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Abstract—Advancements in portable EEG headsets have 

accelerated Brain-Computer Interface (BCI) applications, 

particularly in smart home automation and user well-being. 

However, few BCI platforms support cross-disciplinary users with 

limited programming skills. To address this, we propose a visual, 

node-based BCI programming framework using BrainFlow and 

the OpenBCI toolkit within Node-RED. This approach enables 

users to stream, process, and extract EEG features, while 

leveraging BrainFlow APIs as backend child processes to ensure 

adaptability and seamless updates. The framework was validated 

through a case study with 14 participants, where an OpenBCI 

headset was used to control a robotic arm. Results revealed that 

specific bursts in Event-Related Synchronization (ERS) within 

certain frequency bands were crucial for attention-based control. 

θ (theta) and γ (gamma) frequency bands in the frontal lobe were 

highly significant, as these regions are associated focus and 

decision-making. Similarly, high β (beta) activity in the left central 

and parietal lobes demonstrated a strong correlation with motor 

control and sustained attention. The study also evaluated the 

BrainFlow 'Mindfulness' metric to assess mental state during task 

engagement. The average value of this metric was 0.31, with a 

standard deviation of 0.11, indicating a moderate relative 

variability with a coefficient of variation ≈ 0.364. The results also 

highlight the key electrodes and frequency bands involved during 

attention and concentration, emphasizing the potential of using 

EEG-based metrics and ERS burst patterns as reliable neural 

markers to distinguish these states.  

Index terms—EEG-based Brain Computer Interface, Smart 

homes, IoT, OpenBCI, BrainFlow, Node-RED. 

I. INTRODUCTION

 The expansion of Brain-Computer Interface (BCI) 

applications is strongly linked to the increasing accessibility of 

electroencephalography (EEG) hardware, particularly portable, 

noninvasive, wireless EEG headsets that often feature open-

source software. Recent advances in BCI technology [1],[2] are 

driving the expansion of BCI applications, enabling seamless 
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integration with smart home automation control systems [3-9] 

and enhancing user well-being [10],[2].    

Back in 2003, Mason and Birch [11] defined the primary goal 

of BCI development as empowering individuals with 

disabilities to control electronic devices, thereby enhancing 

their communications and overall quality of life. These authors 

first proposed a functional model of a BCI system with its 

significant social impact. Then this topic is widely studied 

across multiple disciplines, and with Internet connectivity and 

IoT integration, the BCI system enables long-distance 

communication and control. However, only a few BCI 

frameworks and open-source platforms are specifically 

designed to assist cross-disciplinary professionals with limited 

programming skills in developing BCI applications with IoT 

integration, which is essential for smart home control [12-16]. 

The key advantage of toolkits [13] and [14] integrated in Node-

RED [17] is their ability to streamline the connection to IoT 

devices and services. Node-RED is a visual programming tool 

with a web interface for designing applications by connecting 

prebuilt blocks, which represent various functionalities and 

processes. These blocks are arranged into flows, creating an 

intuitive graphical environment for designing BCI applications. 

Furthermore, [14] provides APIs to open-source software 

BrainFlow [18] for signal processing and EEG feature 

extraction regardless of the type of BCI boards. Calling the 

BrainFlow APIs from Python scripts as child processes in the 

backend, ensures adaptability to technological advancements 

and facilitates seamless updates. In contrast, the toolkits in [12], 

[15], and [16] do not utilize visual programming or prebuilt 

blocks and instead require programming expertise for 

integration with Python-based IoT frameworks, MQTT 

implementation, or calling external BCI APIs for smart home 

automation. 

   The main contribution of this research is a BCI framework to 

assist cross-disciplinary professionals with limited 

programming skills in developing BCI applications and 

integration based on prebuild nodes in open-source platform for 

visual programming. The methodology presented in [19] 

explains how to integrate portable EEG devices for smart home 

control via IoT using the OpenBCI toolkit in Node-RED. This 

work is further expanded here, including an extended overview 

of the functionality of nodes within the OpenBCI toolkit. 

Another extension involves validating the proposed framework 

with 7 additional participants in the same case study - a BCI 

application that uses BrainFlow performance metrics to control 

a TinkerKit Braccio robot arm [20] via OpenBCI Cyton + Daisy 

boards [21]. A detailed research protocol (provided as a 

supplementary file), along with materials and methods, 

supports the study. The new data were merged and analyzed to 
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enhance the robustness of our findings. By re- analyzing the 

proposed in [19] mindfulness metric threshold and bursting in 

EEG activity, we reinforced our conclusions regarding the key 

electrodes and frequency bands involved during attention and 

concentration. 

The paper is organized as follows: Section II presents related 

works. Section III describes the system architecture of an EEG-

based BCI for communication with smart home automation 

control systems using openBCI toolkit in Node-RED library. 

Section IV describes the nodes in openBCI toolkit. Section V 

presents the research protocol, materials and methods. Results 

and discussion are in Section VI. Then conclusions follow. 

 

II.   BACKGROUND AND RELATED WORKS 
 

    Still in 2003, Mason and Birch [11] defined the primary goal 

of BCI development - to empower individuals with severe 

disabilities to control various electronic devices, greatly 

enhancing their communication abilities and overall quality of 

life. The expansion of BCI applications is driven by 

advancements in this technology [1], [2]. Noninvasive and 

portable EEG headsets, wireless EEG headsets that often 

feature open-source software, enabling seamless integration 

with smart home automation control systems and enhancing 

user well-being. 

