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Abstract—The rapidly expanding fields of artificial intelligence 

and machine learning see growing use of intelligent models for 

predictive tasks and decision support in areas like healthcare, 

autonomous transportation, and finance. However, the absence of 

transparency in these models makes them difficult for end-users to 

understand, limiting their trust and adoption. To address this 

challenge, techniques such as Local Interpretable Model-agnostic 

Explanations (LIME) have been developed to provide local model-

agnostic explanations independently of the model’s internal 

structure. Despite its effectiveness, LIME suffers from limitations 

in the random generation of perturbed instances, which can lead 

to unstable and low-quality explanations. To handle these 

drawbacks, this work introduces a PSO-based Local Interpretable 

Model-Agnostic Explanations (P-LIME) approach. P-LIME 

leverages the Particle Swarm Optimization (PSO) metaheuristic to 

intelligently generate perturbed instances, thereby improving the 

quality and stability of the explanations. Experimental results 

demonstrate that the proposed approach significantly 

outperforms the original LIME method, offering a more reliable 

and interpretable framework for understanding complex artificial 

intelligence models. This advancement contributes to the broader 

goal of enhancing transparency and trust in artificial intelligence 

systems. 

Index terms—Explainable artificial intelligence, interpretable 

machine learning, Local Interpretable Model-agnostic 

Explanations (LIME), Particle Swarm Optimization, Model-

agnostic Explanations, metaheuristics, Trust in artificial 

intelligence.  

I. INTRODUCTION

With artificial intelligence (AI) and machine learning 

continuing to advance rapidly, intelligent models are 

increasingly being used for prediction and decision-making 

support across a broad range of fields such as healthcare, 

autonomous transportation, finance, and other domains [1]. 

However, as AI technologies advance, models like Support 
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Vector Machines (SVM), Random Forest, and Deep Neural 

Networks (DNN) are commonly termed 'black-box models' [2]. 

While they deliver high performance, their lack of transparency 

makes them challenging for end-users to comprehend. This 

presents major problems, particularly in contexts where 

automated decisions require clear justification. 

To address the need for model interpretability, several 

approaches have been developed to make machine learning 

models more understandable. Among these techniques is Local 

Interpretable Model-agnostic Explanations (LIME) [3], 

introduced by Ribeiro, Guestrin, and Singh in 2016. The 

purpose of LIME is to generate local, model-agnostic 

explanations for classification models without requiring access 

to their internal structure. The approach works by first creating 

a set of Perturbed Instances (PIs) near the input instance. A 

simplified model for interpretation purposes, such as linear 

regression, is then trained on these PIs. This simpler model 

serves to locally approximate the original model's decision 

logic within that localized region [4]. The process enables the 

determination of each feature's influence on the prediction, 

thereby making the model’s behavior more understandable. 

Although LIME provides a solution for interpretability, it has 

a limitation in its method of generating PIs. Specifically, PIs are 

created randomly in the vicinity of the instance requiring 

explanation. However, this random approach can result in low-

quality PIs, which reduces the efficiency of the generated linear 

regression model and, consequently, compromises the stability 

of the local explanations. 

Swarm intelligence refers to the collective behavior 

displayed by decentralized and self-organizing systems, often 

modeled after natural groups like ant colonies and bird flocks. 

In these systems, simple agents interact locally with each other 

and their environment, resulting in the formulation of complex 

global patterns and problem-solving capabilities. A key 

principle of swarm intelligence is the trade-off between 

exploration and exploitation, which enables the efficient search 

of large solution spaces while refining promising solutions to 

achieve optimal results. This concept has been widely applied 

in optimization algorithms, such as Particle Swarm 

Optimization (PSO) [5], Rat Swarm Optimizer (RSO) [6], and 

crow search algorithm [7], which mimic the behavior of swarms 

to solve complex problems in engineering, robotics, and AI. 

Swarm intelligence (SI) offers a robust and flexible framework 

for tackling challenges in dynamic and uncertain environments.
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While SI provides a powerful framework for solving 

complex optimization problems using decentralized and self-

organized behavior [5], its application in high-stakes domains 

raises concerns about explainability and trust. In fields such as 

healthcare and finance, where decision-making impacts human 

lives and regulatory compliance, it is crucial to balance 

performance with interpretability. Many machine learning 

models (e.g., deep neural networks and SVM) often operate as 

“black boxes” because of their mathematical nature. Therefore, 

integrating swarm intelligence algorithms with explainable AI 

(XAI) techniques could help bridge the gap between high-

performance and model interpretability, which presents a 

significant research challenge. 

To enhance the quality of explanations generated by LIME, 

we introduce an approach that leverages the Particle Swarm 

Optimization (PSO) metaheuristic to intelligently generate PIs 

instead of relying on random generation. PSO is a stochastic 

optimization method based on population dynamics and is 

driven by the collective behavior of animal swarms, such as 

birds and bees searching for food [5]. PSO utilizes simple 

interactions between individuals to guide the search process 

effectively.  

