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Abstract—In a dense cellular network, the small cell size and 

limited frequency make it hard to control the traffic, and hence, 

there is a necessity for the transmission points to know how much 

traffic they can handle. To fix this problem in the network, this 

study suggests a Load Balancing (LB) scheme based on 

Reinforcement Learning (RL) named DRL-LB adopting a Deep 

Deterministic Policy Gradient (DDPG) RL approach for a dense 

cellular network utilizing the RoF technologies. The DRL-LB 

technique is based on self-exploration in the continuous action 

space to speed up the execution process. The SNR of the dense 

network has been taken into account to increase the network 

spectral efficiency concerning the number of users. The number of 

users per base station satisfying the minimum SNR value acts as 

the LB constraints in the scheme. The result analysis shows that it 

can achieve the required 10 dB of SNR value with 1.6 bits/s/Hz 

spectral efficiency.  It attains a higher spectral efficiency and 

rewards around 78% compared to the non-LB approach in the 

scheme. Furthermore, the simulation process also depicts that 

DRL-LB is 73% more efficient in running time. 

 

Index Terms—reinforcement learning, deep deterministic policy 

gradient, DDPG, load balancing, radio over fiber, RoF, dense 

network. 

I. INTRODUCTION 

With the advancement of future wireless networks, new 

technologies are being developed and suggested to meet 5G 

design goals. To meet the growing demands on flexibility, 

reliability, and transmission capacity of wireless networks, 

microwave photonics has emerged as an effective tool and in 

such states, networks like Radio over Fiber (RoF) [1] which is 

a kind of cellular network integration, is the combination of an  

optical fiber infrastructure and Radio Frequency (RF)  
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technology can provide a scalable solution towards millimeter- 

Wave (mmW) signal for enhancing Mobile Broadband (eMBB) 

for 5G network transmission. 

When a cell experiences significant network traffic, cellular 

networks may become inconsistent. In addition to being unable 

to meet user demands, an overloaded cell may cause issues like 

throughput and latency. As the number of users increases, the 

system's performance can be impacted by the relatively limited 

network coverage. Hence, the traditional rule-based Load-

Balancing (LB) methods are not suitable for dense networks. 

Considering the issue of small cellular coverage with a huge 

traffic load, developing an efficient LB scheme for a dense 

cellular network is crucial. However, some recent LB 

techniques are using rule-based methods in different networks 

like Cloud Radio Access Network (C-RAN) [1] and LiFi [2]. 

Regarding the learning techniques, such as Reinforcement 

Learning (RL), have shown effectiveness for dealing with 

communication LB [3]. RL attempts to learn control policies 

through interaction with the environment.  

Based on a distributed multi-agent deep Q-network, an LB 

mechanism has been depicted in [3] focusing on user 

association for dense networks. It uses a matching game-based 

policy for LB, where each Base Station (BS) maintains a 

preference list to make association decisions utilizing the sum 

data rates. Another LB scheme has been presented in  [4] for 

heterogeneous LiFi/WiFi networks. To maximize average 

network throughput and user satisfaction in terms of user data 

rate, it shows three distinct RL reward functions are shown 

using the Trust Region Policy Optimization (TRPO) learning 

algorithm. Another RL technique has been reported in [5] using 

the Deep Deterministic Policy Gradient (DDPG) method for 

increasing Spectral Efficiency (SE) in the massive Multiple 

Input Multiple Output (MIMO) communication system, 

considering the Signal to-Interference-plus-Noise Ratio 

(SINR). Another study is reported in [6], conducted on an LB 

approach in Self Organized Network (SON), which employs a 

ranked buffer strategy where BSs compete to achieve LB while 

considering quality of service metrics through a multi-agent 

DDPG scheme that emphasizes throughput, resource block 

utilization, and network latency. It uses a competitive 

framework where each agent aims to maximize its received 

reward under the assumption of worst-case scenarios, while 

simultaneously, other agents strive to minimize the rewards of 

their competitors. Each agent, represented by a BS, tries to 
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enhance its throughput while observing the constraints related 

to latency and resource block utilization.  

But to the best of the author’s knowledge, LB for RoF 

infrastructure based on DDPG has not been reported yet. Hence, 

the contributions of this article can be listed as follows:  

i. this study introduces the Deep RL based LB scheme 

named as DRL-LB scheme designed to address the LB 

challenge within dense cellular networks through a self-

exploration approach. The objective of this scheme is to 

dynamically evaluate the User Entities (UEs) per BS in 

a self-exploratory manner, adapting the appropriate 

Signal to noise Ratio (SNR) by employing a DDPG 

algorithm and this self-exploration mechanism enhances 

the SE of the system. 

ii. DRL-LB is an off-policy RL based algorithm for LB, 

which utilizes deep neural networks to approximate the 

LB policy, significantly enhancing the model's 

performance capabilities over RoF infrastructure. The 

DRL-LB can be trained within a learning framework to 

autonomously derive the optimal LB policy without 

requiring any prior knowledge of the underlying dense 

environments. 

iii. by utilizing the DDPG agent in the DRL-LB scheme it 

can find the most effective direction of action to 

maximize the estimated cumulative long-term 

reward based on the model-free RL method in the 

continuous action space and hence it can increase the SE 

based on the SNR value of the dense network. 