 

A. Related Works 

    Authors in [11] first proposed a functional model of a BCI 

system. Given its significant social impact, this topic is widely 

studied across multiple disciplines. With internet connectivity 

and IoT integration, the BCI system enables long-distance 

communication and control. BCI applications for smart home 

automation control systems have expanded [3÷9]. The state-of-

the-art study in [3] explores BCI in medical applications, such 

as operating robotic arms, smart homes and smartphones, 

aiming to empower individuals with special needs to make 

autonomous decisions. It surveys how smart homes, equipped 

with smartphone-related technologies, enable inhabitants to 

control household devices like lights, fans, air conditioning and 

doors, as well as monitoring on smartphones. While these 

studies have explored BCI applications, most have used specific 

protocols and devices with small participant samples, limiting 

the generalizability of their findings. Additionally, most of BCI 

applications remain in the prototype stage. The BCI platform 

discussed in [4] integrates Artificial Intelligence of Things 

(AIoT) with cloud platforms to enhance the intelligence and 

functionality of smart homes, buildings and cities. It focuses on 

using sensors, lighting, meters and other connected devices to 

gather and analyze data, while addressing security and privacy 

concerns. In [5] supervised machine learning algorithms on 

EEG signals are used to train the classifier to recognize specific 

mental commands, which then are mapped to the corresponding 

actuator to alter its state. The digital twin is served as an 

intermediary to direct control commands from the brain signals 

to the actual asset. The authors in [6] explore the use of the 

Think Gear Application-Specific Integrated Circuit (TGAM) 

EEG Sensor Module, which enables single-channel analog EEG 

signal acquisition and is integrated with a Bluetooth module for 

wireless communication. This system supports IoT integration 

for long-distance communication and control, making it 

suitable for industrial automation and smart home device 

control, such as lights and doors, based on EEG signals. In [7] 

a system prototype is presented, consisting of the EMOTIV 

Insight headset, Raspberry Pi 4, a servo motor for opening and 

closing the door and LEDs, for disabled people. They can 

control the door and LEDs using their brain signals through a 

WebSocket connection to the Emotiv Cortex API. The system 

also includes a Flutter-based application to receive notifications 

on a smartphone for the status of the door and the LEDs. The 

BCI platform proposed in [8] integrates Node-RED for software 

communication between OpenVIBE outputs and the KNX 

protocol for the tasks’ execution (regulation of two switching 

devices). The experimental results provide evidence of the 

effectiveness of the users’ intentions classification, which has 

subsequently been used to operate the proposed home 

automation system, allowing users to operate two light bulbs. 

EEG data are recorded with the Emotiv EPOC X headset, and 

OpenVIBE was used for signal post-processing, feature 

extraction and classification. Then, Node-RED is employed to 

command hardware devices and provide feedback on device 

status. The BCI platform proposed in [9] also utilizes the 

Emotiv Insight headset, integrating Node-RED and Python for 

data processing and control. The platform provides new 

technical and practical directions for enabling remote 

experimentation using versatile software (Node-RED, 

MakeCode, Python, LabVIEW, EmotivPRO, EmotivBCI) and 

hardware (Emotiv Insight, Micro:Bit, Raspberry Pi). 

   Although, all cited BCI frameworks and platforms implement 

key functional components defined in [11]: User, Electrodes, 

Amplifiers, Feature Extractor, Feature Translator and Control 

Interface, two of them utilize prebuilt blocks and visual 

programming in Node-RED, whereas the others depend on 

specific protocols for BCI or smart home devices. In 

conclusion, there is a need for platforms to assist professionals 

with limited software skills in creating BCI applications for 

smart home control in the context of IoT. Such platforms are 

limited, and some of them are more user-friendly. These include 

the NeuroScale [12], which integrates with widely used EEG 

devices in research and clinical settings, the EmotivBCI Node-

RED toolkit [13], the openBCI Node-RED toolkit [14], 

MetaBCI [15] and OpenViBE [16]. The advantage of using [13] 

and [14] Node-RED, compared to the NeuroScale, MetaBCI, 

and OpenViBE approaches, lies in streamlining the integration 

process through visual programming and predefined blocks. For 

instance, when interfacing EEG headsets with a robotic arm, the 

prebuilt blocks of EmotivBCI Node-RED toolkit should 

connect the prebuild blocks for the robotic arm via COM port 

within a flow in Node-RED [17]. In contrast, the approaches in 

[12], [15] and [16] require programming skills for integration 

with Python-based IoT frameworks, implementing MQTT, or 

external APIs for smart home automation. 

   In summary, there is a need for a general framework to create 

BCI applications that can record, process and connect with 

various IoT devices and services, specifically designed to 

support professionals with limited software skills in developing 

BCI applications for smart home control. Given that Emotiv 

EEG hardware and OpenBCI hardware are among the most 

commonly used, we believe a BCI framework utilizing Node-

RED and BrainFlow is the optimal technical solution, as a 
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toolkit specifically tailored to OpenBCI headsets. Additionally, 

[22] lists 230 research papers utilizing OpenBCI hardware, with 

publications spanning from 2023 to 2025 (accessed in January 

2025), and cites [19] as well. 

  

B. Node-RED and BrainFlow Software Library 

    Both Node-RED and BrainFlow are open-source, providing 

easy access for developing BCI applications. Node-RED is a 

visual programming tool with a web interface that allows users 

to design applications by connecting prebuilt blocks, or 'nodes', 

which represent various functionalities and processes. These 

blocks are organized into flows, providing a highly intuitive 

environment for building BCI applications without needing to 

write text code. Node-RED supports integration with a wide 

variety of devices, APIs and services, making it particularly 

useful for IoT applications, home automation and real-time data 

monitoring. While the EmotivBCI Toolkit is specific only to 

three Emotiv devices, the openBCI nodes supports more than 

20 open-source EEG boards through the BrainFlow software 

library [23] and provide uniform data acquisition API for these 

boards. The openBCI toolkit uses the BrainFlow library that 

helps in signal acquisition and processing, managing Python 

scripts for board interaction, real-time EEG data streaming, data 

sampling, sliding window techniques, power spectral density 

decomposition, etc. Additionally, calling BrainFlow APIs from 

Python scripts as child processes in the backend ensures 

adaptability to technological advancements and facilitates 

seamless updates.  

   In conclusion, node-based visual programming streamlines 

the integration of BCI with smart home automation 

applications. In this context, we propose a framework 

specifically designed to assist cross-disciplinary professionals 

with limited programming skills in developing BCI applications 

with IoT integration through visual node-based programming, 

built using the BrainFlow library within the Node-RED 

platform. Additionally, Section III presents a system 

architecture that explains how the openBCI toolkit can be 

utilized within Node-RED. 