On the other hand, the random generation of PIs in LIME 

risks producing data far from the instance to be explained. 

However, the application of PSO enables the search for PIs 

close to the sample to be explained, thereby enhancing the 

quality of explanations. Then, in this work, a PSO-based Local 

Interpretable Model-Agnostic Explanation (P-LIME) is 

proposed. 

The main contributions of this work are the following: 

● Adaptive perturbation method: Instead of the

traditional random method, the PSO optimization

algorithm searches for optimal PIs in LIME that

improve the quality of local model interpretability.

● Enhancing stability: By using the optimizing PIs set,

the P-LIME reduces variance in explanations.

● Enhancing fidelity: The PSO search space exploration

generates instances that better reflect the data

distribution, leading to improved explanation fidelity.

This work is organized as follows: Section II goes on to 

related work on LIME-based methods and explainable artificial 

intelligence. The theoretical background of LIME and Particle 

Swarm Optimization (PSO) is presented in Section III. Section 

IV presents the proposed P-LIME approach, along with its 

architecture and implementation. Section V describes the 

experimental setup, datasets, and evaluation measures. Section 

VI addresses the outcomes and contrasts with the original LIME 

technique. Section VII concludes the work and lists prospective 

study areas at last. 

II. RELATED WORK

Today, the explainability of an AI model (i.e., understanding 

how a decision is made) is a primary metric as much as the 

model’s performance [8]. A good compromise between 

explainability and performance is increasingly necessary, as it 

guarantees that AI models remain as effective and transparent 

as possible. Achieving this compromise is key for making AI 

models more understandable by end users. Several explanation 

methods have been introduced in the literature, such as Local 

Interpretable Model-Agnostic Explanations [3], SHapley 

Additive exPlanations (SHAP) [9], and Local Rule Based 

Explanations (LORE) [10]. 

LIME is the most well-known explanation technique; it 

creates a set of PIs around a candidate sample x, evaluates the 

model’s responses, and then constructs a simpler interpretable 

model, generally linear regression, allowing for a local 

approximation of the decision boundary and an explanation of 

the prediction. The original LIME method [3] creates PIs 

around x by applying random changes to feature values, which 

allows the model behavior to be locally approximated by a 

simple linear function. However, this random perturbation 

approach can result in significant instability of explanations and 

reduce accuracy, as it does not account for the true data 

distribution or the actual significance of features in a given 

prediction. 

To overcome these limitations, various extensions of LIME 

have been proposed. Influence-based LIME (ILIME) [11] 

enhances the generation of PIs by applying influence functions 

that weight each sample according to its actual effect on the 

target instance. This improvement results in more stable 

explanations. Deterministic LIME (DLIME) [12] adopts a 

clustering-based approach to select representative samples, 

reducing the variance introduced by random perturbations and 

providing a better representation of the model's local regions. 

The Autoencoder LIME (ALIME) method [13] incorporates 

adversarial sample generation to generate realistic adversarial 

samples, which takes into account the real data distribution to 

create more relevant perturbations. LIME SUPervised 

Partitioning (LIME-SUP) [14] is designed for image 

classification models; this method divides images into 

superpixels and randomly masks some of these segments to 

generate PIs, ensuring better visual stability. K-LIME [15] 

incorporates kernel functions to weight PI according to their 

similarity to the target instance, leading to more accurate and 

stable local approximation.  

GraphLIME [16] adopts LIME to graph neural network 

explanation by modifying node relationships to generate PIs 

adapted to relational data, ensuring highly accurate explanation 

but at a high computational cost. Other variations of LIME, 

such as LIMEtree [17] and LIME-C [18], contribute by using 

decision trees on perturbed samples or by adapting the 

perturbation to categorical variables through controlled 

modifications, respectively. These methods offer varying levels 

of stability and precision, based on the application domain and 

the characteristics of the dataset being used. 

While these methods have significant improvements, they 

still apply heuristic or data-driven perturbation methods that 

may not necessarily optimize the selection of PIs. This results 

in potential instability or poor representation of the 

neighborhood decision boundary. To overcome these 

limitations, we propose in this work the P-LIME, an extension 

of LIME that uses the PSO metaheuristic to intelligently 

generate PIs. PSO optimizes the set of PIs to enhance the quality 

of the local explanation model while maintaining the stability 

in the explanation. 
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III.   BACKGROUND 
 

In this section, we present the theoretical foundations relevant 

to our proposed method. We begin by introducing the LIME 

technique, which serves as the base framework for model-

agnostic explanations. Then, we provide an overview of particle 

swarm optimization (PSO), the metaheuristic algorithm we 

employ to improve the perturbation generation process. 

