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Abstract—The rise of Big Data necessitates robust access
control for platforms like Hadoop. While traditionally deployed
on physical servers within trusted networks, Hadoop is in-
creasingly migrating to cloud-native, containerized environments.
This transition introduces significant security challenges, as the
compromise of a single container can potentially expose other
resources. Existing Big Data access control models, designed for
traditional configurations, often lack the necessary flexibility for
dynamic cloud-native environments. This research proposes a
usage control-based model to secure privileged access to Big Data
and its processing within containerized environments. The paper
analyzes existing access control solutions and explores Hadoop
architectures in cloud-native deployments. It then presents a
model leveraging usage control and multi-step authorization to
address these evolving security needs. The proposed approach
enhances traditional access control by incorporating organiza-
tional context and approval workflows for sensitive operations.
It mitigates the risks associated with unbounded privileges and
rogue container deployment by enabling real-time, reactive policy
enforcement. Unlike existing models, this solution offers dynamic
adaptability, fine-grained control, and improved resilience against
insider threats, making it particularly well-suited for securing Big
Data in modern, distributed environments.

Index Terms—Big Data, Usage control, Authorization, Micro-
service, Cloud-native, Kubernetes, Open policy agent, Multi-step
authorization.

I. INTRODUCTION

AS the volume, velocity and variety of data continues
to grow exponentially, organizations are increasingly

turning to Big Data technologies such as Hadoop to harness
this valuable information. However, the massive scale and
distributed nature of Big Data systems presents unique security
challenges that require robust access control mechanisms.

Apache Hadoop is a comprehensive open source ecosystem
for storing, processing and analyzing large data sets [1]. This
ecosystem includes core components such as the Hadoop Dis-
tributed File System (HDFS) for fault-tolerant distributed stor-
age, Yet Another Resource Negotiator (YARN) for resource
management, and the MapReduce framework for parallel pro-
cessing of large datasets. Traditionally, Hadoop clusters have
been deployed directly on physical or virtual machines. Today,
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organizations are migrating to cloud-native technologies based
on the use of containers.

A container [2] is a standardized software unit that encap-
sulates code and all its dependencies, enabling the application
to run quickly and reliably, regardless of the target computing
environment. Containerization provides portability, isolation,
and efficient use of resources for applications, making it easier
to deploy and manage complex systems such as Hadoop across
different environments. However, setting up a cluster of secure
containers presents a new challenge as the scope of attack
expands: if one container is compromised and acts maliciously,
other resources in the environment may be at risk [3]. This
risk is further amplified by the presence of unbounded priv-
ileges, where privileged users can freely create and config-
ure containers without sufficient oversight. Such conditions
open the door to the creation of rogue containers, potentially
bypassing security controls and escalating threats within the
environment. These challenges necessitate robust, fine-grained
access control mechanisms that can govern privileged actions,
enforce accountability, and limit the impact of compromised
components in containerized Big Data infrastructures.

Various access control models have been proposed for
Hadoop, including HeAC, OT-RBAC [4] based on roles and
tags, HeABAC [5] and H-RABAC [6] which determine access
to Hadoop resources based on user, resource, and operational
attributes. While effective in traditional architectures, these
models fall short in addressing the dynamic nature and in-
creased attack surface of cloud-native environments. Primarily
designed for static deployments on dedicated servers, they
lack the flexibility and agility required for dynamic and
containerized environments.

While research has explored access control in containerized
environments [7] and applied RBAC to Kubernetes [8], as
well as investigated identity-based access control for multi-
cloud settings [9], the specific challenge of securing Hadoop
resources within cloud-native environments remains largely
unaddressed.

This research addresses the implementation of an organi-
zational access control model, based on the usage control
(UCON) model, to secure Big Data processing in multi-
tiered, multi-tenant and elastic cloud-native environments by
including a multi-step authorization method based on approval
of critical accesses.

The main contributions of this research are as follows:

• Conceptualization of a stateful access control model
for cloud-native Hadoop, integrating Usage Control and
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Organization-Based Access Control with multi-step autho-
rization via approvals.

• Formalization of the model using temporal logic to define
stateful authorization rules and enforcement mechanisms.

• Proposition of a reactive, real-time policy update architec-
ture for effective access control across cloud-native Hadoop.

• Implementation of the model using Open Policy Agent
(OPA) on a modern Hadoop environment, demonstrating
feasibility and effectiveness.

The rest of the paper is organized as follows. Section II
reviews related work on access control models for Big Data.
Section III discusses existing cloud-native Hadoop architec-
tures. Section IV presents our proposed access control model.
Section V outlines a logical architecture for enforcing the
proposed access control model across the cloud-native Hadoop
ecosystem. Section VI details the implementation. Section VII
evaluates and compares our work with similar models. Section
VIII discusses the proposed model and implementation results.
Finally, Section IX summarizes the study’s key findings and
suggests potential avenues for future research.

II. RELATED WORK

Securing the processing of large amounts of data necessi-
tates a multi-layered approach to access control, encompassing
both service and data object permissions. Several access con-
trol models have been proposed for Hadoop.

A. Big Data Access Control Models

This section outlines existing access control models relevant
to Big Data environments. Gupta et al.’s HeAC framework [4]
formalizes Apache Ranger and Sentry’s authorization mecha-
nisms, incorporating object attribute-based permissions. Build-
ing upon this, Maanak et al.’s OT-RBAC [4] extends HeAC
with role-based and tagged object-based controls. The HABAC
model [5] introduces attribute-based access control and cross-
service trust specifically within Hadoop. Bahloul et al.’s H-
RCBAC [10] and Ait et al.’s H-RABAC [6] offer alternative
approaches by combining the strengths of role-based and
attribute-based access control. In a different vein, Idar Hafsa et
al.’s D2SAC [11] focuses on automating the calculation of data
sensitivity within Hadoop to inform access control decisions.
Usage control mechanisms are explored by BigUCON and
RQ-UCON [12], [13] to provide enhanced data protection in
Hadoop. However, while these traditional security models in
Hadoop-based Big Data ecosystems have evolved to incor-
porate attributes and even elements of usage control, they
still fail to provide critical enforcement mechanisms necessary
for securing modern cloud-native architectures. These models
typically rely on static authorization policies that lack real-
time adaptability, making them inadequate against dynamic,
distributed workloads and containerized environments.

