to bring the SLO back into compliance. Authors in [13]
authors propose an adaptive HPA of POD resources within
Alibaba cloud. Authors leverages a resilient decomposition
forecasting algorithm and a performance training model to
provide an optimal solution for adjusting the number of pods
which minimizes POD resource usage while simultaneously
ensuring the stability of the business operations.

In [14], the authors propose a proactive custom autoscaler
that dynamically manages workloads during runtime using
deep learning techniques. Among the various prediction mod-
els they tested, the Bidirectional long short-term memory
(Bi-LSTM) model demonstrated the best performance. The
approach proposed by authors in [15] addresses the limitations
of the existing Kubernetes HPA by introducing a proactive
approach that aims to reduce response delays and improve
the efficiency of resource scaling. This approach combines
empirical mode decomposition and AutoRegressive Integrated
Moving Average (ARIMA) time series forecasting methods
to make more informed scaling decisions. In [16], authors
propose a new methodology called Microscaler. Authors de-
sign a system for services requiring scaling requirements and
optimize their scaling to align with the agreed Service Level
Agreement (SLA) while maintaining an optimal cost structure
within micro-service ecosystems. Microscaler gathers QoS
metrics with the assistance of a service mesh-enabled infras-
tructure. Subsequently, it employs a metric known as "service
power" to check whether services are under-provisioned or
over-provisioned.

The authors of [17] propose a mechanism to enhance the
efficiency of resource scaling in an active Kubernetes autoscal-
ing system. Mechanism is based on predicting pod replica
requirements and proactively adjusting resource allocation,
thereby improving overall scaling efficiency. The authors in
[18] focuses on the challenge of selecting the most suitable
performance metrics to trigger auto-scaling actions effectively.
In particular, the study explores the use of both relative and
absolute metrics. The results reveal that, especially in sce-
narios with CPU-intensive workloads, using absolute metrics
leads to more precise scaling decisions. In [19], authors
introduce Reinforcement Learning (RL) based approach to
manage the horizontal and vertical scalability of container-
based applications, aiming to enhance adaptability in response
to varying workloads. To speed up the learning process and
identify more effective adaptation strategies, authors present
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RL solutions that leverage different levels of understanding of
the system. Authors evaluate the proposed approach in elastic
docker swarm.

In [20], the authors employ both reactive and predictive
scaling techniques. The core scaling approach is reactive,
where a scaling manager dynamically adjusts resource al-
location based on real-time metrics such as the number of
requests per minute or active users. Scaling up or down is
performed through the cloud provider’s API, depending on the
observed usage. Authors in [21] introduces an effective multi-
variate autoscaling framework for cloud computing, employing
Bi-LSTM models. The framework was developed following
the monitor-analyze-plan-execute loop. Experimental results,
conducted using various real workload datasets, demonstrate
that the proposed multivariate Bi-LSTM approach achieved
a significantly lower Root Mean Square Error(RMSE) pre-
diction error, approximately 1.84 times smaller than that of
the univariate approach. Authors in [22] introduces similar
approach using Bi-LSTM. The similar approach is used in
[23] which introduces a custom LSTM-based autoscaler for
horizontal pod autoscaling, comparing its performance to the
default autoscaler using response times and SMAPE error
values. The results show that the LSTM model outperforms
the ARIMA model in predicting pod scaling. Authors use
Kubernetes cluster for the evaluation.

Recent advancements in Kubernetes optimization frame-
works have introduced innovative approaches to resource
scheduling and management. For instance, KOptim offers a
flexible schema for resource scheduling using SLA classes,
enhancing adaptability to dynamic workloads and aligning
container resource allocation with predefined SLA require-
ments [24]. CAROKRS integrates cost-aware optimization
strategies, achieving significant reductions in deployment costs
and improvements in load balancing compared to Kubernetes’
native scheduler, highlighting the increasing focus on cost
efficiency in resource allocation [25]. UniSched, tailored for
deep learning applications, improves throughput and reduces
job completion time by specializing resource allocation for
diverse user demands, while SAGE leverages real-time metrics
and predictive analytics to automate optimal workload place-
ment and improve resource utilization [26][27]. Other studies,
such as the Kubernetes Scheduler Optimization Based on Real
Load, further emphasize the role of real-time workload data
in enhancing resource utilization and reducing latency [28].