 

A.Local Interpretable Model-Agnostic Explanations (LIME) 

LIME represents a widely used approach to generate local 

explanations for black-box classification models. It functions 

by creating a simpler, interpretable model (typically linear) that 

locally mimics the behavior of the complex model around a 

specific instance prediction. The procedure followed by LIME 

begins by generating random samples close to the instance 

being explained. The samples are then passed through the 

black-box model to obtain their predicted outputs, forming a 

new dataset for further analysis. In the third step, each sample 

is then assigned a weight that reflects its importance, according 

to its Euclidean distance to the original instance, imitating its 

importance in the dataset. Finally, LIME trains the linear 

surrogate model on the weighted dataset and identifies the most 

significant features influencing the prediction of the instance 

under analysis [3]. 

 

 
 

Fig.1. Flowchart of LIME 
 

B.Particle Swarm Optimization (PSO) 

The ability of birds to fly synchronously within a flock 

demonstrates a social behavior that inspired researchers 

Kennedy and Eberhardt to develop a simple and powerful 

algorithm for optimization tasks called Particle Swarm 

Optimization (PSO) [5, 20]. In a PSO, particles are positioned 

in a multidimensional space, and their locations are considered 

potential solutions for improvement. Each particle is evaluated 

by the objective function, also known as the fitness function. 

The fitness function plays an important role in guiding the PSO 

algorithm toward the optimal solution by measuring the quality 

of the solution at each step until the desired quality is achieved. 

The particle moves through this space influenced by its best 

local location and the best global location of the swarm 

particles. This simple behavior of particles contributes to 

discovering optimal solutions for the multidimensional search 

space. 

The steps of the PSO algorithm and its mathematical 

modeling are presented as follows: 

Step 1: PSO initialization: PSO starts by assigning random 

initial positions to a population of particles within the defined 

search space, each assigned a random initial speed.  

The population (particles) of PSO can be mathematically 

represented using a matrix as presented in Equation (1). 

𝑋𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∗ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)                (1) 

Where Xi,d is the value of the dth variable in the ith particle, 𝑟 

is a random number in the interval [0,1], 𝑙𝑏 and 𝑢𝑏 are the lower 

bound and upper bound of the dth variable, respectively. 

Step 2: Fitness assessment: Use the fitness function to 

evaluate each particle's current position. This determines the 

best local for individual particles and the best global for the 

entire swarm. 

Step 3: Update position: Calculate the particle's new velocity 

using the following equation: 

vi,d = vi,d + 𝑐1𝑟1(p_besti,d − xi,d) + 𝑐2𝑟2(g_bestd − xi,d) (2) 

Where vi,d is the ith particle’s velocity in the dth dimension, c1 

and c2 are the cognitive and social coefficients. r1 and r2 are 

independent random values sampled from [0, 1], p_besti,d 

represents the best position of the ith particle, and g_bestd 

represents the global best position of all the swarm. The 

positions are then updated using the following equation. 

xi,d = xi,d + vi,d                         (3)  

where xi,d represents the particle's position in dth dimension.  

Step 4: The process iterates by re-evaluating each particle’s 

fitness and adjusting their positions and velocities until a 

termination criterion is satisfied, such as reaching a predefined 

iteration limit or achieving a solution with sufficient accuracy. 

 

IV.   PROPOSED P-LIME APPROACH 
 

The proposed P-LIME introduced an intelligent method for 

generating PIs in the vicinity of the instance to be explained. P-

LIME aims to improve LIME by boosting the stability and 

fidelity of the interpretation generated for black-box models. 

The P-LIME framework is designed with two main steps, 

each performing a PI set and the other for simple model learning 

to provide interpretable decisions. Figure 2 presents a summary 

of this framework. P-LIME focuses on enhancing the 
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perturbation process to more accurately mimic how the black-

box model functions locally around the interpreted instance. 

The process of the proposed approach begins with the input 

of the instance to be explained, denoted as (x), along with the 

black-box model and number of PIs to be generated. PIs are 

then intelligently generated from the instance (x) using the PSO 

algorithm. Next, these PIs are labeled using the black-box 

model to form a new dataset. Each instance in this dataset is 

weighted according to its relevance to the instance (x). After 

that, a surrogate model, typically a linear regression model, is 

trained on the new dataset to provide interpretable decisions. 

Figure 2 illustrates the flowchart of the proposed approach. 

 
 

Fig. 2. Flowchart of P-LIME approach 

 

A.PSO-Based Perturbed Instance Generation  
 

The PI generation process in the proposed P-LIME can be 

formulated as an optimization problem designed to produce a 

set of PIs in the vicinity of the instance to be explained that 

effectively approximate the local decision boundary of the 

black-box model.  

Consider an original instance 𝑥 and a black-box model. The 

goal is to produce a PIs set X, which preserves the local 

characteristics of x while ensuring sufficient diversity to capture 

the model's behavior. The optimization problem can be defined 

as minimizing the distance between the PIs and the original 

instance x, subject to constraints on the diversity of the 

produced instances. Each PI is generated using the PSO 

optimization algorithm as presented in Figure 2.  

In the following, we explain the PSO-based PIs generation 

process, where P is the population (i.e., set of PIs from x) and T 

is the maximum number of iterations. 