 
III.  SYSTEM ARCHITECTURE 

 

The system architecture for an EEG-based BCI has been 

designed and developed to facilitate communication with IoT 

devices and services using the оpenBCI toolkit in Node-RED, 

with application capabilities for smart home automation control 

(Fig.1). To register EEG signals, a non-invasive and portable 

EEG device, OpenBCI, was utilized. However, within the 

established architecture, other EEG devices supported by the 

BrainFlow library can also be employed. The measured EEG 

data is transmitted via Bluetooth to the Node-RED, and the 

system also supports data transmission over Wi-Fi. Node-RED 

serves as a browser-based tool for streamlining programming 

flows and acts as a gateway to the IoT, enabling the sending of 

JSON-type requests to the FlowFuse platform, used for cloud 

computing within the Sensetecnic cloud. This setup allows the 

BCI device to connect to cloud-based computational services 

and execute actions with smart home automation control 

devices or services. 

The architecture provides users with the flexibility to use 

various EEG devices. To support this, three new nodes were 

added to the Node-RED library (Fig.2): 'openBCI-streaming,' 

'openBCI-Data,' and 'openBCI-EEGmetrics.' These customized 

nodes provide access to the BrainFlow API, tailored to the 

selected device and processing requirements. BrainFlow is a 

software framework designed for building BCI applications 

with conventional programming languages, supporting over 

twenty EEG-based BCI devices. 

 

 
Fig. 1. A system architecture for an EEG-based BCI in the IoT, utilizing the 

оpenBCI toolkit within Node-RED. 

 
These nodes enable users to transform BCI devices into 

“things” through Node-RED, removing the need for any 

programming code. This approach expands the capabilities of 

Node-RED, allowing OpenBCI users to easily specify the board 

ID, data type, and electrodes of interest. Based on user input in 

the node settings, a JavaScript file within the node processes 

and passes the parameters to the BrainFlow API. This 

transmission occurs through a child process linking the Node.js 

server in Node-RED to the BrainFlow API, where the output is 

generated in JSON type. The connection between Node.js and 

the BrainFlow API is facilitated by a newly developed Python 

file utilizing BrainFlow libraries. Each newly created node 

contains this file in its directory, which varies depending on the 

specific functionality of the node. Node-RED also provides 

various output nodes, such as mqtt out, serial out, http response, 

play audio, and generic-BLE out, for subsequent data 

transmission to IoT devices and services. 

 

IV.   NEW NODES IN ОPENBCI TOOLKIT FOR NODE-RED 
 

In our previous work [19], we introduced an initial set of 

OpenBCI nodes for Node-RED, enabling seamless integration 

of EEG-based BCI with smart home automation systems. These 

nodes provided the necessary functionalities for EEG signal 

acquisition, streaming, preprocessing and featuring with the 

event-based control mechanisms. While the core functionality 

of these nodes is unchanged, this extended work offers clearer, 
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more structured descriptions of their capabilities. It includes 

improved explanations, configuration options, and real-world 

use case, along with refined implementation guidelines for 

smart home automation.  

In this section, we provide a detailed summary of the user 

settings and functionalities of each new node available in the 

Node-RED palette (Fig. 2). The goal is to offer clear guidance 

to users on how to configure and utilize these nodes effectively 

within their design process. Each node's parameters, input-

output behavior, and customization options are outlined to help 

users understand its role within a BCI system. By detailing 

these settings, we aim to simplify the integration of openBCI 

nodes into Node-RED workflows, ensuring that users can 

optimize their configurations for real-time signal processing, 

event detection, and smart home automation control. 

 

 
Fig. 2. Visualization of the openBCI nodes in the Node-RED palette  

 

A comprehensive flowchart illustrating the developed 

original methods and algorithms for visual programming and 

the integration of a BCI into a web-based streaming 

environment is presented in detail in [24]. The flowchart 

illustrates the working principle of the developed original 

methods and algorithms used in the overall operational process 

of each new node. These nodes integrate various software 

technologies and programming languages, including HTML, 

JavaScript, Python, Express, and others, with the flowchart 

highlighting the logical connections between them. While the 

diagram is specifically designed for the "openBCI-data" node, 

the underlying principles are also applicable to the other two 

newly created nodes—"openBCI-streaming" and "openBCI-

EEGmetrics." 

The front-end of each node is responsible for visualizing the 

node's output and is built using HTML and JavaScript. This 

section of the node interacts with the visual elements displayed 

in the web interface, structured in an .html file within the node's 

directory. The back-end of each node is implemented entirely 

in JavaScript, encapsulated in two .js files located within the 

node's directory. These files define the server-side logic, data 

handling, and communication with other components of the 

system. A connection from the Node-RED Node.js server to the 

Brainflow API was established through the use of a second .js 

file, which utilizes the child_process module to execute a newly 

developed Python file. The Node.js child_process module 

allows access to operating system functionalities by executing 

system commands in a child process. This module provides 

control over the arguments passed to the OS command and 

enables the use of the command's output, which in this case 

facilitates the integration of the Brainflow API for EEG signal 

acquisition and processing. The EEG data collection and 

processing section of the new nodes is managed through 

Python, specifically in a .py file within the node's directory. The 

flowchart illustrates how data flows from the front-end through 

the back-end, where it is processed by the Python code to handle 

EEG data effectively. Finally, the concluding processes of each 

node, such as data analysis and transmission to other systems, 

are visualized in the flowchart, completing the entire data 

handling and processing cycle. 

 In the initial stages of development, a limitation was 

observed with EEG devices transmitting data via USB dongle 

through the COM port, restricting the initiation of only one 

process per port. This limitation prevents the simultaneous 

collection and processing of data from different sources and/or 

electrodes, necessitating that all conditions be handled within a 

single process and session. To overcome this, we utilized the 

BrainFlow streaming board to stream data to various 

destinations such as files or sockets directly from BrainFlow. 

With this method, subsequent data collection and processing 

processes are initiated not with the main board but with the 

BrainFlow streaming board, allowing the user to configure 

multiple micro-processes through visual programming while 

maintaining only one main process to the COM port. 