In the realm of Attribute-Based Access Control, BIG-ABAC
[14] presents a significant advancement by enabling real-
time policy evaluation and dynamic adaptation to contextual
changes, moving beyond static policies for precise and efficient
access management in dynamic and high-stakes environments
like healthcare.

Addressing the complexities of cloud computing environ-
ments, DR-TBAC [15] proposes a novel dynamic access con-
trol system leveraging the Zero-Trust Architecture (ZTA). This
framework introduces a Trust-Based Access Control (TBAC)
model with dynamic trust assessment and integrates dynamic
rules optimized using the Deep Q-Network (DQN) algorithm
to achieve continuous authentication and adaptive authoriza-
tion, aiming to enhance cloud security and outperform baseline
models.

Focusing on the challenge of maintaining consistency across
heterogeneous Big Data systems, Poltavtseva et al. [16] apply
temporal logic. Their research analyzes various types and ver-
ification methods before proposing TLA+ as a suitable tool for
formally verifying access control processes, emphasizing the
role of time analysis in enhancing reliability for consistency
in such complex environments.

A major missing component in these approaches is approval
mechanisms for critical actions. Privileged operations, such
as executing high-impact jobs, accessing sensitive datasets, or
modifying security configurations, are often performed without
multi-step validation. Without enforced approvals, attackers or
compromised processes can escalate privileges, execute unau-
thorized analytics jobs, or manipulate data pipelines without
immediate detection.

Another significant gap is the lack of granular control over
service accounts. Service accounts, often used to automate
workflows, tend to be unbounded privileges and lack con-
tinuous verification. Traditional security frameworks do not
enforce strict identity validation for workloads using these
accounts, allowing rogue containers to impersonate legitimate
processes and push unauthorized data to Flink jobs, Kafka
topics, or distributed storage layers.

Moreover, even when attribute-based and usage control
models are applied, there is no real enforcement mechanism
that integrates secured policy governance. Security policies
themselves must be subject to structured validation, peer
review, and continuous monitoring to prevent policy drift and
misconfigurations.

To truly secure cloud-native Big Data infrastructures, a
policy framework must go beyond traditional models by
integrating dynamic enforcement, multi-step authorization for
high-risk operations, and strict governance over both security
policies and privileged identities.

B. Usage Control Model (UCON)

Access control systems determine whether a user is au-
thorized to access a resource at the moment of a request.
Usage control (UCON) extends this by introducing continuous
evaluation, where access decisions are enforced throughout the
usage period, not just at the time of request. UCON [17] is
designed for open environments like the Internet, extending
Attribute-Based Access Control (ABAC) by incorporating
mutable attributes and ongoing enforcement. Attributes can
change due to resource usage, potentially leading to access
revocation if policy conditions are no longer met.

UCON shares key elements with traditional access models:
subjects (active entities), objects (protected resources), and
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rights (usage functions allowing access). Subjects and objects
have attributes represented as key-value pairs, which can
be single values or sets. Access decisions in UCON rely
on three factors: Authorizations (A), which check attribute-
based permissions; Obligations (B), which enforce mandatory
requirements for access; and Conditions (C), which evaluate
environmental factors independent of the subject or object.
The UCON model operates across three phases: pre-access,
where initial policies are applied; ongoing, where access is
continuously evaluated; and post-access, where updates may
occur. Policies can be enforced before and during use, ensuring
dynamic access control.

III. CLOUD-NATIVE HADOOP ARCHITECTURES

The traditional Hadoop architecture, as described by Rao et
al. [18], reflects a comprehensive view of Big Data systems
deployed on distributed infrastructures using tools such as
Hadoop 3.0 and Spark 2.3. Their work highlights key stages
of Big Data processing — from data ingestion to storage,
analysis, and visualization — emphasizing distributed file
systems, NoSQL databases, and machine learning libraries
like Mahout, Spark MLlib, and FlinkML. However, while
this traditional architecture is effective for large-scale data
processing in on-premise or static cloud environments, it lacks
the agility, elasticity, and microservice orientation required in
modern cloud-native infrastructures.

The Cloud Native Computing Foundation (CNCF) defines
cloud-native applications as loosely coupled microservices
packaged in containers, dynamically orchestrated, and man-
aged via declarative APIs across multiple servers [19]. This
model enables scalability, portability, and resilience — char-
acteristics increasingly demanded by Big Data processing
pipelines.

Uber [20] underscored the scalability and efficiency gains
achievable through this approach. Comcast’s integration of
YARN on Kubernetes [21] expanded the containerization land-
scape for Hadoop. Additionally, running Apache Spark and
Flink on Kubernetes provides dynamic resource management
for these frameworks. Beyond these core components, other
Hadoop ecosystem tools like Hive and HBase are also being
containerized.

Cloud-native technologies such as Docker and Kuber-
netes play a pivotal role in this evolution. Docker facilitates
lightweight, consistent packaging of Hadoop components into
isolated containers, ensuring reproducibility and portability
across environments. Kubernetes enhances this setup by pro-
viding robust orchestration capabilities such as automatic scal-
ing, load balancing, service discovery, and self-healing. These
features align with the microservices paradigm, promoting
modular, loosely coupled services that can be deployed and
managed independently.

One of the most significant advantages brought by this
transition is high availability. Kubernetes ensures that services
remain continuously available by automatically rescheduling
failed containers, distributing workloads across nodes, and
supporting rolling updates without downtime. This contrasts
sharply with traditional Hadoop deployments, where failures

could lead to more significant service disruptions. As the
Hadoop ecosystem evolves toward this cloud-native model,
it introduces not only benefits like elasticity and availability
but also new challenges in securing dynamic, distributed
deployments — particularly in managing privileged access
and maintaining consistent policies across ephemeral container
instances.

IV. PROPOSED MODEL

This section introduces a novel access control model that
integrates role-based, attribute-based, and usage control mech-
anisms to enhance security in Hadoop environments. To ad-
dress the challenges posed by cloud-native architectures, the
model incorporates Kubernetes RBAC [8] for managing access
to cluster resources.