 

A.1.Parameters Initialization 

 

The process of PSO-based PIs generation begins with the 

PSO parameters initialization: number of particles (P), number 

of iterations (T), inertia weight (w), cognitive coefficients (c1), 

and social coefficients (c2). 

 

A.2.Particle’s Position Representation 

 

Every particle p is associated with a position within the 

search space, which signifies a candidate solution. Additionally, 

each particle has a velocity that determines its position updates 

over time. A position is represented as in Figure 3. 

We tend to represent the particle by an n bit vector of real 

numbers. Each bit represents a feature in the dataset, and the 

vector values represent a PI (a candidate solution). The position 

vector is initialized randomly by a PI from the original sample 

x. 

Let x = (0.5, 0.3, 0.1, 0.7, 0.8, 0.1) be a sample, and let p = 

(0.4, 0.3, 0.1, 0.8, 0.7, 0.2) be a PIs. The position of p is 

represented as a vector, as shown in Figure 3.  

 

 
 

Fig. 3. Particle position encoding 
 

A.3.Fitness Function 
 

The fitness function evaluates the quality of the PI 

corresponding to each position. The optimal solution (i.e., the 

best PI) is found at the position that achieves the best value of 

the fitness function. Equation 4 defines the used fitness 

function. 

Fitness (p) = √∑(x[i] − p[i])2

n

i=1

                        (4) 

where x[i] and p[i] represent the values of the ith bit in the 

position vectors of the original instance and PIs, respectively.  

 

A.4.Updating Positions 

 

Each particle's position in space is updated using Equations 

(2) and (3). 
 

V.    EXPERIMENTS 

 

This section describes the experimental protocol used to 

evaluate the effectiveness of the proposed P-LIME approach. 

We begin by presenting the datasets employed in the evaluation, 

followed by the machine learning models used to generate 
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predictions. Then, we outline the evaluation metrics adopted to 

assess explanation quality in terms of fidelity and stability. 
 

A.Data Sets 
 

We evaluated the proposed P-LIME approach using six 

publicly available datasets retrieved from the UCI Machine 

Learning Repository [19]. These datasets span a range of binary 

and multiclass classification tasks and include both categorical 

and continuous features. Table I summarizes the number of 

classes, features, and instances for each dataset. The following 

is a brief description of each: 

• Breast Cancer Wisconsin Diagnostic Dataset: This dataset 

consists of 569 instances, each representing characteristics 

of cell nuclei from digitized images of breast masses. It 

includes 30 numerical features and aims to classify tumors 

as benign or malignant [12]. 

• German Credit Dataset: This dataset contains 1000 

instances with 20 attributes representing personal and 

financial information. The goal is to classify loan 

applicants as creditworthy or not, based on historical 

repayment behavior [10]. 

• COMPAS Dataset: The COMPAS (Correctional Offender 

Management Profiling for Alternative Sanctions) dataset 

contains 7214 records used to assess the risk of re-

offending. It includes 15 features that help predict a 

defendant’s likelihood of committing a future offense [10]. 

• Adult Income Dataset: Also known as the "Census Income" 

dataset, it includes 48,842 records with 14 demographic 

features. The classification task is to predict whether a 

person’s annual income exceeds $50K [10]. 

• Hepatitis Dataset: This medical dataset consists of 155 

instances with 20 features describing various clinical 

attributes of patients. It aims to predict patient survival 

following a hepatitis diagnosis [12]. 

• Hypothyroid Dataset: This dataset comprises 7200 records 

with 21 features. It is a multiclass classification task 

intended to detect different types of thyroid disorders based 

on test results [12]. 

These datasets were selected due to their diversity in data 

types, sample sizes, and application domains. They serve as a 

robust benchmark to assess the performance and 

generalizability of the proposed P-LIME approach compared to 

the original LIME method. 

 

B.Used Machine Learning Algorithms  

B.1.Random Forest (RF) 

RF is among the most powerful machine learning algorithms, 

introduced by Leo Breiman in 2001 [21]. It consists of multiple 

decision trees. Key strengths of this algorithm are its high 

accuracy and effectiveness in handling high-dimensional 

datasets. The decision trees inside the random forest are trained 

on distinct sets of randomly chosen attributes to reduce the 

model's susceptibility to the training data [22]. In addition, it 

identified the important features in decision-making, which 

makes it an interpretable model [23]. It is used in classification 

and prediction [24] and has been successfully applied in several 

areas, including social media analysis, environmental 

monitoring, medical diagnostics, and the neuroimaging field 

[25, 26].  

 
Algorithm1 : PSO for PIs generation 

Input : Instance to explain x, maximum iteration T, number of particles P, 

inertia weight (w), cognitive coefficients (c1), social coefficients (c2) and feature 
values. 