These three nodes have been developed with a set of custom 

user settings that provide users with various configuration 

options. When used correctly, they enable multiple use cases 

for researchers and IoT enthusiasts, catering to different needs 

and scenarios. To ensure proper usage, a detailed user guide is 

provided during the installation process, which explains the 

setup and functionality of each node. Figure 3 illustrates an 

overview of the settings for the "openBCI-data" node, which is 

the most complex of the three and offers the widest range of 

configuration options. These settings allow users to define 

parameters such as board IDs, data types, and specific 

electrodes of interest. The flexibility provided by these options 

ensures that the nodes can be adapted to a wide range of 

applications, from simple data streaming to more advanced 

EEG metric analyses. By tailoring the settings to specific 

requirements, users can maximize the potential of their BCI 

system within the IoT ecosystem. 

 

  
Fig. 3. Overview of the User settings of the ‘openBCI-data’ node within 

Node-RED 

 

A. KREMENSKA et al.: VALIDATING THE ОPENBCI NODES THROUGH EEG-BASED BCI APPLICATION 253



C. Node 'openBCI-streaming' 

The 'openBCI-streaming' node serves a critical role in 

establishing and managing the streaming session between 

Node-RED and the OpenBCI EEG device via the BrainFlow 

API. It launches the primary process to the OpenBCI board and 

initiates the data stream, enabling the real-time collection of 

EEG data. This data can then be processed and utilized in 

various applications, such as smart home automation control 

and BCI systems.  This node essentially acts as the gateway for 

live EEG data, allowing for seamless communication between 

Node-RED workflows and the OpenBCI hardware. The front-

end of the 'openBCI-streaming' node provides a 'Board Name' 

dropdown menu, allowing users to select from a list of 

OpenBCI boards available via the BrainFlow API. This 

selection automatically disables the 'Board ID' field to prevent 

user error, ensuring that the correct device is chosen. 

Alternatively, users can manually input the 'Board ID' if they 

prefer, offering flexibility for specific configurations. 

Additionally, the 'Serial Port' field is used to specify the COM 

port to which the OpenBCI board is connected, ensuring the 

correct connection to the EEG hardware. Users also configure 

the 'Streaming Time (Seconds)' field, which defines the 

duration for which the EEG data will be streamed. Once the 

session duration is reached, the node sends a 'Stop stream' JSON 

message to signal the end of the session, ensuring smooth 

termination. The node is positioned within the newly created 

openBCI category in the Node-RED palette after installation. It 

is configured with a button for immediate start and an input for 

initiation via another Node-RED node, providing flexibility in 

how the streaming session is triggered. To begin a session, users 

must know the exact COM port used by their EEG device for 

proper registration. Upon node initiation, the algorithm 

establishes a session with the 'streaming' BrainFlow board and 

outputs a 'Start stream' debug message, confirming that the data 

collection process has started. When the node is triggered, 

either via the button in the Node-RED interface or through 

another node in the flow, it begins streaming EEG data in real 

time. Once the user-defined streaming duration elapses, the 

node automatically sends a 'Stop stream' JSON message, 

signaling the conclusion of the session. A summary of the node 

is presented in Table I. 

 
TABLE I 

SUMMARY OF ‘OPENBCI-STREAMING’ NODE 
 

Function Initiates the main process to the OpenBCI board in Node-
RED. 

Configuration Can be started with a button or another Node-RED node. 

(Applies for each new node) 

User Settings Requires 'Board Name' or 'Board ID,' 'Serial port,' and 
'Streaming time (in seconds)'. The node automates the use 

of either 'Board Name' or 'Board ID' to avoid user errors. 

Operation Starts a streaming session, sends a 'Start stream' debug 
message, and after the specified streaming time, sends a 

'Stop stream' JSON message. 

 

D. Node 'openBCI-data'  

The 'openBCI-data' node serves an essential function in 

processing EEG data in real time, providing users with three 

key functionalities: retrieving raw EEG signals, applying 

predefined signal filters, and calculating the power of specific 

EEG frequency bands. By enabling data processing within a 

Node-RED workflow, it allows researchers and developers to 

extract meaningful insights from EEG signals without requiring 

extensive programming knowledge. Unlike the 'openBCI-

streaming' node, which is responsible for acquiring EEG data 

from the OpenBCI board, the 'openBCI-data' node focuses on 

analyzing and refining this data. However, it is not a standalone 

node—it depends on a functioning 'openBCI-streaming' node to 

supply continuous EEG input. Without an active streaming 

session, the 'openBCI-data' node cannot execute its processing 

algorithms. To ensure compatibility and flexibility, the 

'openBCI-data' node offers several user-configurable settings. 

One of the primary requirements is selecting the 'Board Name' 

or entering the 'Board ID' to identify the EEG device. This 

selection must remain consistent across all nodes within the 

Node-RED workflow to maintain data integrity and avoid 

communication errors. The node consists also a 'Data Type' 

dropdown menu, which provides three options: RAW, Band 

Power, and Signal Filtering. The default selection is RAW, 

which allows users to access unprocessed EEG data directly 

from the OpenBCI board. The 'Window Size' field determines 

the duration of data visualization, expressed in seconds, giving 

users control over the time frame of displayed signals. If the 

'Band Power' option is selected, an additional 'Band' field 

appears, allowing users to choose from seven EEG frequency 

bands: Delta'(δ), 'Alpha' (α), 'Theta' (θ), 'LowBeta'(β1), 

'HighBeta' (β2), 'Gamma'(γ) or 'All'. This setting enables real-

time computation of the power of the selected frequency band 

for a specific EEG channel, with results output in JSON format. 

For users interested in signal preprocessing, the 'Signal 

Filtering' option provides a supplementary menu where 

different filter types can be selected, including “Bandpass”, 

“Bandstop”, “Lowpass”, “Highpass”, “Rolling filter” and 

“Remove environmental noise”. When activated, the node 

applies the chosen filter to the raw EEG data and outputs the 

processed signal in JSON format. The 'openBCI-data' node 

enhances EEG processing for research, assistive technology, 

and smart home automation, where EEG signals can trigger 

actions like adjusting lighting, controlling appliances, or 

customizing environmental settings based on cognitive states. 