These studies collectively contribute to the ongoing evo-
lution of Kubernetes scheduling and autoscaling frame-
works, each focusing on different aspects such as cost effi-
ciency, workload-specific optimization, and real-time decision-
making. The proposed framework in this work builds upon
these advancements by integrating predictive autoscaling using
LSTM models with an ILP-based scheduler, offering a com-
prehensive solution for dynamic cloud-native environments.
This approach addresses both workload prediction and optimal
resource allocation, aiming to improve scalability, efficiency,
and overall performance in containerized applications [29].
The authors in [30] propose an efficient placement of Service
Function Chains (SFC) utilizing LSTM and ILP; however,
their work primarily emphasizes container scheduling. In sum-

mary, the studies reviewed in the literature focus on scheduling
and autoscaling separately. In contrast, our work integrates
both autoscaling and scheduling using ML.

III. PROPOSED METHODOLOGY

In Section A, we discuss the mathematical formulation for
the proposed system. In Section B, we discuss the proposed
system model for the combined horizontal pod autoscaling
and scheduling model in Kubernetes. Finally, we discuss the
algorithms used in the implementation in Section C.

A. Mathematical Formulation

The Mixed Integer Programming (MIP) model is designed
to optimize the autoscaling and scheduling of pods across
nodes in a Kubernetes cluster. The objective is to minimize
response time while maximizing throughput. The model uses
binary variables to represent whether a pod is scheduled on a
particular node and whether a node is active. It also includes
integer variables for the number of pods allocated to each
node. The objective function combines minimizing response
time with maximizing throughput. Constraints ensure that
resource demands of pods do not exceed node capacities, each
pod is assigned to one node, and the overall system throughput
meets the target. Autoscaling conditions are applied to activate
or deactivate nodes based on workload demands.

Model Variables

The model employs several key variables to represent the
decision-making process for scheduling pods and activating
nodes:

xij : Binary variable indicating if pod i is scheduled on node j

yj : Binary variable indicating if node j is active
zi : Binary variable indicating if pod i is active
pj : Integer variable for pods assigned to nodej.

Model Parameters

Parameters represent fixed values that guide the model’s
decision-making.

Ri : Resource requirement (CPU, memory) of pod i.

Cj : Capacity of node j (CPU, memory).
This represents the total available resources of a node.

Ti : Estimated response time for pod i.

D : Desired throughput.
Sij : Scheduling delay of pod i on node j.

λi : Workload arrival rate for pod i.

µj : Service rate of node j.
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Constraints

The constraints enforce the logical and physical limits of
the system:
Resource Capacity Constraint:
Ensure that the total resource demand of the scheduled pods
does not exceed the node’s capacity:∑

i

xijRi ≤ yjCj ∀j (1)

This constraint ensures that a node is not overloaded
beyond its capacity when scheduling pods.

Pod Scheduling Constraint:
Each pod is scheduled on exactly one node:∑

j

xij = zi ∀i (2)

This constraint guarantees that each pod is assigned to one
and only one node.

Node Activation Constraint:
A node is activated if any pod is scheduled on it:

yj ≥ xij ∀i, j (3)

This ensures that a node is only activated (turned on) if at
least one pod is scheduled to run on it.
Throughput Constraint: The total service rate must meet or
exceed the desired throughput:∑

j

yjµj ≥ D (4)

This constraint ensures that the system’s overall processing
power is sufficient to meet the throughput requirement.
Pod Count Constraint:
The total number of pods allocated to a node should match
the number of active pods:

pj =
∑
i

xij ∀j (5)

This ensures that the count of pods assigned to each node
is consistent with the scheduling decisions.

Objective Function

The objective function combines minimizing response time
with maximizing throughput:

Minimize
∑
i,j

xijTiSij − α
∑
j

yjµj (6)

• The first term,
∑

i,j xijTiSij , aims to minimize the
overall response time by considering the scheduling delay
and the estimated response time of each pod.

• The second term, −α
∑

j yjµj , seeks to maximize
throughput by encouraging the activation of nodes that
can handle higher workloads, where α is a weighting
factor balancing the two objectives.

Autoscaling Condition

The autoscaling condition activates or deactivates nodes
based on the workload demand:

yj = min
(
1,

∑
i xijRi

Cj

)
∀j (7)

This condition ensures that a node is scaled up (activated)
when necessary to handle the resource demands of the sched-
uled pods.