Output : Global best position Gbest 

1 For each particle P Do // Initialize randomly position and velocity of p 

2      P[i]. current_position  random_value _within(feature values) 

3      P[i]. current_velocity  random_value _within(feature values) 
4      P[i].p_best P[i].position; 

5      P[i].p_best_value fitness(particle[i].position) using Equation (4) 

6 End for 

7 Gbestparticle with best p_best value for all particles 

8 Gbest_value Gbest’s p_best value 

9 For i=1 to T do 
10       For each particle p 

11           Update P[i]. current_velocity using Equation (2) 

12           Update  P[i]. current_position using Equation (3) 
13           P[i].fitnessfitness(particle[i].current_position) using Equation (4) 

14           if P[i].fitness > P[i].p_best_value then 

15               P[i].p_best  P[i]. current_position 
16               P[i].p_best_value  P[i].fitness 

17           End if  

18       End for 

19       if P[i].fitness > Gbest_value then 

20           Gbest P[i]. current_position; 

21           Gbest_value P[i].fitness; 
22        End if 

23 End for 

24 return Gbest. 

 
TABLE I 

USED DATASETS DESCRIPTIONS 
 

Dataset Classes Features Instances 

Breast Cancer 2 30 569 

German 2 20 1000 

COMPAS 2 15 7214 

Adult 2 14 48842 

Hepatitis 2 20 155 

Hypothyroid 3 21 7200 

 

B.2.Artificial Neural Network (ANN) 

 

ANNs are considered important algorithms for designing 

machine learning models, as they simulate the biological neural 

network that generates human intelligence. The artificial neural 

network has three interconnected layers, namely the input layer, 

hidden layers, and output layer, which is concerned with the 

outputs of the network, whether they are classification or 

prediction [26, 27]. ANNs are used in many fields [28], such as 

image recognition, fraud detection, natural language 

processing, and speech recognition. 

 

B.3.Support Vector Machine (SVM) 

The SMV algorithm offers a powerful technique for 

analyzing complex, non-linear data with many features and few 
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samples. It is used in supervised machine learning (regression, 

classification). This algorithm is based on finding the maximum 

distance (margin) between samples of different classes [29]. 

 

C.Evaluation Metrics  
 

The quality of the proposed method's performance is 

evaluated in terms of two metrics: fidelity and stability. 

 

C.1.Fidelity  
 

Fidelity metric refers to the degree to which an interpretable 

model accurately represents the predictions or decisions 

produced by a complex black-box model. High fidelity signifies 

that the explanation model reflects the original black-box 

model, enhancing their reliability and trustworthiness. 

However, there is often a trade-off between fidelity and 

interpretability, as more complex models may provide highly 

accurate predictions but are harder to interpret, while simpler 

models may offer easier explanations but with reduced 

accuracy. Therefore, finding equilibrium between 

interpretability and fidelity is key to ensuring that explanations 

are both understandable and faithful to the model’s true 

behavior [10]. 

 

C.2.Stability 

 

In XAI, stability refers to an essential property that 

guarantees the fidelity of explanations offered to users. It 

reflects a method's ability to produce coherent and reproducible 

results when faced with similar or identical inputs. An 

explanatory method is considered stable if, when it receives the 

same input data (or slightly perturbed inputs) with similar 

predictions, it generates explanations with minimal variations 

[12]. 

VI.    EXPERIMENTAL RESULTS 

This section is devoted to presenting experiments evaluating 

the proposed P-LIME method's performance against the 

original LIME when applied to machine learning models 

trained on six different datasets. More specifically, we aim to 

answer these two key questions: (1) Can the proposed P-LIME 

effectively generate PIs? (2) Does the generated set of PIs 

enhance the quality of explanation?  

 

A.PSO Parameters Tuning 
 

The performance of metaheuristic algorithms is influenced 

by multiple factors, such as the selected parameters: P, T, w, c₁, 

and c₂. Therefore, in the first step of our experiments, we focus 

on parameter tuning of PSO in the proposed P-LIME approach.  

The parameters w, c1, and c2 are set as defined in the original 

paper of PSO [5], while the parameters P and T are studied. In 

this work we evaluate combinations of three values of  P (10, 

50, 100) and three values of T (10, 50, 100) on the benchmark 

dataset German Credit and the Random Forest model, based on 

its balanced complexity, moderate dimensionality, and frequent 

use in explainability benchmarking tasks. As illustrated in 

Table II. For each combination, the fidelity of P-LIME is 

measured to assess the quality of the generated explanation. 
TABLE II 

 COMBINATIONS OF PARAMETERS P AND T 
 

Parameter combination Fidelity (%) 

P=10; T=10 88.35 

P=10; T=50 89.21 

P=10; T=100 89.80 

P=50; T=10 89.69 

P=50; T=50 87.91 

P=50; T=100 87.23 

P=100; T=10 88.46 

P=100; T=50 86.83 

P=100; T=100 87.36 

 

From Table II, the fidelity of P-LIME varies depending on 

the chosen values of P and T. The highest fidelity (89.80%) is 

obtained in the case of P=10 and T=100, suggesting that a 

smaller number of particles with a higher number of iterations 

leads to better results. However, in the cases that P=100 or 

P=100 and T=50 or T=100, the fidelity drops, indicating that 

increasing the number of particles may introduce unnecessary 

diversity in the population, leading to less stable perturbations 

and lower fidelity. Therefore, for the subsequent experiments, 

the selected parameters are P=10 and T=100. 