Table II provides the summary of the node. 

 
TABLE II 

SUMMARY OF ‘OPENBCI-DATA’ NODE 
 

Function Retrieve raw data from the EEG device, or apply 
predefined filters to EEG data, or compute the powers of 

six frequency bands. 

Dependencies Requires a correctly functioning 'openBCI-streaming' 
node.  

User Settings Requires 'Board Name' or 'Board ID'. Provides options for 

'Data type' (RAW, Band power, Signal filtering). 

Operation A.  RAW: Accesses raw data with a specified time 
window. 

B.  Band power: Calculates the power of a selected 

frequency band (e.g., 'Alpha', 'Theta'). 
C.  Signal filtering: Filters raw data based on selected filter 

type (e.g., Bandpass, Lowpass). 

 

D. Node ‘openBCI-EEGmetrics’ 

The "openBCI-EEGmetrics" node, outlined in Table III, was 

developed to evaluate the focus and relaxation levels of the 
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individual wearing the EEG device. Its primary function is to 

calculate real-time metrics for both "Relaxation" and 

"Concentration" by analyzing brain wave activity. Developer 

can select either "Relaxation" or "Concentration" from the 

"Metric type" dropdown menu, which then triggers the 

algorithm to compute the corresponding metric using data from 

the EEG signals. The Brainflow API powers this computation, 

with the results returned as values between 0 and 1. When 

"Relaxation" is selected, the algorithm focuses on brain wave 

activity associated with closed-eye meditation, analyzing 

frequencies in the delta, theta, and alpha bands. Conversely, 

when "Concentration" is chosen, the algorithm examines beta 

and gamma brain waves, typically associated with maintaining 

focused attention while the eyes are open. This makes the 

"openBCI-EEGmetrics" node particularly valuable for 

applications in cognitive research, neurofeedback, and BCI-

based control systems. The node operates using the Regression 

classifier by default, although the Brainflow API also provides 

options for other classifiers, including LDA, KNN, and SVM, 

offering flexibility for more advanced users. Additionally, the 

node calculates metrics across all channels in use, and users can 

adjust the "Window size" field to specify the time window (in 

seconds) for averaging the power of the selected frequency 

band, providing fine-tuned control over the data analysis 

process. In practical applications, the "openBCI-EEGmetrics" 

node can be used for monitoring mental states in real-time. For 

example, it could be applied in neurofeedback sessions to train 

users to achieve specific focus or relaxation states. It also has 

potential uses in smart home automation, where the subject's 

level of concentration or relaxation could trigger actions, such 

as adjusting the environment (e.g., lighting, sound) based on the 

user’s cognitive state. 
 

TABLE III 

SUMMARY OF ‘OPENBCI-EEGMETRICS ' NODE 
 

Function Monitors levels of focus and meditation. 

User Settings Allows selection of "Metric type" (Relaxation or 

Concentration). The user can set the time window for 
calculating the average power of the frequency band in 

the "Window size" field. 

Operation Uses the BrainFlow API to calculate metrics based on 
specific brain waves. The metrics are returned as values 

between 0 and 1, using Regression as the classifier by 

default.  

 

V. MATERIALS AND METHODS 
 

The proposed visual node-based programming framework 

for BCI applications was implemented and validated using an 

OpenBCI headset. In the described case study, the integration 

involved connecting the openBCI Node-RED toolbox with an 

Arduino-based robotic arm, allowing it to be controlled by 

concentration and attention. Simultaneously, the registered and 

processed EEG data were transmitted to a fuzzy inference 

service, specifically designed and implemented to validate the 

related published neuroscience findings and facilitate gathering 

knowledge from experiments.  

 

A. Hardware 

In this scientific experiment, the EEG-based OpenBCI Cyton 

+ Daisy Boards (16-Channels with resolution 250 Hz) are used 

to control a TinkerKit Braccio robot arm within a Node-RED 

environment, simulating neural control of “things” in smart 

homes. For registering and processing the EEG data, a Dell 

laptop with an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 

2.80GHz processor was used. An Android-based tablet was 

utilized to present math problems involving addition and 

division of floating-point numbers that require memorizing 

intermediate calculations, with feedback for correct or wrong 

answer. 

 

B. Scientific Context 

The performance metric in Brainflow library to evaluate 

Mindfulness (focusing one's concentration) is based on various 

algorithms and techniques from the field of neuroscience and 

signal processing. The supported Concentration and Relaxation 

calculation from EEG data are based on Logistic Regression 

Classifier. Implementation details how to calculate derivative 

metrics from raw data can be seen in BrainFlow User API [23].  

We integrated the expertise from the published 

neuroscientific research that correlates with concentration in a 

linguistic IF-THEN fuzzy rules, where fuzzy sets participate in 

the antecedence part for consecutive fuzzy inference.  

Many studies have separately identified increased in several 

brain wave frequency bands in different locations during 

cognitive processes, that require concentration and memory 

functions. Both θ and β2 waves are involved in active thinking 

and problem solving, whereas γ waves facilitate high-level 

cognitive functions and the integration of information [25]. 

Higher θ power is associated with cognitive engagement and 

memory processes and is critical for memory encoding and 

retrieval [25], [26] and [27]. Increasing of β2 power is linked to 

active concentration and problem-solving, whereas γ power 

increased at some locations [26]. These brain waves work 

together to support various aspects of cognitive processing and 

memory functions, each contributing uniquely to the overall 

activity of the brain. For instance, high-frequency subcycles (40 

Hz) occur within the broader framework of low-frequency 

oscillations (5 to 12 Hz) during short-term memory processes 

[26]. The most reported brain locations are prefrontal, frontal, 

central and Hippocampus [28]. Furthermore, θ/β ratio and θ/γ 

ratio have been widely studied as a marker of cognitive 

processing capacity [29], [30] and [26]. In [29] θ/β ratio is 

measured at Fz, Cz and Pz, while in [30] EEG spectral analysis 

found the role of electrodes Cz, P3, P4, Pz during attention. 