A. Concepts

Our model extends the usage control model by incorporating
critical action approval. Building upon Park and Sandhu’s
foundation [17], we propose a comprehensive access control
framework. This model encompasses roles, attributes, and
organizational structures, with a focus on granular control
over Hadoop and ecosystem services. By introducing mutable
attributes and continuous evaluation, we address the dynamic
nature of access requirements. The model’s core components,
including organizations, employees, services, objects, opera-
tions, authorizations, obligations and approvals are defined in
Fig. 1 and described in Table I.

Fig. 1. Concepts of the proposed model.

296 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025



TABLE I
FORMAL CONCEPTS

Basic sets and relations

ORG: finite set of organizations
UNIT : finite set of units
ROLE: finite set of roles
SERV ICE ACCOUNT : finite set of service accounts
EMPLOY EE: finite set of employees
ATTRIBUTE: finite set of attributes
OPERATION : finite set of actions or operations on services and resources
SERV ICE: finite set of Hadoop services and microservices
RESOURCE: finite set of resources and data

SUBJECT = EMPLOY EE ∪ SERV ICE ACCOUNT : set of subjects
CLUSTER ROLE ∈ P(ROLE): finite set of cluster roles
CLUSTER RESOURCE ∈ P(RESOURCE): finite set of cluster resources
UH ∈ UNIT → UNIT : unit hierarchy
RH ∈ ROLE → ROLE: role hierarchy
UR ∈ UNIT ↔ ROLE: assigning roles to units
OU ∈ ORG ↔ UNIT : assigning units to organizations
EU ∈ EMPLOY EE ↔ UNIT : assigning employees to units
SaU ∈ SERV ICE ACCOUNT ↔ UNIT : assigning service accounts to units
RA ∈ ROLE ↔ ATTRIBUTE: assigning attributes to roles
EA ∈ EMPLOY EE ↔ ATTRIBUTE: assigning attributes to employees
OA ∈ ORG ↔ ATTRIBUTE: assigning attributes to organizations
UA ∈ UNIT ↔ ATTRIBUTE: assigning attributes to units
SaA ∈ SERV ICE ACCOUNT ↔ ATTRIBUTE: assigning attributes to service accounts
RSA ∈ RESOURCE ↔ ATTRIBUTE: assigning attributes to resources
SA ∈ SERV ICE ↔ ATTRIBUTE: assigning attributes to services
OpA ∈ OPERATION ↔ ATTRIBUTE: assigning attributes to operations
RO ∈ RESOURCE ↔ OPERATION : assigning operations to resources
RS ∈ RESOURCE ↔ SERV ICE: assigning resources to services
SO ∈ SERV ICE ↔ OPERATION : assigning operations to services

Access decision logic

We consider an object to be a service or a resource. For an access request (s, o, r), where s is a subject, o is an object, and r is an operation: Let pa1, . . . , pam
be authorization predicates; ob1, . . . , obp be obligation actions; pc1, . . . , pcn be condition predicates; app1, . . . , appq be approval actions. An access policy
is defined by two types of logical rules: access control decision rules and update rules (see Section IV-B3). Using the logic language in Section IV-B, we
specify:
CR1 (Pre-decision):

permitaccess(s, o, r) ⇒ ♦

tryaccess(s, o, r) ∧
m∧
i=1

pai ∧
n∧

k=1

pck ∧
p∧

j=1

♦obj ∧
q∧

f=1

♦appf


CR2 (Continuous decision):

□

¬

 m∧
i=1

pai ∧
p∧

j=1

 kj∧
a=1

pbj,a ⇒ obj

 ∧
q∧

f=1

 kf∧
b=1

pbf,b ⇒ appf

 ∧
n∧

k=1

pck

 ∧ state(s, o, r) = accessing ⇒ revokeaccess(s, o, r)


Where: pbj,a are predicates indicating when an ongoing obligation obj is required; pbf,b are predicates indicating when an ongoing approval appf is required.
An access request is permitted if all pre-decision components are satisfied; an ongoing access is maintained if all continuous decision components remain
satisfied. Pre-decision and ongoing decision components may differ for the same access.

B. Formalism

Definition: Our logic model is a 6-tuple:
M = (S, PA, PC , AA, AB , VA),

where S is a sequence of system states, where each state
represents a set of attribute-value assignments. Attributes are
defined for various entities, including subjects (e.g., employ-
ees), organizations, resources, operations, and units. PA is a
finite set of authorization predicates derived from these entity
attributes, while PC is a finite set of condition predicates
derived from system attributes. AA is a finite set of usage
control actions, AB is a finite set of obligation actions, and
VA is a finite set of critical approval actions. A state is formally
defined as a function that assigns values to attributes across the
entities’ attributes, including subjects, objects, and the system.
The set AA includes update actions and actions that modify

the state of an access tuple (s, o, r).
A logical formula is constructed from predicates and actions

using logical connectors and temporal operators, a fundamen-
tal aspect of temporal access control [22]. The language and
its semantics are described in the formal usage control model
[23].

1) A logical formula in our model is defined by the follow-
ing BNF grammar:

ϕ ::= a | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

| ϕ ⇒ ϕ | □ϕ | ♢ϕ | ⃝ϕ

| ϕ U ϕ | ■ϕ | ♦ϕ | ⊙ϕ | ϕ S ϕ

where a denotes an action, p a predicate of arity n, t1, ..., tn
are terms, and ϕ is a formula. If, in a sequence of states sq of a
model M , a state s satisfies a formula ϕ, we write M, sq, s ⊨
ϕ. The satisfaction relation ⊨ is defined inductively on the
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structure of ϕ and only for s0 ∈ sq. Formally:
M, sq, s0 ⊨ p ⇐⇒ s0[[p]], p ∈ PA ∪ PC .

M, sq, s0 ⊨ a ⇐⇒ s0[[a]]s1, a ∈ AA ∪ AB ∪ VA, and s1
is the next state of s0.
M, sq, s0 ⊨ ¬ϕ ⇐⇒ M, sq, s0 ⊭ ϕ.

M, sq, s0 ⊨ ϕ1 ∧ ϕ2 ⇐⇒ M, sq, s0 ⊨ ϕ1 ∧M, sq, s0 ⊨ ϕ2.