B.Evaluation Of Generated PIs  

The quality of PIs generated by XAI methods is a key factor 

in enhancing the model’s interpretability [11, 12]. The 

perturbation method should maintain a balance between 

diversity and proximity to the original instance, which improves 

the relevance of generated perturbations. Local fidelity relies 

heavily on how "close" these instances are to the original data 

point, as explanations derived from distant samples risk 

capturing non-local, and thus less relevant, model behavior. 

In this subsection, we evaluate the PIs set generated by P-

LIME in comparison to the DLIME method and the original 

LIME method. Specifically, we evaluate the average distance 

between the PIs and the original instance across different 

datasets. A lower average distance indicates that the generated 

instances remain closer to the original instance, potentially 

leading to more stable explanations. Table III reports the 

average Euclidean distance between the original instance and 

the generated perturbations across six benchmark datasets for 

LIME, DLIME, and P-LIME. 

P-LIME consistently yielded the shortest average distances 

across all datasets, underscoring its capacity to concentrate 

explanation creation to the immediate vicinity of the instance 

under analysis. In the German dataset, P-LIME attained an 

average distance of 2127.49, whereas LIME recorded 4283.78 

and DLIME 5017.87. In the Adult dataset, the average distance 

decreased to 271.10 with P-LIME, in contrast to 718.15 with 

DLIME and a significantly higher 1344.55 for LIME. These 

findings indicate that P-LIME's optimization mechanism 
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effectively focuses the perturbation space in a more significant 

and interpretable locality. 

Although P-LIME beats DLIME, in certain datasets it often 

generates more localized perturbations than LIME. For 

example, the average PI distance in the Breast Cancer dataset 

for DLIME is 424.91, far less than the 948.30 noted for LIME. 

This is most likely the result of DLIME's more context-aware 

sampling strategy by using clustering methods to limit 

perturbation generating inside a given cluster. But as 

Hypothyroid shows, where LIME yields somewhat less average 

distances (182.48) than DLIME (257.76), this benefit is not 

consistent across all datasets. 

Reflecting the unstructured character of its random sampling 

technique, LIME has the worst average distances among the 

three techniques in practically all datasets. Sometimes the 

created perturbations span more than three to five times the 

distance generated by P-LIME. For example, P-LIME's average 

PI distance is just 4.63, while LIME's in the COMPAS dataset 

is 56.38. As seen in earlier parts of the evaluation, these far-off 

disturbances impair the representativeness of the local linear 

surrogate model and help to produce weaker integrity and 

stability. 

Table III highlights P-LIME's fundamental advantage: it may 

create perturbations that are rather local to the instance under 

explanation. This ensures that interpretability maintains its 

connection to the original input's decision context, thereby 

enhancing the quality of the explanation. Furthermore, it is 

noteworthy that there is variation in distances between datasets, 

which implies that the perturbation behavior of data distribution 

and feature scaling has an effect. Still, P-LIME maintains the 

lowest perturbation distances in every scenario and adapts 

effectively over datasets, hence strengthening its 

generalizability and resilience. 

 
TABLE III  

AVERAGE DISTANCE OF PIS GENERATED BY LIME AND P-LIME. 
 

Datasets 
Average distance 

DLIME LIME P-LIME 

Breast Cancer 426.9059 948.3038 265.9545 

German 5017.8666 4283.7817 2127.4907 

COMPAS 36.8496 56.3828 4.6250 

Adult 718.1529 1344.5476 271.1038 

Hypothyroid 257.7629 182.4844 108.4367 

Hepatitis 54.3574 63.2894 47.7756 

 

C.P-LIME Evaluation and Comparison 
 

To evaluate the efficacy of the suggested P-LIME method 

against the original LIME, six datasets (Breast Cancer, German, 

COMPAS, Adult, Hypothyroid, and Hepatitis) and three 

machine learning algorithms (Random Forest, Neural 

Networks, and SVM) have been used to learn models to be 

explained. The performance of the explanation methods is 

measured using two metrics: stability and fidelity. The 

experimental result is presented in Tables IV and V. 

Explainability depends critically on stability, that is, the 

repeatability of explanations over several runs for the same 

input. When used often in the same instance. Table IVpresents 

the result in terms of the stability metric achieved by P-LIME, 

DLIME, and LIME. 

The results presented in Table IV demonstrate that P-LIME 

achieves perfect stability (100%) in all cases. The remarkable 

stability of P-LIME is mainly due to the implementation of PSO 

for producing neighborhood instances. P-LIME, in contrast to 

LIME and DLIME, incorporates randomness control by 

establishing a fixed random seed utilized in PSO. This 

guarantees that the stochastic elements of the algorithm, 

specifically the particle movements inside the search space, 

maintain a consistent course upon each repetition of the 

explanation for the identical instance. Consequently, the 

neighborhood generation process is entirely replicable, and the 

explanations remain consistent throughout iterations.  

