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Abstract—Improving single-pixel imaging efficiency can be
achieved through spatially-variant resolution (SVR) sensing pat-
terns, which adaptively adjust resolution to enhance image
acquisition. This paper proposes a convolutional neural network
(CNN) architecture specifically designed for SVR-based single-
pixel imaging with compressed sensing (CS) as a more effi-
cient and non-iterative approach to image reconstruction. The
results show that the combination of SVR sensing patterns and
the proposed CNN model outperforms the uniform resolution
(UR) sensing patterns in terms of image reconstruction quality.
Furthermore, the CNN-based approach achieves greater time
efficiency compared to established methods such as ReconNet and
TVAL3, thus reducing the overall computational load without
compromising output image quality. These findings highlight
the potential of the proposed learning-based SVR approach to
effectively balance reconstruction accuracy and processing speed
in single-pixel imaging. The study optimizes both the image
acquisition and reconstruction process in single-pixel imaging,
making it suitable for real-time applications that require rapid
imaging capabilities while maintaining high image quality.

Index Terms—Single-Pixel Imaging, Spatially-Variant Resolu-
tion, Compressed Sensing, Convolutional Neural Network.

I. INTRODUCTION

Charge-coupled device (CCD) and complementary metal-
oxide-semiconductor (CMOS) technologies have drastically
improved imaging sensor technologies over the last few
decades. However, the cost and efficiency of image sensors
remain a challenge in invisible wavelengths and low light
conditions [1]. Single-pixel imaging techniques were devel-
oped to mitigate the aforementioned challenges. It has been
applied in numerous areas, such as multispectral imaging [2],
video imaging [3], infrared imaging [4], etc. In recent years,
the development of single-pixel imaging has moved from 2-
D to 3-D imaging [5], [6]. In essence, a single-pixel imaging
system captures the correlation between a target scene and a
set of sensing patterns. First, the measurements that contain the
encoded image data are recorded with a single-pixel detector.
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Then, an image of the target scene can be reconstructed with
an image reconstruction algorithm such as l1 minimization and
total variation regularization [7].

Fundamentally, image sampling adheres to the Nyquist-
Shannon Theorem. It states that a signal must be sampled at
a sampling rate above the Nyquist rate, i.e., no less than two
times the signal’s highest frequency, to permit error-less signal
reconstructions. For 2-D images, the number of measurements
must be no less than the number of image pixels [8]. In
fact, the number of measurements is directly proportional to
the costs and time required for image data acquisition and
processing. These factors prevent single-pixel imaging from
being more widely applicable. Fortunately, single-pixel imag-
ing works well with compressed sensing (CS) to achieve error-
less image reconstruction with only partial measurements,
provided that the images are sparse [9], [10]. Furthermore,
many techniques such as adaptive foveated imaging [11] and
block-based single-pixel imaging [12], [13] have also been
proposed to reduce the number of measurements required and
computational complexity.

In the single-pixel imaging with CS framework, image infor-
mation is acquired in its compressed form through modulations
with a sensing matrix. The design of the sensing matrix must
satisfy certain properties required by CS, such as the restricted
isometry property (RIP) [14]. Numerous studies have found
that both the design of the sensing matrices and the ordering
of their rows affect the quality of the reconstructed images
[15], [16]. In general, randomly generated sensing matrices
are the more favorable choices due to their higher probability
of possessing the properties imposed by CS [9], [17]. Recently,
deterministic sensing matrices such as Hadamard and Fourier
have become more favorable due to the ease of implementation
in practice [18], [19], [20].

In addition to sensing matrices, image reconstruction al-
gorithms have also been studied extensively. The evolution
of machine learning, specifically deep learning, has improved
the efficiency of image reconstruction. Numerous studies have
shown that convolutional neural networks (CNNs) is capable
of improving image quality and reducing time complexity [21],
[22], [23]. Recently, generative adversarial networks (GANs)
have also been adapted to the CS framework [24], [25].

Reducing the number of measurements and time complexity
for image reconstruction while retaining image quality are the
primary goals in single-pixel imaging. The authors’ previous
work [26], [27] shows that one can program a spatially-variant
resolution (SVR) sensing pattern to alter an image’s resolution.
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This allows a decent image to be reconstructed from fewer
measurements compared to uniform resolution (UR) images.
To further improve image reconstruction efficiency, this pa-
per proposes an architecture of CNN inspired by ReconNet
[21] to work with SVR sensing patterns. To the authors’
knowledge, no previous publications have implemented SVR
sensing matrices in combination with CNN. The proposed
learning-based SVR approach is expected to further improve
single-pixel imaging both in terms of image quality and time
efficiency. This paper’s results show that SVR sensing matri-
ces outperform UR in the single-pixel image reconstruction
using the proposed CNN. Furthermore, the proposed method
outperforms other reconstruction algorithms in terms of time
efficiency.