Jung et al in [31] found that the ratio of θ to α power as an 

indicator of alertness in different tasks. The study included 

frontal (F3, Fz, F4), central (C3, Cz, C4), and parietal (P3, Pz, 

P4) electrodes. In [32] authors also identified some of the 

mentioned features and electrodes that are indicative of 

attentiveness. Both θ/γ ratio and α/θ ratio are discussed in [26] 

and [27]. 

Based on these neuroscience findings, we expected to 

observe that the ongoing ERS in the frequency bands showed 

specific evoked bursts (ERS") in θ correlated with memory 

processes, β2 correlated to active cognitive processing and 

attention, and γ correlated to concentration, over the prefrontal, 

parietal and motor cortexes. The electrodes of interests are: 

Frontal region electrodes: AF3, AF4, F3, F4, F7, F8; Central 

region electrodes: FC5, FC6, Cz and Parietal region electrodes: 

P3, P4, Pz.  
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C. Participants 

In our previous work [19], we reported results from a study 

involving 7 participants. To improve the robustness of our 

findings, we conducted additional experiments with eight more 

participants, one female (43 years) and seven males (average 

age- 21 years). One participant, the female, was excluded from 

the analysis due to poor EEG signal quality. The data from the 

new participants were averaged together with the original 

dataset, resulting in a combined sample of 14 healthy 

participants (4 females and 10 males) with an average age of 

26.28 years, all with technical background. Although the results 

in the current study can’t be generalized, future work will 

include of more diverse participants and more diverse fields of 

education to obtain broader neuro insights about concentration. 

Each experimental session lasted about 30 minutes. All 

participants were acquired in details with the research protocol 

and with the safety and regulatory compliances of OpenBCI 

Cyton+Daisy boards for EU. Informed consent from all 

participants were obtained. 

 

D. Experimental Task and Trial Setup 

Participants were seated comfortably in front of TinkerKit 

Braccio robot arm (Fig.4) and the experiment task responses in 

activating the robot arm gripper.  

 

 
Fig. 4. Participant seated in front of TinkerKit Braccio robot arm 

 

The participants performed math task two times (two 

sessions). We stimulate the participant’s concentration and 

attention by simple math equations on a white screen. We 

distinguish attention and concentration according to the 

openbci-EEGmetrics Mindfulness Value (MV). At the 

beginning of the experiment a baseline phase for the MV, 

frequency bands and electrodes of interest were performed. In 

a rest state three fuzzy sets for Mindfulness (reference, low and 

high) were determined and used as reference, as well for the 

ERSʺ for the average power of θ, α, β2 and γ bands oscillation. 

Thus, the baseline for each participant were setup. The 

experiment started with an auditory cue (beep sound) and only 

when the robot arm had been activated (MV membership to 

fuzzy set high) the MV and ERSʺ were recorded in csv files for 

post-hoc analysis. Figure 5 illustrates the block-based 

methodology used to structure the trial task, highlighting the 

key procedural steps.  Each step is represented by a labeled 

block, with arrows indicating the sequence of operations. 

 

Fig. 5. Block-based methodology for the trial task 

 

E. EEG Data Acquisition 

The EEG data was continuously registered and wirelessly 

transmitted via the neuroheadset. A web session was 

established with a streaming server through a flow with 

'openBCI-streaming’ node, and the data was stored in global 

variables within Node-RED by that flow. The raw EEG signals 

from the electrodes were pre-processed using FFT to analyze 

frequencies ranging from 4 to 45 Hz. These frequencies were 

categorized into four main types: θ, α, β2 and γ. The FFT output 

was then converted to power density (µV2/Hz). This signal 

processing was implemented in a Node-RED flow developed 

with a set of data nodes configured using specific user-defined 

settings (Fig. 3). These nodes were programmed with the board 

ID for the Cyton + Daisy board and the data type set to "band 

power." Each node was assigned a specific band power of 

interest (e.g. δ, θ, α, β1, β2 or γ) and a corresponding channel of 

interest. The channels (1 to 12) represent the physical 

connections of the wires to the electrodes on the EEG cap, 

following the internationally recognized 10-20 system. This 

system ensures standardized electrode placement for consistent 

and reliable data collection. By configuring the nodes in this 

way, researchers could focus on the desired frequency bands 

and brain regions relevant to the experiment, facilitating 

targeted data analysis and application. 

 

F. Methods 

Four flows in Node-RED have been designed and developed 

to control the experiment. The first one exploits the presented 

in Section III, оpenBCI toolbox for Node-RED. The remaining 

flows are based on the fuzzy shell proposed in [33] for 

developing a custom EEG-based BCI, with the fourth flow 

mapping EEG activity to Arduino-based commands for a robot 

arm. The “csv node” from the Node-RED library was used to 

handle data formatted as comma-separated values and to record 

bursts in ERS of band power for post-hoc analysis. 

F.1. Flow Design using оpenBCI Toolbox 

The integration of data streams from the OpenBCI headset to 

Node-RED is facilitated through custom input nodes in 

‘openBCI’ category, with installation details, node descriptions 

and usage provided in [24]. 
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The used EEG markers and electrodes are AF3 (β2, θ, γ), AF4 

(β2, θ, γ), F3 (θ, γ), F4 (θ, γ), F7 (α, θ), F8 (α, θ), FC5 (θ, γ), 

FC6 (θ, γ), Cz (θ, β2), Pz (θ, β2), P3 (θ, β2), P4 (θ, β2). 

 

F.2 TinkerKit Braccio Robot Arm Control 

The brainwave data collected by the boards is processed and 

classified in real time. When the Mindfulness Value (MV) is 

identified within the "high" fuzzy set, it triggers a lifting 

movement of the TinkerKit Braccio robotic arm, causing it to 

lift and then return to its resting position. The lift command is 

sent from a ‘serial out’ node in Node-RED to the arm. Upon 

receipt of this command, custom Arduino code, written and 

uploaded via the Arduino IDE, controls the arm’s movements. 