In contrast, LIME depends on uncontrolled random 

sampling, resulting in considerable diversity in its 

interpretations. Table IV indicates that LIME's stability scores 

are significantly lower, varying from 16.67% to 72.73%, 

contingent upon the dataset and classifier utilized. This 

instability arises from LIME's stochastic creation of 

perturbations, which can fluctuate significantly with each 

execution, resulting in different local models and explanations. 

While DLIME also achieves perfect stability (100%), this is 

mostly due to its deterministic clustering technique, which 

generates neighborhood samples within preset data clusters. 

However, this deterministic structure limits its flexibility and 

reactivity to the unique properties of each given instance. 

Unlike P-LIME, which employs PSO to dynamically generate 

instance-specific neighborhoods through guided exploration, 

DLIME applies the same static clustering bounds regardless of 

local decision complexity. As a result, DLIME may overlook 

slight differences in the model's behavior around certain cases. 

In contrast, P-LIME combines adaptive sampling with 

controlled randomness, enabling it to tune the neighborhood to 

each situation while preserving full stability throughout 

repeated runs. 

Fidelity refers to the extent to which an explanation model 

accurately mimics the predictions of the underlying black-box 

model within a local neighborhood of the instance being 

explained. High fidelity implies that the surrogate model’s 

output closely matches that of the original classifier, thereby 

making its explanations more trustworthy and representative of 

the actual decision boundary. Table V presents a comparative 

analysis of the fidelity achieved by LIME, DLIME, and P-

LIME across various datasets and classifiers. 

Results in the Table V amply demonstrate P-LIME's constant 

performance in terms of fidelity above LIME and DLIME. For  
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TABLE IV 

STABILITY OF P-LIME VS LIME VS DLIME 
 

Dataset 
Random Forest Artificial Neural Networks SVM 

LIME DLIME P-LIME LIME DLIME P-LIME LIME DLIME P-LIME 

Breast Cancer 40.00% 100% 100% 25.00% 100% 100% 72.73% 100% 100% 

German 61.54% 100% 100% 57.14% 100% 100% 72.73% 100% 100% 

COMPAS 72.73% 100% 100% 81.82% 100% 100% 54.55% 100% 100% 

Adult 66.67% 100% 100% 58.33% 100% 100% 16.67 100% 100% 

Hypothyroid 21.74% 100% 100% 40.00% 100% 100% 27.78% 100% 100% 

Hepatitis 69.23% 100% 100% 72.73% 100% 100% 81.82% 100% 100% 

 

TABLE V 

FIDELITY OF P-LIME VS. LIME VS DLIME 
 

Dataset 
Random Forest Artificial Neural Networks SVM 

LIME DLIME P-LIME LIME DLIME P-LIME LIME DLIME P-LIME 

Breast Cancer 77.50% 75.36% 98.52% 76.38% 79.50% 86.06% 80.36% 76.60% 85.14% 

German 91.76% 93.32% 99.60% 74.68% 73.43% 91.66% 96.80% 95.89% 99.96% 

COMPAS 92.90% 83.30% 100% 83.56% 83.30% 99.98% 90.14% 84.32% 99.84% 

Adult 96.10% 96.12% 99.22% 94.66% 93.33% 99.60% 97.98% 96.22% 99.84% 

hypothyroid 99.70% 99.70% 100% 88.38% 96.85% 99.98% 87.80% 97.14% 99.88% 

Hepatitis 95.92% 80.00% 100% 86.60% 90.00% 100% 100% 100% 100% 

 
Fig. 4. Iteration 1: Explanations generated with LIME 

 

 
Fig. 6. Iteration 1: Explanations generated with P-LIME 

 

 
Fig. 5. Iteration 2: Explanations generated with LIME 

 

 
Fig. 7. Iteration 2: Explanations generated with P-LIME 
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Fig. 8. Jaccard distances for 10 generated explanations for the artificial neural 

network on the Breast Cancer dataset (LIME). 

 

every dataset and for every classification method random forest, 

artificial neural networks, and support vector machines P-LIME 

produces the best fidelity scores. For the Breast Cancer dataset, 

for instance, P-LIME achieves 98.52% fidelity with Random 

Forests, much exceeding LIME (77.50%) and DLIME 

(75.36%). Likewise, P-LIME clearly shows its robustness on 

the German dataset by reaching 99.60%, 91.66%, and 99.96% 

fidelity with the three respective classifiers. 

Although DLIME occasionally beats LIME, its performance 

is clearly less consistent than that of P-LIME. For the 

Hypothyroid dataset with artificial neural networks, for 

example, DLIME achieves 96.85% fidelity while LIME 

achieves 88.38%. In other situations, such as the German 

dataset with SVMs, DLIME's fidelity (95.89%) lags rather 

behind LIME (96.80%). This discrepancy implies that 

occasionally the clustering-based local sampling of DLIME can 

improve approximation but may also reduce integrity when 

clusters do not fit the real decision boundary. 