M, sq, s0 ⊨ ϕ1 =⇒ ϕ2 ⇐⇒ M, sq, s0 ⊭ ϕ1 ∨M, sq, s0 ⊨
ϕ2.

M, sq, s0 ⊨ □ϕ ⇐⇒ ∀n ≥ 0,M, sq, sn ⊨ ϕ.

M, sq, s0 ⊨ ♢ϕ ⇐⇒ ∃n ≥ 0,M, sq, sn ⊨ ϕ.

M, sq, s0 ⊨ ⃝ϕ ⇐⇒ M, sq, s1 ⊨ ϕ.

M, sq, s0 ⊨ ϕ1Uϕ2 ⇐⇒ ∃i ≥ 0,M, sq, si ⊨ ϕ2, ∀0 ≤ j <
i,M, sq, sj ⊨ ϕ1.

M, sq, s0 ⊨ ■ϕ ⇐⇒ ∀n < 0,M, sq, sn ⊨ ϕ.

M, sq, s0 ⊨ ♦ϕ ⇐⇒ ∃n < 0,M, sq, sn ⊨ ϕ.

M, sq, s0 ⊨ ⊙ϕ ⇐⇒ M, sq, s−1 ⊨ ϕ.

M, sq, s0 ⊨ ϕ1Sϕ2 ⇐⇒ ∃i < 0,M, sq, si ⊨ ϕ2, ∀i < j ≤
0,M, sq, sj ⊨ ϕ1.

For the sake of presentation, we will focus on the approval
models, which form the core of our extension. The models
of authorization, obligations and conditions retain their basic
definitions assigned in the work of Park and Sandhu.

2) Approval as a Security Control: Approval is a control
action performed by a supervisor, resulting in either an ap-
prove or reject outcome. This decision directly influences the
ability of a user or service account to execute a job or an
operation, ensuring fraud prevention, privilege enforcement,
and compliance with security policies. Approval mechanisms
are crucial for enforcing policies that require human judgment
or multi-level authorization, especially when handling high-
risk actions such as job execution on sensitive datasets. To
integrate approval mechanisms into Hadoop’s cloud-native
access control, we adopt UCON-based approval models, which
define when and how approval actions occur.

Pre-Approval – Required before a subject (user or service
account) gains access to an object (Hadoop job submission).
This ensures that only authorized workloads originating from
verified Kubernetes namespaces, trusted CI/CD pipelines, or
approved execution environments can submit jobs. Example:
A System Administrator must approve any job that exceeds
predefined memory or CPU thresholds.

Ongoing Approval – Required during the job execution
process. This ensures continuous validation of runtime behav-
ior, preventing unauthorized privilege escalation or resource
misuse. Example: If a job unexpectedly exceeds its allocated
resources, an automatic approval request is sent to a supervisor
to allow or terminate execution dynamically.

As with the authorization models defined in Usage Control,
we distinguish between different approval models depending
on when actions are performed, as shown below. The specifi-
cation for each approval model is given below:
preV 0: An access decision is determined by a pre-approval
and there is no attribute update before, during or after: ♦app1∧
... ∧ ♦appi =⇒ permit(s, o, r)

tryaccess(s, o, r) ∧ permit(s, o, r) =⇒
⃝(permitaccess(s, o, r)),

where app1, ..., appi represent approval actions for access
(s, o, r). This rule requires that an access can only be granted
if all approval actions have been performed.

Example (preV0): A ”Data Scientist” service account
requests access to the sensitive dataset ”customer-pii-data” in
Hadoop. Access is granted only after explicit approvals from
both the ”Security Analyst” and ”Compliance Officer,” with
no attribute updates before, during, or after the access request.
Additionally, access is restricted based on organizational
membership, time constraints, project involvement,
and security conditions: ♦approve security(s, o, r) ∧
♦approve compliance(s, o, r) ∧
org unit(s, ”DataScienceUnit”) ∧
time window(08:00−18:00) ∧
project assigned(s, ”PII-required”) ∧
¬policy violation(s) ∧ ¬security alert(”customer −
pii− data”) =⇒ permit(s, o, r);
tryaccess(s, o, r) ∧ permit(s, o, r) =⇒
⃝(permitaccess(s, o, r)), where:
♦approve security(s, o, r) represents explicit approval
from the ”Security Analyst”, ♦approve compliance(s, o, r)
represents explicit approval from the ”Compliance
Officer”, org unit(s, ”DataScienceUnit”) ensures
the subject belongs to the correct organizational unit,
time window(08:00−18:00) restricts access to business
hours, project assigned(s, ”PII − required”) verifies that
access is linked to an approved project, ¬policy violation(s)
prevents access if the subject has previous policy violations,
¬security alert(”customer− pii− data”) denies access if
a security alert exists on the dataset.
preV 1: An access control decision is made by pre-approval,
and one or more attributes of the subject or object are updated
prior to use: ♦app1 ∧ ... ∧ ♦appi =⇒ permit(s, o, r);
permitaccess(s, o, r) =⇒ permit(s, o, r) ∧
♦(tryaccess(s, o, r) ∧ ♢(preupdate(attribute))).

Example: A ”Data Scientist” service account re-
quests access to the sensitive dataset ”customer-pii-data”
in Hadoop. Access is granted only after explicit ap-
provals from both the ”Security Analyst” and ”Com-
pliance Officer”. However, before the dataset can be
used, the approval validity must be updated to en-
sure time-limited access: ♦approve security(s, o, r) ∧
♦approve compliance(s, o, r) =⇒ permit(s, o, r);
permitaccess(s, o, r) =⇒
permit(s, o, r) ∧ ♦(tryaccess(s, o, r) ∧
♢(preupdate(approval valid(s, o, now() + duration)))),

where: preupdate(approval valid(s, o, now() +
duration)) updates the approval validity before usage.
preV 2: An access control decision is determined by pre-
approval, and one or more attributes of the subject or ob-
ject are updated during use: permitaccess(s, o, r) =⇒
♦tryaccess(s, o, r) ∧ (♦app1 ∧ ♦app2 ∧ ... ∧ ♦appi)
permitaccess(s, o, r) =⇒ ♢(onupdate(attribute) ∧
♢endaccess(s, o, r)).