Additionally, by utilizing the DDPG method it 

accelerates the execution phase. 

The rest of this paper is organized as follows: Section II is 

about dense cellular network design using RoF technology, 

Section III presents a proposed deep reinforcement learning-

based load balancing scheme, result analysis and discussion 

have been described in Section IV, and finally, Section V 

concludes this paper.   

II. DENSE CELLULAR NETWORK DESIGN USING ROF 

TECHNOLOGIES 

The Optical Heterodyne (OH) [7] is a RoF technology that 

acts as a photonics-assisted RF signal synthesis scheme, 

providing an alternative to traditional electronic approaches in 

terms of cost, complexity, and bandwidth. Among these 

techniques. The OH scheme of direct frequency downmixing of 

two optical carriers on a Photodiode (PD) is one of the most 

straightforward and effective ways to achieve high-capacity 

wireless communication systems flexibly. For creating the two 

cells OH RoF technique has been utilized, considering two RF 

signals, 4 GHz and 30 GHz, representing macro and microcell, 

respectively, in the dense network by 3rd Generation 

Partnership Project (3GPP) specifications, according to [8]. The 

reason for choosing the two RF signals, 4 GHz and 30 GHz, is 

to design the two layers in the dense network. In 5G New Radio 

(5G NR), the 3GPP standard employs both low-frequency 

bands such as 4 GHz and high-frequency bands near 30 GHz. 

The 4 GHz band, which is included in Frequency Range 1 

(FR1), is regarded for its ability to provide wider coverage and 

support higher mobility applications. Conversely, the 30 GHz 

band, categorized under Frequency Range 2 (FR2), is 

frequently linked to mmW technology, delivering elevated data 

rates. The 3GPP is responsible for the development and 

standardization of mobile network technologies, which includes  

TABLE I 

DESIGN PARAMETERS OF THE DENSE CELLULAR NETWORK USING ROF 

TECHNOLOGY 

Symbol Name Values 

f 
RF Signals 

Macrocell (4GHz),  

Microcell (30 GHz) 

D 
Cell Coverage 

Macrocell (500m),  

Microcell (200m) 

λ Wavelength 1550 nm 

Lp Laser power -10 dBm 

NL Laser relative intensity noise -140 dB/Hz 

d SMF Fiber Length 10 km 

𝑉𝜋 Drive voltage of MZM 4 V 

σ Fiber chromatic dispersion 16 ps/nm/km 

Ɍ Responsivity of PD 0.8 A/W 

m Modulation 64 QAM 

W UE Channel Bandwidth 20 MHz 

SCS Subcarrier spacing 15 KHz 

 

5G New Radio (5G NR) that operates on both FR1 and FR2. As 

a reference the default specifications by 3GPP of dense network 

scenario has been presented in appendix section in Fig. A1. The 

design parameters of the dense network simulation of this 

article are presented in Table I. And the block diagram of the 

network design has been presented in Fig.1. A Continuous 

Wave (CW) laser with a wavelength, λ of 1550 nm is used to 

generate an optical light wave producing an output power, Lp of 

-10 dBm with an intensity noise, NL of -140 dB/Hz. The optical 

signal passes through a Polarization Controller (PC) to 

maximize the optical signal coupling into the Mach Zehnder 

Modulator (MZM) driven by a drive voltage, 𝑉𝜋  of 4V while at 

the same time ensuring as small as possible polarization-

dependent loss. Next, the RF signal, f, is transmitted into the 

MZM, which is driven by a RF signals 4 GHz RF signal with 

direct modulation and a 15 GHz RF signal with external 

modulation. Then the RF signal is launched into a fiber length, 

d of 10 km Single Mode Fiber (SMF) with a chromatic 

dispersion, σ of 16 ps/nm/km. The optical signal is detected by 

a high-speed PD with a 3 dB bandwidth and a responsivity, Ɍ, 

of 0.8 A/W. The PD output is fed into a spectrum analyzer to be 

monitored and measured. The Delay Interferometer (DI) has 

been used to separate two optical signals at the receiving end. 