Optimizer

To solve this MIP model efficiently, the Gurobi optimizer
is used. Gurobi is well-suited for handling complex MIP
problems due to its advanced branch-and-bound algorithms,
efficient presolve techniques, and cutting planes that reduce
the solution space. It is optimized for performance, making
it ideal for large-scale, real-time applications like Kubernetes
scheduling.

B. System Model

The proposed system model consists of two components,
namely autoscaler and scheduler as shown in Fig. 1. Both
components use ML model for prediction. The target resource
utilization level, as well as the minimum and a maximum
number of replicas for the target Deployment or ReplicaSet,
are then specified for HPA. When the HPA determines that
scaling is necessary, the scheduling model is then utilized
to make scheduling decisions for the new pods as can be
seen in Figure 1. This model incorporates information such
as the projected performance and resource utilization of an
application, as well as other considerations like affinity and
anti-affinity rules. The Kubernetes API is used to manage
all of the communication between the various modules, and
the entire operation is controlled by an HPA control loop.
For instance, to change the target deployment’s or ReplicaSet
target’s number of replicas.

The experimentation was conducted on a Kubernetes clus-
ter deployed in a controlled environment to evaluate the
performance of the proposed framework. To monitor and
collect performance metrics, Prometheus version 2.24.0 was
deployed across the cluster. A custom Prometheus adapter
was implemented to query resource utilization metrics such
as CPU and memory usage and application-specific metrics
like response time and throughput. Grafana dashboards were
used to visualize the collected data in real-time, aiding in
performance analysis.

The workload for the experiments was designed to test the
cluster under various traffic scenarios. A combination of a
publicly available dataset and a custom testbed dataset was
used. The Web Traffic Time Series dataset provided by Google
was utilized for training the LSTM-based autoscaler. This
dataset contained time-series data of daily views of Wikipedia
articles from July 2015 to December 2016. The LSTM model
was trained to predict resource utilization based on historical
workload patterns. Additionally, a custom testbed dataset
was generated by simulating traffic using the "hey" HTTP
load generator. This dataset captured CPU usage, memory
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consumption, and request throughput over a 3-hour period,
during which varying volumes of HTTP requests were sent to
the cluster to emulate real-world workload fluctuations.

The experiments involved deploying a containerized web
application on the Kubernetes cluster. The application was
subjected to dynamic workloads to evaluate the effectiveness
of the proposed framework in autoscaling and scheduling. The
Horizontal Pod Autoscaler (HPA) was configured to adjust
the number of replicas based on the predicted workload.
Simultaneously, the custom scheduler, incorporating the ILP
model, was tasked with optimizing pod placement across
the nodes. Metrics such as response time, throughput, and
the number of active pods were measured to compare the
performance of the proposed framework against the default
Kubernetes mechanisms.

To ensure repeatability and accuracy, the cluster was set up
using a lightweight Kubernetes distribution. Node resource al-
location and application deployment configurations were man-
aged through YAML files. Performance metrics were collected
in real time using Prometheus, enabling detailed analysis of
the system’s behavior under different traffic conditions. By
employing this setup, the experimentation effectively demon-
strated the scalability, efficiency, and resource optimization
capabilities of the proposed LSTM-based autoscaling and ILP-
based scheduling framework.

From Fig. 2, we can observe that the system’s overall
steps include gathering and processing data, training an LSTM
model, establishing the HPA and scheduling module, and
setting up the control loop to continually track resource utiliza-
tion and initiate scaling events. Overall, the system requires
gathering and processing data, training an LSTM model,
establishing the HPA and scheduling module, and setting up
the control loop to continually monitor resource utilization
and initiate scaling events depending on the expected resource
demand.

C. Proposed Algorithms

In this section, we initially discuss the algorithm used in
the implementation of autoscaling and scheuler separately.
Later, we discuss the combined algorithm of autoscaling and
scheduling.

Horizontal Pod AutoScaling Algorithm:

The objective of the autoscaling algorithm is to find the
optimum number of pods to scale to, based on the predicted
metrics and the HPA configuration. As shown in Algorithm
1, the autoscaling algorithm takes the following parameters
as inputs, the prediction model, the identifier for the deploy-
ment(label), and the deployment target metric value for that
deployment.

A control loop is used to do polling and scaling at regular
intervals of t seconds. Inside the loop, we fetch the number
of currently Active Pods associated with that deployment and
the metric values forecasted by the prediction model. Finally,
we calculate the desired number of replicas using the same
formula that is being used by the default HPA.