Example: Let’s complete the previous example saying that
access is allowed, however, the number of times access is
allowed must be limited to prevent excessive or unauthorized
repeated access. Pre-Approval: ♦approve security(s, o, r)∧
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♦approve compliance(s, o, r) =⇒ permit(s, o, r);
Usage Tracking: permitaccess(s, o, r) =⇒
♦tryaccess(s, o, r) ∧ ♢(onupdate(usage count(s, o, r) +
1)); Access Restriction: usage count(s, o, r) ≤
max usage;

where: onupdate(usage count(s, o, r) + 1) increments
the usage count on each access, usage count(s, o, r) ≤
max usage restricts access if the count exceeds the thresh-
old.
preV 3: An access control decision is determined by a pre-
approval, and one or more attributes of the subject or object are
updated after use: ♦app1 ∧ · · · ∧♦appi =⇒ permit(s, o, r);
permitaccess(s, r, o) =⇒ permit(s, o, r) ∧
♦(tryaccess(s, o, r))); endaccess(s, o, r) =⇒
♢(postupdate(attribute)).

Example: In addition to the previous constraints, we
introduce Usage History Tracking: The total number
of times the dataset has been accessed should be
recorded. Pre-Approval: ♦approve security(s, o, r) ∧
♦approve compliance(s, o, r) =⇒ permit(s, o, r)
, usage tracking: permitaccess(s, o, r) =⇒
♦tryaccess(s, o, r)∧♢(onupdate(usage count(s, o, r)+1))
, usage History Tracking: endaccess(s, o, r) =⇒
♢(postupdate(total accesses(o) + 1)).
onV 0: Access control is checked and the decision is deter-
mined by an approval during access, and there is no attribute
update before, during or after use: permitaccess(s, o, r) =⇒
□(¬(app1 ∧ ... ∧ appi) ∧ (state(s, o, r) = accessing) =⇒
revokeaccess(s, o, r)).
onV 1: Access control is checked and the decision is de-
termined by an approval during access, and one or more
attributes of the subject or object are updated before
use: permitaccess(s, o, r) =⇒ ♦(tryaccess(s, o, r) ∧
♢(preupdate(attribute)));
permitaccess(s, o, r) =⇒ □(¬(app1 ∧ · · · ∧ appi) ∧
(state(s, o, r) = accessing) =⇒ revokeaccess(s, o, r)).
onV 2: Access control is checked and the decision is de-
termined by an approval during access, and one or more
attributes of the subject or object are updated during use:
permitaccess(s, o, r) =⇒ □(¬(app1 ∧ · · · ∧ appi) ∧
(state(s, o, r) = accessing) =⇒ revokeaccess(s, o, r));
endaccess(s, o, r) ∨ revokeaccess(s, o, r) =⇒
♦(permitaccess(s, o, r) ∧ ♢(onupdate(attribute))).
onV 3: Access control is checked and the decision is
determined by an approval during access, and one or
more attributes of the subject or object are updated af-
ter use: permitaccess(s, o, r) =⇒ □(¬(app1 ∧
· · · ∧ appi) ∧ (state(s, o, r) = accessing) =⇒
revokeaccess(s, o, r)). If the subject terminates access :
endaccess(s, o, r) =⇒ ♢(postupdate(attribute)). When an
access is revoked by the system: revokeaccess(s, o, r) =⇒
♢(postupdate(attribute)).

Example: Ongoing approval for fraud prevention in
Hadoop. A ”Data Scientist” service account accesses
the sensitive ”customer-pii-data” dataset in Hadoop. To
prevent unauthorized usage during access, the system
enforces ongoing approval validation. During access,
the system continuously checks whether the required

approvals remain valid. If any of the approving entities
withdraw their approval or if an explicit re-approval is
required at set intervals, access is immediately revoked
to prevent abuse. This mechanism is crucial in preventing
a compromised Docker container from impersonating
the service account and maintaining unauthorized
access indefinitely. Ongoing Approval Requirement:
permitaccess(s, o, r) =⇒ □

(
(state(s, o, r) =

accessing) ∧ ¬(approve security(s, o, r) ∧
approve compliance(s, o, r)) =⇒ revokeaccess(s, o, r)

)
.

This ensures that access is actively monitored and revoked
if the necessary approvals are not continuously maintained,
making it impossible for an attacker to persist in an
unauthorized session.

3) Access Policies: Our access control model employs a
policy-based approach, defined by logical formulae derived
from a fixed rule set. Access decisions are determined holisti-
cally, considering authorizations, obligations, conditions, and
approvals. These elements are specified by predicates on
entities and their attributes. An access request, represented as
a tuple (subject, object, request), is evaluated against a set of
authorization, obligation, condition, and approval predicates.
Access control policies are defined by logical rules governing
pre and continuous decision-making.

For an access (s, o, r), let pa1, . . . , pam be a set of au-
thorization predicates, ob1, . . . , obp a set of obligation ac-
tions, pc1, . . . , pcn be a set of condition predicates, and
app1, . . . , appq be a set of approval actions. An access policy
can be specified by two types of logical rules: control rules
and attribute update rules. The following control rules (CR) are
specified for the pre-decision and ongoing-decision of a single-
use process, respectively: CR1 : permitaccess(s, o, r) ⇒
♦
(
tryaccess(s, o, r) ∧

∧m
i=1 pai ∧

∧n
k=1 pck ∧

∧p
j=1 ♦obj ∧∧q

f=1 ♦appf
)

CR2 : □
(
¬
(∧m

i=1 pai ∧
∧p

j=1(pbj1 ∧ · · · ∧ pbjKj
⇒

obj) ∧
∧q

f=1(pbf1 ∧ · · · ∧ pbfLf
⇒ appf ) ∧

∧n
k=1 pck

)
∧

(state(s, o, r) = accessing) ⇒ revokeaccess(s, o, r)
)

where 1 ≤ i ≤ m, 1 ≤ j ≤ p, 1 ≤ k ≤ n, 1 ≤ f ≤ q,
pbj1, ..., pbjKj are predicates for determining when an ongoing
obligation obj is required, and pbf1, ... , pbfLf

are predicates
for determining when an ongoing approval appf is required.
An access request can be granted if its pre-decision compo-
nents are true, while an ongoing access can be continued if
all ongoing decision components are true. For an access, its
pre-decision and ongoing decision components may or may
not be identical. The types of attributes update actions can be
specified by update rules (URs) as defined in the UCON formal
specification. The completeness and soundness properties of
this policy specification language have been proved in the
formal UCON specification [23].