At the receiving end, the PD converts the optical field to current, 

followed by a Transimpedance Amplifier (TIA) for 

amplification, and then demodulated by Amplitude (AM) 

demodulators to get back the electrical signals. The generated 

photocurrent can be analyzed by the RF spectrum analyzer and 

a BER analyzer. The channel bandwidth, W, and the subcarrier 

spacing, SCS, for the dense network simulation are 20 MHz and 

15 KHz, respectively, for 64 QAM modulation, m technique. 

The 30 GHz RF signal is generated using the Dual Sideband 

(DSB) mechanism due to its simplicity and system efficiency 

for high-speed wireless data transmission [9], [10], [11]. The 

DSB module can be realized by a MZM and the output of the 

DSB technique can be given as [12]  

 

𝐷𝑆𝐵 (𝑡) ∝ 𝐸1 𝑒𝑥𝑝 (𝑗2𝜋𝑓𝑡) 𝑒𝑥𝑝 [𝑗2𝜋𝑓𝑡 + 2𝜋ℎ𝑚(𝑡)] +
𝑒𝑥𝑝 [−𝑗2𝜋𝑓𝑡 − 2𝜋ℎ𝑚(𝑡)] + 𝛼𝐴                                          (1) 
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where f is the RF signal, E1 is the intensity of the electrical field, 

2πh is the modulation index, m(t) is the message signal, 

 

  
 

Fig. 1. The block diagram of the dense cellular network design using RoF 

technology 
                                                                                                                                       

A is the amplitude of the optical carrier, and α denotes the 

carrier suppression factor. For the DSB optical signal 

dominated by the first-order sidebands, α is close to zero. The 

modulated signal is further sent to the PD for heterodyne 

mixing, as follows 

 

𝑃𝐷(𝑡) = Ɍ|𝐸1𝐷𝑆𝐵(𝑡) + 𝐸2𝑒𝑥𝑝(𝑗2𝜋𝑓𝑡)|2 =
2Ɍ𝐸1𝐸2 𝑐𝑜𝑠 [2𝜋𝑓𝑡 + 2𝜋ℎ𝑚(𝑡)] + 𝑐𝑜𝑠 [2𝜋𝑓𝑡 − 2𝜋ℎ𝑚(𝑡)] +
𝛼𝐴 𝑐𝑜𝑠[2𝜋𝑓𝑡]                                                (2)  

  

where Ɍ is related to the responsivity of PD and E2 denotes the 

amplitude of the optical carrier. Since the low-frequency terms 

(cos(2πft)) can be filtered by the RF components like power 

amplifiers or antennas operating at the high-frequency RF band 

and can be ignored in Eq. (2) [13]. Thus, only the RF signals 

centered around 2f are generated through DSB. For calculating 

the Signal to Noise Ratio (SNR), this paper adopted the 

following equation from [34] 

 

𝛾 = sk − 𝑁                            (3)     

                                                                           

where 𝛾 is the SNR in dB,  𝑠𝑘 is the received power and N is the 

noise power in dBm. From the SNR values to calculate Error 

Vector Magnitude (EVM) which is the metric used to quantify 

the performance of a radio transmitter or a receiver, the 

following equations have been considered   

 

EVM = √
1/𝑇

𝑃0
∑ [|𝑛𝐼,𝑡|

2
+|𝑛𝑄,𝑡|

2
]

𝑇

𝑡=1
            (4)                       

where 𝑛𝐼,𝑡 and 𝑛𝑄,𝑡 are in-phase and quadrature components, 

respectively. P0 is the power of the normalized ideal 

constellation or the transmitted constellation. According to Eq. 

(4) can be written as 

 

𝐸𝑉𝑀 ≈ √1/𝑆𝑁𝑅                            (5) 

                                                                                                     

The key performance indicators of the dense network are 

average Spectral Efficiency (SE) and user throughput denoted 

as 𝛤. If Ri (t) denotes the number of correctly received bits by 

the total number (N) of UEs, and M is the number of 

transmission-reception points. The channel bandwidth is 

denoted by W, and t is the time over which the data bits are 

received. The 𝑆𝐸 has been estimated by running system-level 

simulations over a number of N drops 𝑁𝑑𝑟𝑜𝑝𝑠. Each drop gives 

a value of  ∑ 𝑅𝑖(𝑡)𝑁
𝑖=1  denoted as 𝑅1(t), … 𝑅(𝑁𝑑𝑟𝑜𝑝𝑠) (t) and the 

estimated 𝑆𝐸 resulting is given by [15] 

 

𝑆𝐸 =
∑ 𝑅(𝑗)(𝑡)

𝑁𝑑𝑟𝑜𝑝𝑠

𝑗=1

𝑁𝑑𝑟𝑜𝑝𝑠 .𝑡.𝑊.𝑀
=

∑ ∑ 𝑅𝑖
(𝑗)

(𝑡)
𝑁𝑑𝑟𝑜𝑝𝑠

𝑗=1

𝑁𝑑𝑟𝑜𝑝𝑠

𝑖=1

 

𝑁𝑑𝑟𝑜𝑝𝑠 .𝑡.𝑊.𝑀
                (6)                                               

 

where SE is the estimated average spectral efficiency, and it will 

approach the actual average with an increasing number of 𝑁𝑑𝑟𝑜𝑝𝑠 

of UEs in the network, and 𝑅𝑖
(𝑗)(𝑡) is the simulated total number 

of correctly received bits for UEi in drop j. For calculating 

throughput, UEi in drop j correctly decode 𝑅𝑖
(𝑗)(𝑡) accumulated 

bits in [0, t]. During this total time UEi receives an accumulated 

service time of ti ≤ t, where the service time is the time duration 

between the first packet arrival and when the last packet of the 

burst is correctly decoded. In the case, of a full buffer, ti = t. 