Algorithm 1 Horizontal Pod AutoScaling Algorithm
// target metric value, the model for prediction and deployment identifier
Input: Ut,model, deploymentIdentifier
Output: P // Target number of Pods
while true do
currentDeploymentReplicas :=
getCurrentReplics(deploymentIdentifier);
// get predicted metrics using the prediction model, Kubernetes, and
Prometheus APIs.
Ui = getPredictedMetricV alue(model);
P = ceil[currentDeploymentReplicas * ( Ui / Ut)]
// wait t seconds after which the control loop repeats. wait(t)
end while

Scheduling Algorithm

As discussed, pod scheduling is triggered during autoscaling
of applications. As shown in Algorithm 2, the scheduling
algorithm takes the target pod configuration and its affinities
to find the optimal node on which it is to be deployed, based
on the predicted metrics. When the scheduling algorithm is
triggered, we obtain the configuration of the pod to schedule
along with the list of nodes available for scheduling ad the
prediction model. In the scoring step, we get the forecasted
metrics of each node. Then, in the filtering step, we take node
affinity, and resource requirements into account and then select
the best node using the scores and the filtered nodes.

Algorithm 2 Scheduling Algorithm
Input: AvailableNodes,model, podConfig
Output: K // Node to be selected
Na = []
for all i ϵ AvailableNodes do
Ni = getPredictedMetrics(model, i); //scoring
Na.push(Ni) // Push the predicted metrics to array
end for
K = getNodeToBeSelected(Na, podConfig)
wait(t) //wait till the control loop period

Combined Algorithm

Algorithm 3 represents a high level overview of the Com-
bined autoscaling and scheduling model. The combined algo-
rithm involves both scaling and scheduling. First, we create the
deployment and apply the custom HPA configuration to that
deployment. Then, we keep monitoring the deployment for
autoscaling purposes. Once scaling occurs, we check whether
the desired number of replicas is greater than the currently
active replicas. If yes, then new pods are created and those
pods need to be scheduled. The scheduling module is then
triggered to schedule those pods.

D. Algorithm Complexity Analysis

The proposed framework is analyzed in terms of algorithmic
complexity by examining its two primary components: the
LSTM-based autoscaler and the ILP-based scheduler. The
LSTM-based autoscaler predicts future resource utilization
based on historical workload data. Its complexity arises from
the internal operations of the LSTM model, where compu-
tations involve processing input sequences over multiple time
steps. Specifically, for each time step, the LSTM processes fea-
tures through matrix multiplications that scale with the number
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Fig. 1. Proposed Scaling and Scheduling Architecture

Fig. 2. Flowchart for Proposed Scaling and Scheduling

Algorithm 3 Combined Autoscaling and Scheduling Algorithm with
ILP Model
Input: model, deploymentConfig, HPAConfig
deployment← createDeployment(deploymentConfig)
hpa← createHPA(HPAConfig)
while true do
nodes← getAllNodes()
// Target pods to be autoscaled
TP ← ScalingModule(hpa.target,model, deployment.label)

for all i ∈ TP do
// Solve the ILP model to find optimal scheduling
optimalSchedule← solveILP (nodes, TP,model)
// Apply the optimal schedule to the pods
applySchedule(optimalSchedule, deployment.podCfg)

end for
end while

of features and hidden units. When extended across all time
steps, the overall complexity is proportional to the product of
the sequence length, the number of features, and the number

of hidden units. However, in practice, this predictive process
is highly efficient due to the relatively small sequence lengths
and neural network dimensions used in this application. As
a result, the autoscaling component introduces only a slight
overhead with a computational complexity of O(n), where n
represents the number of pods in the system.

In contrast, the ILP-based scheduler focuses on optimizing
pod placement across the available nodes in the cluster.
The scheduler solves an optimization problem that seeks to
minimize latency and maximize throughput while adhering to
various resource constraints. The computational complexity of
this process grows exponentially with the number of decision
variables, which is determined by the number of pods and
nodes in the cluster. Specifically, the complexity of solving
the ILP problem can be expressed as O(2nm) where n is the
number of pods and m is the number of nodes. While this
represents a significant theoretical complexity, modern ILP
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solvers, such as Gurobi, leverage advanced techniques like
branch-and-bound algorithms and heuristics to significantly re-
duce the practical runtime. Furthermore, the scheduler operates
asynchronously, limiting the computation to specific intervals
or periods of low cluster activity, which helps mitigate its
impact on system performance.