V. LOGICAL ARCHITECTURE

The usage control model promotes the concept of continuity
in the enforcement of policies. Indeed, the mutability of
attributes introduces the need to carry out the usage control
policy evaluation process continuously while an access is in
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progress. This is because the values of the attributes that
previously authorized access can change so that the access
right is no longer valid. In this case, the access is revoked.

A. Logical Architecture based on Open Policy Agents and the
Approval of Critical Requests

We propose a logical architecture, with Hadoop components
and ecosystem services packaged as microservices, that uses
Open Policy Agent (OPA) [24] as the policy decision point and
requires approval for critical requests. OPA’s declarative Rego
language facilitates policy management, enabling dynamic
policy updates. To ensure real-time policy enforcement, we in-
corporate OPAL for policy change detection and propagation.
Fig .2. illustrates the system components. The Open policy
agents Administrative Layer (OPAL) is the central policy man-
agement component. It maintains policy and data repositories,
accessible through REST APIs and a Pub/Sub channel for
real-time updates. Edge-based OPAL clients subscribe to these
feeds, aggregating data and synchronizing with policy changes.
To facilitate dynamic policy updates, a Git-based repository
and webhook integration are employed.

The Critical Request Approval Service is a crucial exten-
sion, handling access request validation. In this case the micro-
service (Hadoop component or ecosystem service) interacts
with the OPA engine to determine authorization based on real-
time policy and data and trigger the approval (dual control) in
case of critical access.

This architecture potentially uses Pub/Sub channels for
communication between Client <> Server and Server <>
Server. The Pub/Sub system can use websockets, Redis, Kafka
or any other message broker to synchronize all OPAL servers
and clients. The control flow for critical actions is as follows:

Users
mapsto−−−→ App

mapsto−−−→ PolicyAgent

then App
mapsto−−−→ Approval-Service

Users interact with the microservice by triggering authoriza-
tion requests which the microservice resolves with the OPA
agent. The OPA agent also returns the severity of the request in
the response, indicating whether or not it is critical according
to the configured security policy. In the event of a critical
request, the microservice in question triggers the hierarchical
approval process for the request by calling the approval service
via the dedicated REST API.

State Management. OPA’s state management capabilities are
facilitated through enriched input requests and data change
notifications. Policies can dynamically adapt by accessing
historical data and leveraging session-based state represen-
tations. Attribute modifications trigger policy reevaluations,
streamlining the decision-making process compared to U-
XACML. Moreover, OPA’s sidecar deployment architecture
enhances performance by minimizing latency.

B. System Flowchart Overview

The flow diagram in Fig. 3 illustrates the process of a
user interacting with the Hadoop/Ecosystem Service, focusing
on the authorization and approval mechanisms. Initially, the

user sends a usage request to the service (1). The service
then forwards an authorization request to the OPA (Open
Policy Agent) (2), which evaluates the request against policies
stored in the Policy Store (3). These policies are provisioned
by OPAL (Policy Sync). The OPA returns a decision (AL-
LOW/DENY) along with any relevant metadata to the service
(4). If the OPA decision is to DENY or ALLOW for non-
critical requests (5a), the service responds directly to the user.
However, for critical usage requests, the service forwards the
request to an Approval Service (5b). The Approval Service
then requests approval from designated Approvers (6), who
can either Approve or Reject the request (7). The Approval
Service sends the approval result back to the Hadoop/Ecosys-
tem Service (8), which finally relays the overall decision
(ALLOW/DENY) to the user (9).

C. Architecture of our Model on Kubernetes

Our simplified architecture proposes a modular solution for
integrating the model on Kubernetes. The master node, which
centralizes the management of the cluster, hosts the gate-
keeper. This admission controller, based on OPA, intercepts
and validates requests to create, modify or delete Kubernetes
resources (pods, services, configurations, etc.). Administrators
can define specific policies using OPA constraints, allowing
or disallowing certain deployment behaviors. Hadoop services
and their components are deployed on separate nodes. Each
Hadoop pod co-exists with an OPA container as a sidecar.
This configuration allows OPA to evaluate policies locally,
improving performance by avoiding network latency. OPA
policies can include a requireApproval flag to indicate whether
a request should be subject to an approval process.

The Approval microservice manages the validation work-
flow for critical requests. It interacts with the hierarchical
superiors to obtain their approval. The decision, which is
binary (accept or reject), is taken by the last validating
instance. The service also allows parallel validations with
configurable decision rules (for example, priority to the most
frequent decision or to the decision of the highest authority).

The administration service centralizes the configuration of
the organizational structure and validation policies.

VI. IMPLEMENTATION

This demonstration shows dynamic, rule-based anomaly
detection implemented using Big Data tools and technologies
from the Hadoop ecosystem. The solution infrastructure is
based on Docker containers, orchestrated by Docker Compose
to ensure robust and scalable execution. Data is processed
using Big Data frameworks such as Apache Flink and Apache
Kafka.

A. Components Diagram

Our system consists of several key components: a backend, a
frontend, a Flink processing engine, and an OPA authorization
agent. The backend exposes a REST API for managing rules,
controlling execution, and handling user interactions. It relays
frontend actions to Flink via a Kafka topic (”control”) and
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Fig. 2. Proposed logical architecture.

Fig. 3. Flow diagram of the security system.

generates simulated security events (e.g., access and login/lo-
gout events), which are streamed to Flink through an ”Events”
topic. Flink processes these events and produces alerts, which
the backend retrieves from the ”Alerts” topic and forwards to
the frontend via WebSockets. Users can submit and monitor
Flink jobs through the interface, while access decisions are en-
forced by querying the OPA agent. Controlled actions include
job submission, cancellation, status viewing, rule management,
and access to the detection dashboard. Additionally, usage
control prevents excessive resource consumption by limiting a
user’s memory and CPU usage. All components are deployed

using Docker containers.