Hence, the rate of normalization by service time ti and channel 

bandwidth (W) of UEi in drop j, 𝑟𝑖
(𝑗)

, is  

 

𝑟𝑖
(𝑗)

=
𝑅𝑖

(𝑗)
(𝑡)

𝑡𝑖.𝑊
                                                                        (7) 

 

Running all Ndrops (UEn) simulations leads to Ndrops × N values 

of 𝑟𝑖
(𝑗)

 of which is the lowest 5th percentile point of the 

Cumulative Distribution Function (CDF) is used to estimate the 

5th percentile user SE. The network performance metrics have 

been evaluated considering the throughput derived from the 

received signal power and the noise power of the RF signals and 

can be calculated using the following equations adopted from 

[16]. The throughput has been measured using the following 

equation 

 

𝛤 =  𝑊 ∗ 𝑙𝑜𝑔  (1 +  ℽ)                                                      (8) 

 

where 𝛤 represents throughput in Mbps and ℽ represents SNR 

in dB derived from Eq. (3). And W is the channel bandwidth 

which is 20 MHz for 15 KHz subcarrier spacing and 10 ms time 

frame using 64 QAM modulation. The SE can be derived using 

Eq. (3) as the below equation  

 

𝑆𝐸 =  𝑙𝑜𝑔  (1 +  ℽ)                                        (9) 
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where SE measured in bits/s/Hz and ℽ represents SNR in dB 

derived from Eq. (3). 

III. PROPOSED DEEP REINFORCEMENT LEARNING BASED 

LOAD BALANCING SCHEME 
 

Machine learning techniques like RL have shown 

effectiveness in dealing with communication load balancing 

[17]. RL attempts to learn control policies by interacting with 

the environment. However, RL-based techniques have inherent 

challenges. RL requires frequent interactions with the 

environment to learn a satisfactory policy and a reward function 

to achieve the desired performance [18]. This article proposes 

the DRL-LB scheme for the dense cellular network using RoF 

technologies, using a DDPG agent to find the most effective 

direction of action that maximizes the estimated cumulative 

long-term reward based on the model-free RL method in the 

continuous action space [35]. The goal of the RL is to train 

an agent to complete a task within an 

unknown environment.  The agent receives observations and 

a reward from the environment and sends actions to the 

environment. The reward is a measure of how successful an 

action is concerning completing the task goal. In each training 

time step the current observation from the RoF environment 

selects an action based on the number of UE and SNR and 

returns the corresponding action that maximizes the long-term 

reward. Then it observes the reward and the next 

observation from the environment. It stores the experience in 

the experience buffer to update the policy through the RL 

algorithm. To compute the cumulative reward, the agent first 

computes the next action by passing the next observation from 

the experience buffer to the target action to find the cumulative 

reward by minimizing the loss across all the experiences. 

 
Fig. 2. Schematic diagram of DRL-LB scheme 

 

Fig. 2 presents the schematic diagram of the proposed DRL-

LB scheme. In the scheme, the agent and the environment 

interact at each of a sequence of discrete time steps. At a given 

time step t, the environment is in a state S(t), which results in 

the observation O(t). Based on O(t) and its internal policy 

function, the agent calculates an action A(t). According to its 

internal dynamics the RoF environment updates its state 

to S(t+1), which results in the next observation O(t+1) based on 

both the state S(t) and the action A(t). Based on S(t), A(t), 

and S(t+1), the environment also calculates a reward Rd(t+1). 

The reward is an immediate measure of how good the 

action A(t) is. At the next time step t+1, the agent receives the 

observation O(t+1) and the reward Rd(t+1). Based on the 

memory buffer of observations and rewards received, the 

learning algorithm updates the agent's policy parameters in an 

attempt to improve the policy function. The parameter update 

may occur at each step or after a sequence of steps. Finally, the 

agent calculates the next action A(t+1) based on O(t+1) and on 

its policy function, and the process is repeated. The LB policy 

and the rewards of the DRL-LB scheme are presented in the 

following two subsections, and the algorithm and flow of the 

algorithm have been depicted in Algorithm I and Fig. 3, 

respectively. 