The default Kubernetes methods for autoscaling and
scheduling offer simpler computational models. The Hori-
zontal Pod Autoscaler (HPA) evaluates resource utilization
metrics for each pod independently, resulting in a linear
complexity of O(n), where n is the number of pods. Similarly,
the default Kubernetes scheduler filters and ranks nodes for
pod placement using predefined criteria. The complexity of
node filtering scales linearly with the number of nodes, while
the overall scheduling process, which considers all pods and
nodes, scales as O(nm).

IV. RESULTS AND DISCUSSIONS

Within this section, we discuss the experimental setup
and results obtained for autoscaler, scheduler and combined
approach.

A. Experimental Setup

For experimentation, the Kubernetes cluster is set up with
Master Node with 16 GB RAM and 100 GB storage. The
experimental setup also had 8 slave nodes with 2 of them
with 4 GB RAM and rest had 2 GB RAM. All of the slave
nodes had 50 GB storage. Common software and hardware
configurations used in this experiment are mentioned in Table
I. In this work, LSTM model is used to predict the scaling of
pods by creating the replicas of pod based on the workload.
Table II shows the parameters used in LSTM model.

TABLE I
EXPERIMENTAL CONFIGURATION.

Resource Name Specifications
The Operating Sys-
tem Ubuntu 22.04

docker 20.10.3
k8s 1.23
prometheus 2.24.0
CPU Intel core i5

TABLE II
LSTM MODEL CONFIGURATION.

Parameter Quantity
numlstm 10
epochs 10
Loss Function SMAPE, RMSE
Optimizer Adam
Batch Size 64

B. Autoscaling Results

In this section, we intially discuss the prediction results for
autoscaler using standard dataset as well as testbed dataset
using ARIMA and LSTM models. Later, we compare the
LSTM based autoscaler with default Kubernetes autoscalar.

Prediction Results:

To train and test the autoscaling prediction models, we used
2 different datasets, namely, the ’Web Traffic Time Series’
dataset by Google and our very own emulated test-bed dataset.

Standard Dataset

The training dataset consists of approximately 145k time
series. Each time series instance represents a number of daily
views of a different Wikipedia article, from July, 1st, 2015
up until December 31st, 2016. LSTM and ARIMA models
are compared and to evaluate the model, SMAPE values are
considered for the analysis. Table III gives prediction results of
web traffic dataset. Results reveal that LSTM performs better
than ARIMA.

TABLE III
PREDICTION RESULTS OF WEB TRAFFIC DATASET.

LSTM
Model

ARIMA
Model

Training Error(SMAPE) 31.02 55.68
Training Error(SMAPE) 14.99 43.44

Testbed Dataset

This testbed dataset is similar to the standard dataset in
terms of the parameters considered. It was collected by sending
a similar volume of requests in a 3-hour timeframe to the
experimental setup using ’hey’, an open-source HTTP load
generator. The cluster contains one master and 8 slave nodes
and have the same configuration as mentioned in Section A.

TABLE IV
PREDICTION RESULTS OF TESTBED DATASET.

LSTM
Model

ARIMA
Model

Training
Error(SMAPE) 44.656 59.68

Tesr Error(SMAPE) 10.317 51.83

Tables III and IV describe the Symmetric Mean Absolute
Percentage Error (SMAPE) values of machine learning models
LSTM and ARIMA for each of the datasets. In both the
datasets, we observe that the LSTM model has less error rate
compared to the ARIMA model. This is because, LSTM is
designed to capture long-term dependencies in time series data,
which is particularly useful for forecasting complex patterns
which can be used for better forecasting.

Performance analysis of dynamic HPA:

The performance of the default and faster dynamic HPA
is analyzed based on the response time for HTTP requests.
As shown in Fig. 3, the default HPA responds significantly
slower to changes in request volume or idle time compared to
the proposed HPA. In contrast, the custom autoscaler demon-
strates improved performance over the default horizontal pod
autoscaler. By predicting future workload, the faster custom
HPA accelerates pod scaling decisions, both up and down.
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To efficiently manage future workload reductions, the custom
HPA preemptively removes some replicas when demand de-
creases.

Fig. 3. Performance of default and dynamic HPA.

C. Scheduling Results

For scheduling, we firstly created a time series dataset by
taking parameters from all the nodes while sending dummy
HTTP requests at intervals that follow a similar seasonality
that was found in the previously mentioned ’Web Traffic’
dataset. Then, we trained and tested the prediction models
using that dataset.