B. Proof of Concepts: Preventing Unauthorized Job Submis-
sion and Impersonation

In a distributed data processing environment like Hadoop
and Flink, unauthorized job submissions and service account
impersonation pose significant security risks. Attackers or
malicious insiders may attempt to exploit misconfigured per-
missions to submit unauthorized jobs, impersonate privileged
service accounts, or overconsume system resources. To mit-
igate these risks, our access control policy enforces ongoing
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authorization checks and usage control constraints during job
execution. Firstly, job submission requests are only permitted
if the user has explicit submission rights, possesses a valid
resource quota, and their cluster role includes the required
permissions. Additionally, ongoing validation ensures that a
job continues to meet authorization criteria throughout its
lifecycle. This prevents scenarios where an initially autho-
rized job could later become unauthorized due to changes in
role assignments, quota exhaustion, or compliance violations.
Secondly, impersonation protection mechanisms prevent unau-
thorized services or users from running jobs under privileged
service accounts. Each job submission is dynamically vali-
dated against contextual attributes such as active user sessions,
source IP validation, and container identity verification. This
ensures that jobs are not executed by unauthorized entities
attempting to exploit service account credentials. Furthermore,
to prevent abuse, we enforce usage control policies such as
limiting simultaneous active jobs per user, tracking historical
job execution patterns, and restricting dynamic segregation
of duties (SoD)—ensuring that a user who submits a job
cannot approve or modify their own execution pipeline. These
policies, combined with real-time monitoring and revocation
mechanisms, ensure continuous enforcement of security con-
straints, reducing the risk of unauthorized access, excessive
resource consumption, and privilege escalation.

1) Anatomy of the OPA Policy Engine: The core compo-
nents of the OPA policy engine are:

• Input: The JSON-enriched request containing attributes of
users, actions, resources, and access contexts.

• Policy: The set of rules written in Rego that define the
authorization logic.

• Data: External context stored in JSON, such as user orga-
nizations, units, roles and permissions.

• Decision: The outcome (e.g., allow or deny) is based on
the evaluation of the input against the policy. In our case,
the OPA outcome includes additional information related
to approvals and obligations. The policy enforcer will then
trigger the necessary approvals and fulfill those obligations
before rendering the final response to the requester. To avoid
tight coupling and overly complex policies while keeping
the OPA policy standalone, the OPA engine does not in-
teract directly with the approval system. Instead, the policy
enforcer, which controls access to the Hadoop components
and ecosystem services, manages these interactions.

2) Rego Policy Implementation: The Rego policy in Listing
1 enforces fine-grained access control in Hadoop based on
user roles, permissions, and context. It grants access to data
owners, analysts, and engineers when role-based conditions
are met, while job submissions require valid permissions,
quotas, and active sessions. Deny rules enhance security by
limiting concurrent jobs and preventing impersonation. Service
accounts have restricted access for Kafka ingestion and Flink
execution in Kubernetes. For high-risk actions, OPA signals
approval requirements instead of enforcing them. The enforcer
triggers approval workflows, while an external service handles
delegation, escalation, and workflow execution. Decoupling
approval logic from OPA ensures scalability and flexibility.

The approval service is not detailed but exposes REST APIs
for managing approvals.

Listing 1. OPA Policy
1 package hadoop
2

3 default allow := false
4

5 # Allow deletion if user is the data owner and has
high clearance

6 allow if {
7 input.action == "delete_dataset"
8 user_is_data_owner
9 user_has_high_clearance

10 not approval_required["delete_dataset"]
11 }
12

13 # Require approval for high-risk deletions
14 approval_required["delete_dataset"] if {
15 data.resource_attrs[input.resource].criticality

== "high"
16 }
17

18 # Partial evaluation: OPA signals approval
requirement instead of enforcing it

19 approval_metadata := {
20 "requester": input.user,
21 "action": input.action,
22 "resource": input.resource,
23 "approver": data.approvers[input.action],
24 "time_limit": data.approval_time_limits[input.

action]
25 } if approval_required["delete_dataset"]
26

27 # User role checks
28 user_is_data_owner if data.user_attrs[input.user].

role == "data_owner"
29 user_has_high_clearance if data.user_attrs[input.

user].clearance == "high"
30

VII. EVALUATION AND COMPARISON

The evaluation of access control systems follows the guide-
lines set out in NIST IR 7874 [25], with a primary focus on
administration and enforcement. Performance and support are
not considered, as they fall outside the scope of this prototype.
Administration is crucial for managing costs, efficiency, and
ease of operation within access control systems. While OPA
logs decisions, it lacks built-in audit trails and automated
privilege discovery, which limits its auditing capabilities. Nev-
ertheless, Rego’s flexibility streamlines privilege assignment,
although the absence of a user interface adds complexity. One
of OPA’s key strengths lies in its policy writing capabilities,
facilitated by an expressive syntax. Policy updates are effi-
ciently managed through OPAL, and while privilege delega-
tion is supported, it requires custom policy definitions. OPA
integrates effectively with various applications and protocols,
enabling multi-host access control and rule enforcement across
different system layers.

In terms of enforcement, OPA allows for complex rule
combinations, ensuring robust policy application. Implicit by-
passing is not permitted, though predefined emergency ex-
ceptions can be configured. The principle of least privilege
is enforced via attribute-based policies, though careful policy
design is necessary to avoid privilege escalation. Additionally,
OPA enforces separation of duties, mitigating access conflicts
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and ensuring compliance with security constraints through
fine-grained policy definitions. Conflict resolution is achieved
through rule priorities and evaluation order, ensuring consis-
tent decision-making.

We assessed our model by classifying evaluation criteria
as critical, optional, or supplementary according to their rel-
evance to the case study. As shown in Table II, the model
satisfies all critical criteria and supports several essential
optional and supplementary features.

We compared our approach with U-XACML [26], [27],
BigUCON, and RQ-UCON [12], [13], which extend access
control with usage control principles. U-XACML, based on
XACML, employs a centralized Policy Decision Point (PDP),
which limits scalability and creates bottlenecks in cloud-
native environments. In contrast, BigUCON and RQ-UCON
enhance Hadoop security with fine-grained usage control, but
their focus is limited to attribute-based constraints, without
incorporating organizational structures or approval-based en-
forcement.