 

A. LB Policy 
 

The agent for the DRL-LB scheme is the UE. This paper takes 

into account the SNR values defined in Eq. (3). The agent is 

being trained to determine whether the number of UEs is in an 

acceptable range or not, considering the SNR value. As this 

article considers the number of UE per BS in a cell in the 

network, it is necessary to provide information regarding the 

load of a particular BS to the RL agent. The load constraint of 

the LB technique is the number of UE per BS, and by restricting 

the maximum number of UEs at each BS, it can balance the 

loads among all BSs in a dense wireless network [22]. 

Furthermore, the minimum SNR value for connection 

establishment is 10 dB [4]. Therefore, it is more efficient to 

transmit the SNR information to the LB controller. The UEs are 

under the BS coverage of the dense network and can be 

connected if they get acceptable SNR values. From the 3GPP 

standards [15] the number of users served by each BS is 10 and 

is denoted as Ϧ. Thus, the number of linked users at each BS 

cannot exceed Ϧ. The number of BSs in the cell is denoted as Ҍ 

and the SNR at the Ϧth attended by the BS can be written as ξ. 

Hence, to maximize the SE using Eq. (9), the LB constraint in 

the RoF dense network formulated as  
 

𝐶 = ∑ Ϧ ∑ Ϧ[Ϧ|Ϧ < Ϧ𝑡ℎ]Ϧ
𝑗=1  ∑ 𝜉[𝜉|𝜉 > 𝜉𝑛]Ϧ

𝑗=1  Ҍ
𝑖=1              (10)                                                        

 

where C denotes the LB constraint for the LB policy; Ҍ, Ϧ and 

ξ denote number of BSs, the number of UEs, and the SNR 

values of the Ϧth respectively. And  

 

Ϧ ∈ (1,2,3, … ,10), such as [1 <  Ϧ < 10]                          (11) 

 

𝜉 ∈ (10,11,12, … ,40), where [1 <  𝜉 < 40]                          (12) 

B. Rewards 

If the LB policy is true during the simulation, then it is 

assumed that the proposed network is balanced. The reward 

function, Rd is calculated based on the SNR values. Hence, the 

modified R can be written  

 

𝑅𝑑𝑗 = ∑ [𝑅𝑑𝑗|𝑅𝑑𝑗Є(𝑅𝑑)]
Ϧ

𝑖=1
                               (13)  

                                                                             

where, Ϧ is the number of UEs connected to BSj, and Rdj 

corresponds to the Rd measured at time t by UEi. The Rd is 

intended that if the request of a UE is rejected by the BS, it 

would get a lower reward value as it is violating the LB 

constraints through the LB policy by designing a loss or error 

function, e as  
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𝑒 =  [𝑒 | 𝑒 Є {(𝑒 > 1)  ∪  (𝑒 < −1)]                                 (14) 

                                                                          

Hence, the corresponding Rd from Eq. 14 can be written as  

 

𝑅𝑑 = ∑ (𝑅𝑑𝑗
Ϧ

𝑖=1
 +  𝑒)                                      (15)    

                                                                                                 

If the value of e is greater than 1, it would penalize the average 

UE performance metrics, whereas if e is less than 1, the reward 

will be high, indicating the network is balanced. The algorithm 

of the DRL-LB has been presented in Algorithm I. 

 

Algorithm I DRL-LB Scheme 
 

Step 1:  Initialize the agent UE 

Step 2: Reset the environment according to Eq. (9) 

Step 3: Get initial observation from the environment according to 

Eq. (12) 

Step 4: Compute initial action based on current policy according to 

Eq. (10) 

Step 5: From the current observation, the agent selects an action 

according to Eq. (9) and Eq. (12) 

Step 6: Based on the action, the reward is calculated according to 

Eq. (15) 

Step 7: Update the current action & observation with  

the next action & observation 

Step 8: If it does not reach the stopping criteria, then go to step 2; 

otherwise, go to step 9 

Step 9: End of training 
 

 

From Algorithm I, at first, the LB scheme is initiated by the 

agent UE. Then it reset the RoF environment according to the 

Eq. (9). After getting the initial observation from the 

environment based on Eq. (12), it computes the initial action 

according to the current LB policy according to Eq. (10). Then 

from the current observation the agent selects the action 

according to Eq. (9) and Eq. (12). Based on the action the 

reward is calculated according to Eq. (15). Then, it updates the 

current action and observation with the next action and 

observation and this process continues until it reaches the 

stopping condition. The process flow of the DRL-LB scheme 

has been depicted in Fig. 3. 