LIME yields moderate fidelity scores across datasets, 

validating its efficacy as a baseline approach. Nevertheless, it is 

evidently surpassed by both DLIME and particularly P-LIME 

in the majority of scenarios. In certain high-fidelity contexts, 

such as the adult dataset utilizing Random Forests (96.10%) or 

SVMs (97.98%), LIME demonstrates satisfactory performance. 

Nonetheless, the improvements presented by P-LIME are 

substantial: 99.22% and 99.84%, respectively. These findings 

underscore that although LIME is beneficial, its dependence on 

random sampling of perturbations constrains its capacity to 

accurately model the local behavior of intricate classifiers. 

The persistent fidelity improvements realized by P-LIME 

result directly from its optimization-driven perturbation 

strategy, designed to produce more informative and locally 

pertinent samples. P-LIME employs PSO as an optimization 

technique to strategically direct sample generation, in contrast 

to LIME's uniform sampling and DLIME's cluster-based 

selection. This yields a more accurate representation of the 

actual decision function in the local vicinity, evidenced by its 

nearly flawless fidelity in datasets like COMPAS (100%,  

 
 

Fig. 9. Jaccard distances for 10 generated explanations for the artificial neural 

network on the Breast Cancer dataset (P-LIME). 

 

99.98%, 99.84%) and Hepatitis (100% across all classifiers). 

Figures 4, 5, 6, and 7 present a comparative visualization of 

the local feature contributions generated by the two explanation 

methods, LIME and P-LIME, over two different iterations, 

where the x-axis represents the contribution of each feature to 

the model prediction and the y-axis lists the input features. 

Figures 4 and 5 illustrate the explanations generated by 

LIME during the first and second iterations, respectively. These 

charts reveal a high variance in both selected features and their 

contribution values. When comparing the explanations across 

the two iterations, we notice that LIME often selects different 

features or changes the contribution of similar features, which 

shows instability in explanation. In contrast, Figures 6 and 7 

show the explanations produced by P-LIME for the same two 

iterations. Here the selected features and their contribution 

remain almost identical, indicating high stability of P-LIME. 

This comparison clearly highlights that P-LIME offers stronger 

stability across iterations than LIME. The instability observed 

in LIME is primarily due to its random perturbation strategy, 

whereas P-LIME leverages PSO to intelligently generate PIs, 

leading to more reliable and reproducible explanations. 

To evaluate the dissimilarity between explanations generated 

over 10 iterations, we used the Jaccard coefficient (Jdistance), 

calculated using Equation (5). If the Jaccard coefficient is equal 

to 1, this indicates that the two explanations (i.e., sets of selected 

features) are identical, meaning the explanation is stable. 

Conversely, a coefficient equal to 0 indicates that the two 

explanations are completely different, indicating instability. 

𝐽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑗(𝑒𝑖 − 𝑒𝑗)                     (5) 

where ei and ej represent two sets of explanations produced at 

iterations i and j, respectively. 

The Jaccard coefficient results of explanations generated 

over 10 iterations are presented in Figures 8 and 9. The figures 

show the Jdistance between the explanation for an input sample 

in each iteration i and the explanation in other iterations j, where 
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i,j∈[0,9]. A zero value indicates no variation between the 

explanations in iterations i and j, while a non-zero value 

represents the degree of dissimilarity between them. In Figure 

8, we observe that the Jdistance values are zero for P-LIME, 

indicating that the explanations generated by P-LIME are stable 

across all iterations. In contrast, Figure 9 shows that the 

Jdistance for LIME contains significant values, highlighting 

that the explanations produced by LIME are unstable and vary 

across iterations. 

 

VII.   CONCLUSION 
 

This paper introduced P-LIME as an enhancement to the 

standard LIME technique. We aimed to tackle common issues 

with LIME, namely the stability of its explanations and how 

faithfully they represent the underlying black-box model's local 

behavior. The key difference lies in how perturbed instances 

(PIs) are generated: where LIME uses random sampling, P-

LIME employs the Particle Swarm Optimization (PSO) 

algorithm for a more guided approach. This allows the local 

surrogate model to better learn the nuances of the black-box 

model's decision boundary in the area of interest, ultimately 

yielding more stable and trustworthy explanations. By 

controlling the random values in the PSO algorithm, P-LIME 

generates the same PIs for a given input instance, thereby 

ensuring the reproducibility of explanations across different 

executions.  

The experimental evaluations conducted on several 

benchmark datasets, including binary and multi-class 

classification problems, demonstrate that P-LIME consistently 

produces more stable and higher fidelity explanations than 

LIME across various machine learning models. As future work, 

we aim to further explore the integration of other metaheuristic 

algorithms for perturbation generation and extend the 

applicability of our framework to non-tabular data such as 

images and text, where explainability remains a challenge. 
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