The signal-to-action mapping is direct: the EEG-detected state 

activates the start command, which in turn initiates a predefined 

sequence of movements encoded in the Arduino. The arm's 

movement was triggered to visually indicate to participants that 

they were in a state of focused awareness. 

 

F.3 Connectivity to Local Fuzzy Inference Service 

The designed and implemented fuzzy model uses trapezoidal 

membership functions and Takagi-Sugeno-Kang (TSK) fuzzy 

inference. The conceptual model how to evaluate the bursts in 

the frequency powers by TSK fuzzy logic is presented in Fig.6, 

showing how the model is integrated with EEG data and how 

the fuzzy membership sets are initialized. 

 

Fig. 6. Takagi-Sugeno-Kang (TSK) fuzzy model for evaluating the rate of change of frequency powers

Figure 7 presents a more detailed description of the model, 

illustrating how the fuzzy inference is performed. Based on this 

model, two flows use the OpenBCI data: one for baseline and 

one for data analysis with uncertainties. In Node-RED, these 

flows perform the reference phase and generate the fuzzy sets 

and fuzzy membership functions. The membership functions 

for the fuzzy sets (FMFs) were built during the baseline phase: 

FMFs_ref[(m − std ∗ c), (m − std), (m + std), (m + std ∗ c)]      (1) 

where c is a tuning parameter, m is the mean and std is the 

standard deviation obtained from 150 samples during the 

baseline. The value of c parameter can be obtained based on 

experience or by an optimization procedure as presented in 

[33].  

The flow in Node-RED that implements the fuzzy inference 

service can be seen in Figure 8. The published neuro expertise 

that correlates with the EEG activities of participants related to 

attention and concentration was translated into 14 interpretable 

fuzzy IF-THEN rules for θ/β ratio and θ/γ ratio. Additionally, 

26 fuzzy IF-THEN rules were developed to distinguish the most 

important EEG markers and electrodes mentioned in 

Subsection F1. We evaluated the second derivative of ERS 

(featured by ERSʺ) and applied fuzzy rules and Sugeno-style 

aggregation of the rule outputs. The role of second derivative of 

ERS in EEG frequency powers is relative and slightly 

influenced by baseline calibration, used to distinguish normal 

fluctuations from significant events. While baseline shifts (due 

to a poor contact with the scalp, muscle activity or eye 

movements) can slightly affect detection sensitivity, EEG 

bursts like beta or gamma events still maintain identifiable 

temporal and spectral signatures. 

Even in the presence of artifacts, these bursts remain 

detectable. The role of the TSK fuzzy system is the 

computational efficiency, because unlike Mamdani inference, 

TSK inference avoids complex defuzzification, making it faster 

and more practical for real-time applications. Another 

advantage is that only critical changes are described in fuzzy 

rules (FR) at source and scalp level, or when testing a condition 

with contradictions in assumptions. 
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Fig. 7.  Detailed description of the model how the fuzzy inference is 

performed 

 

The bursts in θ, α, β2 and γ are featured by ERSʺ and labeled 

for each trial and epoch based on the status of the fuzzy sets for 

mindfulness (high and low). Each training sample is associated 

with a label (l) corresponding to the current condition (C) of a 

single class, (𝑙𝑖 𝐶
). The first label (𝑙1𝐶

) corresponds to the low 

MV condition, the second label (𝑙2𝐶
) corresponds to the high 

MV condition, and the third label (𝑙3𝐶
) - to theta/gamma 

synchrony. ERSʺ bursts over the scalp site and bandwidth were 

evaluated in windows with a length of 250 msec. and a step size 

of 125 msec. Instances of how the bursts in θ, α, β2 and γ for 

the electrodes of interest reflect the functional connectivity for 

the fronto-central alpha/theta power asymmetry are expressed 

as follows in FR7 and FR8: 

IF "F7_T_ERS", "high" 𝐴𝑁𝐷 "F7_A_ERS", "ref", 𝑇𝐻𝐸𝑁 𝑙2𝐶  

IF "F8_T_ERS", "high", "F8_A_ERS", "ref", 𝑇𝐻𝐸𝑁 𝑙2𝐶 

where F7 T ERS is a linguistics variable with fuzzy set “high”. 

Other options are "low" and "ref". F7_T_ERSʺ means that a 

positive-going θ power over a right-frontal electrode site 

displays maximum rate for the power increase with a peak 

latency of 250 msec, mapping brain activity, while there is 

negative-going α power for F7_A_ERSʺ in this epoch. FR9 

expresses the functional connectivity for the theta/gamma 

synchrony for electrode F3: 

 
IF "F3_G_ERS", "high", "F3_T_ERS"250", "ref", 𝑇𝐻𝐸𝑁 𝑙3𝐶

 

 

 
Fig. 8. Node-RED flow that implements the fuzzy inference service 

 

F.4 OpenBCI-EEGmetrics MINDFULNESS (Attention and 

Concentration) value 

Since participants exhibit different values within the interval 

[0,1] for mindfulness, we define fuzzy membership functions 

(FMFs) for three fuzzy sets ["reference", "low", and "high"] 

during the baseline phase to differentiate their states during rest 

versus concentration. The fuzzy set “high” is a right-angled 

trapezoid (see Fig.6). The participants' FMFs were calculated 

based on the mean and standard deviation of the measured MV 

in the resting state. The formula used to calculate the FMFs is 

given by Equation (1). 

During math problem-solving, if the mindfulness value falls 

within the “low” or “high” fuzzy set, we detect attention and 

concentration at different levels of intensity. The “low” fuzzy 

set is also considered to ensure that no bursts are missed in that 

case. 

 

G. EEG Data Analysis 

Concentration-related bursts in time for the electrodes in four 

frequencies were analyzed. The evoked ERSʺ were averaged 

across all participants. We concatenated all experiments into 

one big matrix to produce a grand average in order to 

discriminate the burst at site level and frequencies. The post-

hoc interpretation of the results by ANOVA revealed that the 

mean values for ERSʺ in the fuzzy rules fired during 
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mindfulness in the fuzzy set 'high' are most significant for the 

electrodes and band powers shown in Figure 9. The F-statistic 

value (14.64) is high, indicating strong differences between the 

groups being compared (see Table IV), and with p < 0.001, the 

test provides strong evidence of statistical significance.  