 
TABLE II 

DESIGN PARAMETERS OF DRL-LB SCHEME 
 

Symbol Name Values 

β Learning rate 10-3 

Opt Optimizer Adam 

|B| Mini batch size 64 

|E| Number of episodes 500 

|Tsteps| Time steps per episode 1000 

γ Discount factor 0.99 

 

C. Datasets 

The training dataset is generated by software simulation 

through Matlab vR2023b. The design parameters of the DRL-

LB scheme are presented in Table II. The training is done by 

considering the number of UEs, received signal power and the 

noise power of the UE in the network. The dataset consists of 

500 episodes for each UE and 1000 timesteps for each episode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Process flow of DRL-LB scheme 

 

Each agent's RL structure is built using three hidden layers of 

the Rectified Linear Unit (ReLU) activation function (64, 32, 

32) with a discount factor, γ, with a value of 0.9, a learning rate, 

β, of 10-3. Using the optimizer, Opt as Adam optimizer and a 

mini-batch size, |B| of 64, the weights of the DRL-LB method 

are updated at each time step. The datasets are used to train 

system models to be more subtle and recognize the input data. 

Through this data collection, the model becomes stable and can 

realize the data for testing. The testing process of the DRL-LB 

scheme can recognize the data effectively to produce optimal 

SE values [5]. The deep neural network of the DDPG agent has 

been trained based on the dataset of independent realizations of 

the UEs’ received signal power and noise power, obtained by 

the outputs from the DRL-LB scheme in RoF environments by 

applying Eq. (15).  
 

D. Training and Validation Procedure 
 

The DRL-LB scheme considers an episodic training 

procedure, where in each episode, the number of UEs and the 

SNR values of UEs are randomly selected following a set of 

probability distributions and constraints based on Eq. (11) and 

Eq. (12). Each new episode allows the scheme to experience a 

potentially unexplored subset of the observation space based on 

UE and SNR. The LB policy takes place based on Eq. (8) as a 

new episode begins and remains fixed for the duration of that 

episode. An episode consists of a fixed number of time steps, 

where at each time step, the agents decide on which UE and 

SNR actions the policy should take [21]. The DRL-LB scheme 

has undertaken training over 500 episodes, each consisting of 

1000 steps. The RL architecture for each agent incorporates 
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three hidden layers utilizing the Rectified Linear Unit (ReLU) 

activation function, configured as (64, 32, 32). The discount 

factor is set at 0.9, while the learning rate is established at 10-3. 

The adam optimizer is employed for weight updates at each 

time step, with a mini-batch size of 64. In the dataset, 80% of 

the samples are allocated for training purposes, 10% for 

validation, and the remaining 10% constitutes the independent 

test dataset. The simulations are performed on a workstation 

with Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz, 2.10 

GHz processor, 8.00 GB of RAM, using a 64-bit operating 

system. To verify the performance of the proposed DRL-LB 

scheme, this work considers its own simulation and training 

results in terms of using LB constraints and without LB 

constraints. However, this work makes a comparison based on 

the performance and design parameters of some recent works 

based on DDPG, as it is difficult to directly compare them due 

to different network scenarios and constraints.  

IV. RESULT ANALYSIS AND DISCUSSION 

This section presents the network performance analysis 

regarding SNR, and EVM to received optical power and 

launched optical input power, to show the effectiveness of using 

RoF technology in the dense network design. And it is also 

essential as it is related to the proposed LB scheme, where SNR 

values are considered for training the DRL-LB scheme to 

increase the SE in this article.  In Fig. 4 (a), it shows that at 0 

dBm launched optical input power, the received optical input 

power is -40 to -42 dBm for 10 km fiber length for both 4 GHz 

and 30 GHz signals, which is within the acceptable range for 

the proper transmission in the network [22]. Fig. 4 (b) shows 

the variation of calculated SNR values using Eq. (3) with the 

launched optical input power. As the input power increases, the 

SNR also increases for both cells. From 5 dBm and above, the 

launched input power is getting greater than a 10 dB SNR value, 

which is the minimum level to establish a connection [4]. Fig. 

4(c) shows the EVM vs the received optical power for 64 QAM 

both RF signals with a 10 km fiber link and the EVM values are 

calculated using Eq. (5). For 64-QAM, the average required 

optical power at the receiver to get an EVM of less than 8% is 

−14.8 dBm. As the received optical power increases, the EVM 

values decrease, and it is evident that the results have favorable 

compliance [8] Consequently, in Fig. 4 (d), it is also shown that 

as the SNR increases, it decreases the EVM values, as it is 

obvious that both the EVM and SNR are in upright alignment 

[23].  
Figures 5 - 8 examine how the number of UE performs based on 

SNR, maintaining the SE in the system while satisfying the LB 

policy of the DRL-LB scheme. The learning was carried out in 

episodes, where each episode contains multiple learning time steps. 