Our approach introduces three key advancements: First,
it integrates hierarchical approval through organization-based
validation, ensuring that critical access requests undergo multi-
step authorization within the organization. Second, it strength-
ens security by incorporating policy review and approval
mechanisms, leveraging OPA’s policy-as-code paradigm to fa-
cilitate systematic policy definition, review, and enforcement,
ensuring explicit auditability of access decisions. Finally,
unlike U-XACML’s centralized PDP, our model adopts a de-
centralized policy enforcement strategy, distributing decision-
making closer to access points, which improves latency, fault
tolerance, and scalability, particularly in cloud-native environ-
ments.

As shown in Table II, our model successfully meets all
critical evaluation criteria while supporting key optional and
supplementary features. By integrating organizational valida-
tion, approval-based enforcement, and decentralized decision-
making, it enhances security, flexibility, and adaptability for
dynamic, cloud-native infrastructures requiring hierarchical
and policy-driven access control.

VIII. DISCUSSION

The proposed access control model enhances security in
cloud-native Hadoop environments by integrating stateful au-
thorization with an approval-based mechanism that also en-
forces Separation of Duties (SoD). Traditional access control
models, such as RBAC and ABAC, lack the adaptability
required for dynamic, containerized deployments. By lever-
aging Usage Control (UCON) principles and multi-step au-
thorization, our approach enables fine-grained, context-aware
security enforcement that aligns with the evolving nature of
cloud-native architectures. The integration with Open Policy
Agent (OPA) ensures compatibility with modern cloud in-
frastructures, providing a scalable and flexible solution for
securing distributed Big Data workflows while mitigating risks
associated with privilege escalation and insider threats through
enforced approval steps.

However, the proposed model has certain limitations. A key
limitation is that it does not explicitly define how critical

actions requiring approval should be designated. While one
could leverage risk-based calculations, such as those proposed
in RQ-UCON [13], to dynamically classify high-risk actions,
this paper does not prescribe a specific methodology for
selecting these actions. The effectiveness of the approach,
therefore, depends on external risk assessment strategies or
predefined organizational policies. For instance, in a previous
work [28], we proposed a method for detecting suspicious
behavior using entropy-based calculations. Such an approach
could be integrated into the current model to dynamically iden-
tify critical actions based on deviations in observed behavior,
but this is not explored in this paper.

While this model introduces approval as an additional
security control, its implementation falls outside the scope of
this work. This contribution nevertheless extends the approval
framework we established in our request-based access control
paper [29].

Additionally, we do not address secured service-to-service
management in this work. We believe this can be handled
using service meshes [30].

Technically, the OPA agent could directly interact with the
approval service, as described with the interaction of PDP
and PXP introduced by [31], but this approach complicates
policy testing. Instead, we opted for partial evaluation, where
OPA returns a partially evaluated decision to the enforcer (the
service), which then calls the approval service for further eval-
uation. This separation improves flexibility and maintainability
while ensuring dynamic approval handling.

Despite these limitations, the proposed model provides a
foundational framework for enhancing security in cloud-native
Big Data systems. It offers a balance between flexibility,
scalability, and security enforcement, laying the groundwork
for future research into adaptive authorization mechanisms and
efficient approval workflows.

IX. CONCLUSION AND FUTURE WORK

The aim of this work was to model access control for
the Hadoop ecosystem in cloud-native environments. To do
this, we first reviewed container-based architectures within the
Hadoop ecosystem, highlighting the evolution and associated
security challenges. This informed the design of a conceptual
access control model tailored to modern technologies. We
then proposed a logical architecture based on the Open Policy
Agent, integrating usage control and multi-step authorization
to secure privileged actions. Our experimental implementation
with Docker, Apache Kafka, and Apache Flink demonstrated
the model’s feasibility in a dynamic, distributed context.

The results confirm that traditional access control ap-
proaches fall short in dynamic, containerized Big Data en-
vironments. In contrast, our proposed model offers a more
adaptive and granular mechanism by combining stateful usage
control with organizational approvals. This approach improves
both the security posture and operational oversight of cloud-
native Hadoop platforms, particularly by mitigating risks re-
lated to unbounded privileges and rogue container deployment.

Two key directions for future work have emerged. The first
is extending the implementation to Kubernetes, enabling us
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TABLE II
COMPARISON OF OUR MODEL WITH U-XACML, BIGUCON, AND RQ-UCON BASED ON NIST CRITERIA.

Metric Type Our Model U-XACML BigUCON RQ-UCON

Administration

Audit Supplementary x x x x
Privilege/Capability Discovery Supplementary x x x x
Ease of Privilege Assignment Optional ✓ ✓ x x
Syntactic and Semantic Support for Access Rules Specifica-
tion

Critical ✓ ✓ ✓ ✓

Policy Management Supplementary ✓ x x x
Delegation of Administrative Capabilities Supplementary x ✓ x x
Configuration Flexibility within Existing Systems Supplementary ✓ x x x
Horizontal Control Scope Optional ✓ ✓ ✓ ✓
Vertical Control Scope Optional ✓ ✓ ✓ ✓

Enforcement

Policy Combination, Composition, and Constraints Critical ✓ ✓ ✓ ✓
Bypass Prevention Supplementary x x x x
Support for the Principle of Least Privilege Optional ✓ ✓ ✓ ✓
Separation of Duties (SoD) Critical ✓ ✓ ✓ ✓
Security (Containment and Constraints) Critical ✓ ✓ ✓ ✓
Conflict Resolution or Prevention Critical ✓ ✓ ✓ ✓
Operational/Situational Awareness Optional ✓ ✓ ✓ ✓
Control Granularity Critical ✓ ✓ ✓ ✓
Expression Properties (Policy/Model) Critical ✓ ✓ ✓ ✓
Adaptability to Policy Implementation and Evolution Critical ✓ ✓ ✓ ✓
Partial Evaluation of Access Requests Supplementary ✓ x x x
Reactive Policy Updates Supplementary ✓ x x x
Approval of Critical Actions Supplementary ✓ x x x

to assess the full potential of the model — from deployment
control using OPA Gatekeeper to runtime access to Hadoop
services. The second is enhancing the approval service by
integrating real-time detection of suspicious behaviors, thereby
reducing reliance on manual approval and improving respon-
siveness in dynamic threat contexts.
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