Prediction Results:

Figures 4 and 5 represent the training and testing perfor-
mances of the LSTM model. Finally, Table V shows the Root-
mean-square deviation(RMSE) values of LSTM and ARIMA
models. From this, we can infer that the RMSE value of LSTM
is better than ARIMA. Thus, we can validate that the LSTM
model is better than the ARIMA model. This can be attributed
to the LSTM’s handling of non-stationary data. LSTM can
handle non-stationary time series data, which is data that has
a changing mean, variance, or other statistical properties over
time. ARIMA, on the other hand, assumes that the time series
data is stationary, meaning that its statistical properties do not
change over time. From Table V, we can observe that LSTM
performs better than ARIMA in prediction load.

TABLE V
RESULTS OF LSTM AND ARIMA MODELS.

Model RMSE Value
LSTM 2.01
ARIMA 5.90

Performance Analysis of Dynamic Scheduler:

From Table VI, we can observe that LSTM-based scheduler
response time is less compared to the default scheduler. Hence,
we can conclude that LSTM performs well compared to the
default scheduler.

The Fig. 6 depicts the response times of the different
schedulers. From the graph, we can see that the average

Fig. 4. Training performance of LSTM Model.

Fig. 5. Test performance of LSTM Model.

TABLE VI
RESPONSE TIME RESULTS OF LSTM AND DEFAULT SCHEDULERS.

Average Response Time
LSTM based Scheduler 1.094
ARIMA based Scheduler 1.2111
Default Scheduler 1.456

Fig. 6. Comparison of Response Time of Different Schedulers.

response time of LSTM is lesser compared to the average
response time of the default scheduler. Hence we can validate
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that LSTM optimizes the response time.

D. Combined Scaler and Scheduler

Performance evaluations of the default and proposed models
are conducted taking into account a variety of parameters,
namely latency, throughput, and the number of actively run-
ning pods while responding to HTTP requests. The custom
scheduler and the autoscaler are integrated into the combined
model to obtain the best performance. In order to perform
the assessment, HTTP requests were sent to deployments in
a way that the volume of requests over time exhibited some
seasonality.

For one of the tests, the characteristics for each of the
models, the LSTM model, the ARIMA model, and the default
system, were obtained by sending varied amounts of HTTP
requests to the deployment for 30 minutes. Based on the
typical volume of requests submitted during a given period,
the test results were then averaged out at the minute mark and
then plotted and split into two broad groups, low and high
load, to help draw conclusions.

Underloaded Scenario:

In this scenario, we send low volumes of HTTP requests
and observe the average latency, throughput, and active
pods/replicas for the course of the test.

Fig. 7. Average latency of various models.

Fig. 8. Average throughput of various models.

Fig. 9. Average active pods of various models.

Since the machine learning models try and forecast potential
future metrics, they are able to take scaling decisions earlier
than the default system. This can be seen in Figures 7 and
8 where these models perform better in terms of latency
and throughput. Referring to Fig. 9, we can see that the
improvement in performance does come at a cost of more
active pods at work, where the dynamic models have a higher
average number of replicas than the default system over time.

Overloaded Scenario:

In contrast to the default system, the proposed model’s
Scaling and Scheduling are quicker and smoother, resulting
in no significant throughput loss. Over time, this may assist in
satisfying a greater number of requests. This can be observed
from Fig. 11.

As illustrated in Figures 10 and 11, the latency and through-
put of all three systems eventually converge to comparable
conditions. This is because the maximum number of pods
set to the autoscaler has been reached and there is no more
room for scaling as seen in Fig. 12. In this experiment, the
minReplicas was set at 1 pod and the maxReplicas was 10. So
the HPA cannot set the number of replicas to a number that
is out of that range.

Randomly Loaded Scenario:

In previous scenarios discussed the behavior of the com-
bined model under distinct conditions like underloaded and
overloaded scenarios. In this scenario, we have considered
varying loads for a longer duration of time so that we get the
combination of both underloaded and overloaded scenarios.
We will now discuss the results of the analysis on the ran-
dom loaded scenario. The parameters considered are average
latency, throughput and active pods.

Latency:

Table VII describes the Percentage Decrease in latency of
LSTM and ARIMA models with respect to the default model.
As shown in Fig. 13, the proposed model’s latency is almost
always lower compared to that of the default system. The
average latency of the LSTM, ARIMA, and default system
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Fig. 10. Average latency of various models at high load.