During each episode, the DDPG agent is learning and updating 

every time step, and each UE is carried out once per episode. The 

system performance depicted in Fig. 5 in terms of SE 

concerning SNR that are examined by using Eq. (3) and Eq. (9) 

for two cells. The graph shows that the SE of the cells gradually 

increases with the increasing value of SNR. At the 10 dB SNR 

the SE for two cells is within 1 to 1.2 bits/s/Hz. In contrast, the 

DRL-LB scheme outperforms at 38 dB SNR with a SE of 1.7 

bits/s/Hz, which is in the acceptable range according to the 

3GPP specifications [8]. This behavior suggests that the SE 

increases with the increase of SNR, providing good system 

performance. 

 

 
 
 

 
 

 

 
 

 
 

 
Fig. 4. Network performance analysis: (a) Received optical power vs launched 

input power, (b) SNR vs launched optical power, (c) EVM vs received optical 

power, (d) EVM vs SNR 
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Fig. 5. Performance analysis: Spectral Efficiency vs SNR 

 

 
 

Fig. 6. Convergence behavior: the CDF values of the SE obtained by the 
DRL-LB scheme per UE 

 

The convergence behavior of the DRL-LB scheme has been 

depicted in Fig. 6. It shows the correlation of the scheme 

without LB constraints. It is evident from the graph that the 

difference between the two curves in terms of CDF values is 

only 0.03, which indicates that the proposed scheme 

outperforms in achieving the SE [3]. Additionally, it can be 

stated that the scheme for both curves with LB and without LB 

justifies that the testing and validation of the scheme is 97% 

accurate [5]. As seen in Fig. 6, the DRL-LB scheme converges 

to a local optimum for both curves as each agent trains in each 

episode. Furthermore, the proposed scheme shows a similar and 

stable convergence behavior in the dense network, even though 

the values change from one episode to the next. It also shows 

that the proposed scheme, considering the SNR values of the 

UE per BS, enhances the SE. This result verifies the 

effectiveness of the proposed DRL-LB scheme with the LB 

policy utilising the DDPG RL agent. 

 

 
 

Fig. 7. Spectral efficiency obtained by DRL-LB scheme per UE 

 

The system performance depicted in Fig. 7 in terms of SE for 

each user is obtained by Eq. (9) for a 20 MHz channel 

bandwidth for a 10 ms time frame. The graph shows that the SE 

gradually increases with each episode of the training. At the 

500th Episode, the SE obtained using LB is 1.6 bits/s/Hz, which 

is in the acceptable range by 3GPP specifications defined in [8], 

whereas it is 0.78 bits/s/Hz for not using LB in the scheme. 

Hence, it is also noticeable that the DRL-LB is performing 

around 78% higher in gaining SE by applying the LB 

constraints in the scheme compared to the non-LB approach. 
Lastly, Fig. 8 shows the performance analysis of the DRL-LB 

scheme in terms of rewards obtained by Eq. (15). Fig. 8 shows a 

similar performance like Fig. 7 where the average rewards of the 

LB approach are 78% higher reward compared of the non-LB 

approach in the DRL-LB scheme. 

 

 
 

Fig. 8. Performance analysis of the DRL-LB scheme in terms of average. 

Rewards 

 

To assess the efficacy of the proposed DRL-LB scheme, this 

study examines its simulation and training outcomes both with 

and without LB constraints. Furthermore, a comparative 

analysis is conducted based on the performance and design 

parameters of several recent studies utilizing DDPG, as it is 

difficult to directly compare them due to different network 

scenarios and constraints.  The DRL-LB scheme has been 

compared with three recent DDPG approaches in Tables III for 

application type, design parameters, performance metrics, 

outcome and result of the methods. From Table III it states that 

two methods are applicable for MIMO communication, another 

one is for Self-Organizing Networks (SON), whereas the 

proposed scheme is for dense networks using RoF technologies 

for LB.  Among these, in [5] it states that compared to not 

employing the DDPG approach, it may obtain a higher SE of 

85% and an average SINR of 19.54 dB, whereas the 

conventional method only yields an average SINR of 15.32 dB. 

And in [24] it presented a downlink power control method using 

DDPG in a MIMO communication system was presented to 

increase the implementation speed of the system. And the 

scheme presented in [6] is for SON which tries to increase the 

throughput and decrease the training run time. On the contrary, 

the DRL-LB scheme has been proposed for LB in the dense 

cellular network adopting the DDPG RL method. And the result 

depicts that, it can outperform at 38 dB SNR with a SE of 1.7 

bits/s/Hz. And hence, the DRL-LB can achieve 78% higher SE 

and average rewards compared to the non-LB approach in the 

scheme. 
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TABLE III 
COMPARATIVE ANALYSIS  
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DDPG [5] 
 

MIMO SINR SE 85% higher SE 

DDPG [24] MIMO Power 

control 

Speed Faster execution 

process 

DDPG [6] SON No. of 
users 

Run time 70.49% 
improvement in 

run time 

DRL-LB 

(proposed) 

using 
DDPG 

Dense 

cellular 

network 
using RoF 

SNR SE, run 

time 

78% higher SE 

than non-LB 

approach, 73% 
improvement in 

run time 

 