 
Fig. 9. Mean values of fuzzy membership grades for bursts in ERS during 

mindfulness in the “high” fuzzy set  

 
TABLE IV  

STATISTICALLY SIGNIFICANT RESULTS (P < 0.05) FROM THE PAIRED-SAMPLE T-

TEST FOR ERS" FOR EACH RULE 

  
The significant values are observed mainly in the left side, 

and particularly θ and γ activity in the frontal lobe, β2 - in left 

central and parietal lobes. For α ERS we don’t observe 

significant bursts. 

The experimental conclusions derived from the interpretation 

of the ERSʺ means over time reveal also θ/γ synchrony in 

samples with a resolution of 250 Hz. Figure 10 illustrates the 

bursting and the instantaneous coupling of θ and γ frequencies 

for the F3 electrode. We interpreted this nested structure as 

enabling the brain to efficiently organize and separate various 

pieces of information in the short-term memory. 

 
Fig. 10. θ/γ synchrony for F3_ERSʺ averaged across all participants  

 

VI.  RESULTS AND DISCUSSION 
 

By experiments we proved that visual node-based 

programming framework for BCI applications utilizing pre-

existing nodes within Node-RED to register and analyze EEG 

signals from OpenBCI headsets, for the purpose of sending 

control commands to a robotic arm, streamlines the design 

process and minimizes the need for extensive programming. At 

the same time, after analyzing the EEG data and gathering 

knowledge from the experiment, we made conclusions about 

neuronal activity related to mental intentions for controlling 

smart home devices. 

Indeed, in line with our hypothesis, we anticipated that 

following the experiments, we might identify a universal 

threshold for the BrainFlow performance metric. After 

averaging the values for the mindfulness metric (MV), 

calculated using the BrainFlow software and extended with data 

from 7 additional participants, we observed a consistent 

threshold of approximately 0.31 with a standard deviation of 

0.11. Although this value is slightly higher than that reported in 

[19], it still indicates consistency in the results, as the re-

evaluated MV threshold shows moderate inter relative 

variability (CV ≈ 0.364). We attribute this to younger age of the 

new participants (21 years) and the baseline calibration. MV 

depends on various factors, such as baseline attention, external 

distractions, mental fatigue and others. When calculating intra-

variability, most participants showed low to moderate intra-

variability (0.04–0.07), with minimal concentration fluctuation 

and better focus. Such low variability suggests that their overall 

performance was fairly consistent. However, some participants 

displayed higher variability, with scores between 0.1 and 0.2. 

This indicates less consistency in maintaining focus, due to 

various factors mentioned earlier. Three participants were asked 

to repeat the experiment. Two reported that the white screen 

used during the baseline phase was irritating, so we replaced it 

with a light grey background. One participant wore a 

smartwatch, which interfered with and compromised the 

results. 

We did not measure system’s latency because the delay 

observed during the trial is in milliseconds and is imperceptible 

to the participant, meaning it does not affect the real-time 

experience of controlling the robotic arm. Additionally, the time 
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required for each participant to reach the necessary 

concentration level varies, as individual cognitive processes 

differ. For performance evaluation, we focused on the BCI's 

ability to recognize user intent, as system latency had no 

noticeable impact on interaction. 

In line with our hypothesis, we detected bursts in β2 and γ 

ERS over the prefrontal, parietal and near primary motor cortex 

(Cz) that would correlate with attention and concentration. 

Compared to the previous results in [19], some of the middle 

bars in Fig. 9 have shifted positions, indicating a slight change 

in the ranking of electrodes and frequency bands based on their 

mean ERSʺ values during high MV. Since the overall pattern 

remains consistent, these shifts are negligible. Although the 

higher standard deviation of MV is likely influenced by 

baseline calibration or age, the second derivative of ERS in 

EEG frequency powers is relative and slightly affected by 

baseline calibration, making it a reliable neuromarker to 

distinguish normal fluctuations from significant events. 

Although the β2 ERSʺ is not dominant, our findings are 

consistent with the research reported in [31] and [32], which 

indicate such correlation with attentiveness. We observed 

considerable θ activity, consistent with references [29] and [30]. 

The predominant θ and γ bursts in ERS (Fig. 9) during solving 

of math problems on one hand, require memorizing 

intermediate calculations (θ) and, on the other hand, require 

high concentration (γ) during the addition, subtraction, 

multiplication, and division of floating-point numbers. This 

observation aligns with [26] and [27], where it is noted that low-

frequency oscillations (5 to 12 Hz), such as θ waves, establish 

a temporal framework for organizing brain activity and memory 

processing. Within this framework, high-frequency subcycles 

(40 Hz), or γ waves, facilitate the rapid encoding and retrieval 

of information, enabling the brain to efficiently manage and 

retain multiple pieces of information simultaneously. These 

patterns coexist within a single neural network by fitting 

distinct γ subcycles into a θ oscillation, reflecting the rhythmic 

patterns of neuronal firing and temporal nesting. This 

phenomenon is also evident in our findings specifically for θ/γ 

synchrony for F3_ERSʺ (see Fig. 10). The results in this figure 

slightly differ from those presented in [19] and replicate these 

rhythmic patterns. 

 

VII. CONCLUSION  
 

Through experiments, we successfully validated the 

proposed visual node-based programming framework for BCI 

applications utilizing the openBCI toolkit within Node-RED for 

integrating OpenBCI Cyton+Daisy Boards with the TinkerKit 

Braccio robotic arm for smart home control. We identified key 

electrodes and frequency bands linked to attention and 

concentration for robotic arm control, as well as the average 

threshold for the ‘Mindfulness’ metric proposed by the 

BrainFlow library. In the future, we plan to integrate BCIs with 

Explainable AI (XAI) to enable transparent home automation 

with clearly explaining why devices like lights, thermostats, 

entertainment systems respond to mental states such as 

intention, focus or relaxation. 
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