Fig. 11. Average throughput of various models at high load.

Fig. 12. Average active pods of various models at high load.

was approximately 121.82 ms, 124.66 ms, and 126.45 ms,
respectively. This is a 3.65% reduction in latency compared
to the default system as shown in Table VII.

TABLE VII
PERCENTAGE LATENCY DECREASE WITH RESPECT TO THE DEFAULT

SYSTEM.

Model % Decrease in la-
tency

ARIMA 1.414
LSTM 3.656

Fig. 13. Average Latency of various models.

Throughput:

Fig. 14 shows the average throughput of various models.
Results reveal that LSTM model performed better than de-
fault model. Table VIII describes the Percentage Increase in
throughput of LSTM and ARIMA models with respect to the
default model. We can observe that the average throughput of
the LSTM-based combined model is the highest among them,
6.4% higher than the default system to be specific.

Fig. 14. Average throughput of various models.

TABLE VIII
PERCENTAGE THROUGHPUT INCREASE WITH RESPECT TO THE DEFAULT

SYSTEM.

Model % Increase in Throughput
ARIMA 3.360
LSTM 6.407

Number of Active Pods:

Fig. 15 shows the average number of active pods for various
models. Though the proposed model had a greater average
number of pods in the low-loaded time frame, it beat the
default model over time as shown in Table IX. One of the
most likely reasons for this is the prediction model, which
forecasts the decline in the number of HTTP requests and
then downscales the number of pods. However, because the
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default approach relies on real-time metrics of HTTP requests,
downscaling is substantially slower. As the average number of
pods contributes to energy utilization, we can say the proposed
model is more energy efficient than the default system.

Fig. 15. Average active pods of various models.

TABLE IX
AVERAGE ACTIVE PODS.

Model Average number of active
pods

LSTM 3.903
ARIMA 4.283
Default 4.032

Complexity Analysis:

The proposed framework, which integrates an LSTM-
based autoscaler and an ILP-based scheduler, demonstrates
a significant departure from Kubernetes’ default methods in
terms of computational complexity. While Kubernetes’ default
Horizontal Pod Autoscaler (HPA) and scheduler are efficient
with linear and heuristic-based complexities (O(n) and O(nm),
respectively), they fail to handle dynamic and high-demand
workloads effectively. The default HPA operates reactively,
responding to real-time metrics like CPU and memory usage
with low computational overhead, but it leads to inefficien-
cies during workload spikes. On the other hand, the LSTM-
based autoscaler uses a predictive approach to proactively
scale resources, with slightly higher computational complexity
(O(T(FH+H²))) but improved accuracy and reduced latency,
making it more suitable for dynamic environments.

Similarly, the default Kubernetes scheduler is efficient for
small-scale clusters but lacks global optimization, while the
ILP-based scheduler introduces higher complexity (O(2m))
due to its optimization-driven approach. Despite the increased
complexity, the ILP scheduler improves performance metrics
such as latency, throughput, and resource utilization, with a
runtime of 50 milliseconds compared to the default scheduler’s
12 milliseconds. Overall, the proposed framework incurs a
minor computational overhead due to the LSTM autoscaler and
ILP scheduler but achieves superior performance in terms of
resource utilization, latency, and throughput. The results vali-
date the trade-off between complexity and efficiency, showing

that the framework’s predictive and optimization capabilities
are essential for real-time deployment in dynamic Kubernetes
environments.

V. CONCLUSION

As more people use the Internet and cloud-based services
in their daily lives, the opportunity to scale and improve the
services they use grows. This work presented a more efficient
and dynamic way for scaling and scheduling compared to
the default one in Kubernetes which is a reactive model.
The default system uses metrics such as CPU utilization in
making austocaling and scheduling decisions. However, we
employed a machine learning method, specifically LSTM to
build a proactive system that anticipates prospective changes
in metrics based on past usage patterns and trends, seasonal
effects, and then takes actions based on those predictions.
To build a model, we used the Wikipedia Traffic Dataset
provided by Google as well as the tesbed dataset. Using this
model, we designed a combined approach of autoscaling and
scheduling. We evaluated the proposed framework in a 9 node
Kubernetes cluster. The results revealed that the combined
approach performs better than the default scheduler in terms
of response time, throughput, and number of active pods under
different traffic scenarios.

As future work, we plan to evaluate the proposed system in a
larger environment. Furthermore, we plan to consider multiple
parameters in the design of prediction model.
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