The run time analysis of the proposed DRL-LB has been 

compared with [6] in Table IV. The DDPG work in [6] shows 

that it is running the training for 500 episodes and 1000 time 

steps each, around 30 minutes and claiming that it is gaining 

70.49% improvement. Hence, this article is making a 

comparison with [6] where the proposed DRL-LB scheme takes 

only 22 minutes for the runtime, and thus it can achieve 73% 

improvement in run time for the same number of episodes and 

time steps in the scheme. Additionally, it takes 26 minutes to 

train the model without LB constraints, whereas it takes only 22 

minutes for LB constraints, which is 4 minutes less than without 

LB constraints. Hence, in other words, it can be said that DRL-

LB is 60% more efficient in running time than without using the 

LB constraints. 

TABLE IV  
RUN TIME ANALYSIS 

Method No. of 

Episodes 

No. of Time 

Steps 

Total Run 

Time 

Avg. 

Improvement 

DDPG [6] 500 1000 30 minutes 70.49% 

DRL-LB 
(proposed) 

500 1000 22 minutes 73% 

V. CONCLUSION 

This paper proposes an RL-based LB technique named as 

DRL-LB scheme for a dense cellular network that considers 

multiband 4 GHz and 30 GHz RF signals representing macro 

and microcells utilizing RoF technology. To enhance the 

performance efficiency of the DRL-LB scheme in the 

reinforcement training and execution process, this paper adopts 

model-free off-policy deep learning using a DDPG agent. The 

agent searches for an optimal policy that maximizes the 

expected cumulative long-term reward to satisfy the LB 

constraints. In the network performance study, the SNR and 

EVM performance metrics are considered to demonstrate the 

effectiveness of using RoF technology in dense network design. 

From the result analysis, it appears that the dense network 

performs well, maintaining acceptable values of 10 dB SNR and 

less than 8% EVM. Similarly, the numerical values indicate that 

the DRL-LB scheme delivers comparable performance in terms 

of SNR and SE in the network. It demonstrates that the 

suggested network can sustain an SNR value of 10 dB for 

effective signal transmission and maintain a user SE of 1.6 

bits/s/Hz, which is within the acceptable range according to 

3GPP specifications. Furthermore, the simulation results of the 

DRL-LB scheme shows that, when each agent trains with the 

DDPG agent, the network remains stable and converges 

similarly to a local optimum, while the difference in the CDF 

value for the SE is only 0.03 between the curves for LB and 

without LB, justifying that the testing and validation of the 

scheme is 97% accurate. Additionally, the DRL-LB can achieve 

78% higher SE and rewards compared to the non-LB approach 

in the scheme.   

This work is limited to software simulation only and does 

not include any experimental analysis. The SNR value plays a 

vital role in this LB scheme, achieving a higher SE value 

compared to the non-LB approach. One of the key benefits of 

the DRL-LB method is that it does not require knowledge of the 

policy used to create existing data logs, as DDPG is an off-

policy method. This enables the model to be trained using 

random actions that remain within operational limits, with 

episode termination occurring when those limits are exceeded, 

and it operates independently of any specific policy that could 

enhance long-term behaviour. Thus, it would be fascinating to 

explore additional types of referring data related to specific real-

world scenarios in future studies. Consequently, a future 

direction for further research could involve testing real-world 

data from various fields, such as cloud radio access networks or 

5G/6G fibre-wireless networks. 
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APPENDIX 

TABLE A.1 
THE LIST OF ABBREVIATIONS USED IN THIS MANUSCRIPT 

 

Name Abbreviations 

Radio over Fiber RoF 

Radio Frequency RF 

millimeter-Wave mmW 

enhancing Mobile Broadband eMBB 

Load-Balancing LB 

Cloud Radio Access Network C-RAN 

Reinforcement Learning RL 

Trust Region Policy Optimization TRPO 

Deep Deterministic Policy Gradient DDPG 

Spectral Efficiency SE 

Signal to-Interference-plus-Noise Ratio SINR 

Base Station BS 

User Entities UE 

Signal to noise Ratio SNR 

Deep RL based LB scheme DRL-LB scheme (Proposed) 

Optical Heterodyne OH 

Photodiode PD 

Continuous Wave CW 

Polarization Controller PC 

Mach Zehnder Modulator MZM 

Polarization Controller PC 

Single Mode Fiber SMF 

Delay Interferometer DI 

Dual Sideband DSB 

Error Vector Magnitude EVM 

Spectral Efficiency SE 

Cumulative Distribution Function CDF 

Rectified Linear Unit ReLU 

Multiple Input Multiple Output MIMO 

Self Organized Network SON 

3rd Generation Partnership Project 3GPP 

 

Fig. A1. Frequency bands for dense cellular network by 3GPP 
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