The contributions of this paper include:

• Introducing a CNN architecture specifically designed for
SVR-based single-pixel imaging, enabling efficient, non-
iterative CS image reconstruction.

• Enhancing computational efficiency over ReconNet and
TVAL3, making it more suitable for real-time imaging
applications.

• Improving both image acquisition and reconstruction pro-
cesses, achieving an optimal balance between accuracy
and processing speed.

This paper is organized as follows. Section II gives the
background of single-pixel imaging, CS, and CNN for image
reconstruction. Section III describes the SVR scheme and the
architecture of the proposed CNN. Section IV presents the
results and discussion. Finally, Section V concludes the paper.

II. BACKGROUND

As illustrated in Figure 1, a typical single-pixel imaging
system consists of a digital micro-mirror device (DMD) with a
light source, a single-pixel detector, and some lenses. The gen-
eral process of capturing images with the single-pixel imaging
system is as follows: First, a set of sensing patterns is uploaded
to the DMD. The DMD is a device that consists of a 2-D array
of micro-mirrors. Each micro-mirror can be programmed to
orient towards different directions independently so that the
light generated by the light source can be deflected towards
various directions. By altering the orientations of the micro-
mirrors, different designs of sensing patterns can be produced
consecutively. Then, the single-pixel detector measures the
overall intensity of the light deflected by the DMD towards
it and saves the measurements. This completes the image
acquisition process.

The single-pixel imaging with CS framework essentially
performs both image acquisition and compression at the same
time [17], [29]. Let x be the original image. The measurement
vector of x, denoted as y, is acquired with a sensing matrix
ϕ ∈ RM×N :M,N ∈ N,M < N as

y =

 y1
...
yM

 = ϕx ∈ RM . (1)

Fig. 1. Illustration of a typical single pixel imaging system [28].

where the m-th measurement is denoted by ym. If x is
represented by some sparsifying basis, denoted by ψ, such
that x = ψα, then

y = ϕx = ϕψα = Θα (2)

where Θ = ϕψ and α is the coefficient vector. In reality,
measurements {ym}Mm=1 are acquired by projecting a set
of sensing patterns onto the target scene and recording the
residual light intensities. By reshaping a row of ϕ as a√
N ×

√
N matrix, one can obtain a sensing pattern. A visual

representation of Equation 2 is shown in Figure 2.

Fig. 2. Illustration of CS Equation 2.

Equation 1 is an under-determined linear system since M <
N . Hence, for any given y, the number of possible solutions x′
such that y = ϕx′ is infinite, and obtaining a unique solution
to Equation 1 is extremely challenging. However, since CS
requires that x is sparse, one only needs to focus on the set
{x′ : x′ is sparse}. A unique and sparse solution x′ to Equation
1 can be determined using l1 minimization [8], [17]:

x̂l1 = argmin||x′||1 subjected to ϕx′ = y. (3)

Various CS image reconstruction algorithms, such as the
convex optimization method [14] and iterative greedy algo-
rithms [30] have been developed and shown to successfully
reconstruct error-free images [31]. Moreover, a small number
of CS measurements can be discarded without affecting the
image reconstruction. This permits a better reconstruction
when more measurements are obtained. Finally, only the image
reconstruction process of CS is computationally complex,
which generally possesses more computational resources than
the measurement acquisition process [32].
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As opposed to CNN developed for conventional computer
vision tasks, CNN developed for CS uses the CS mea-
surements as the inputs to the network instead of images.
Essentially, the CNN maps a low-dimension vector to a high-
dimension vector. Such an approach was inspired by the CNN
developed for image super-resolution [33]. Kulkarni et al. [21]
proposed a CNN-based architecture called ReconNet, which
improved the reconstruction results in terms of peak signal-
to-noise ratio and time complexity as compared to iterative
CS reconstruction algorithms. Shi et al. [22] proposed CSNet,
which includes a sampling and reconstruction network. It was
shown that the learned sampling matrices can improve the
traditional image CS reconstruction.

III. METHODOLOGY

The proposed method is based on the programmable SVR
scheme to alter the image resolution, which allows image
reconstruction with fewer measurements. To enhance the ef-
ficiency of this reconstruction process, a CNN architecture
is proposed to work in conjunction with the SVR sensing
patterns.

A. Spatially-Variant Single-Pixel Imaging

SVR sensing patterns consist of various-sized pixels called
cells. The authors’ previous work demonstrates that SVR
sensing patterns outperform UR sensing patterns. In this paper,
chaotic pattern arrays (CPA) are used as the underlying sensing
patterns. The superiority of CPA over other sensing patterns
had been shown in the authors’ prior work [27]. In accordance
with the findings, z0 = 0.19 is used for the generation of CPA
in this paper.

Figure 3 shows the process of generating UR and SVR
sensing patterns. A SVR sensing matrix ϕSV R is generated
as

ϕTSV R,m = τϕTm, (4)

where τ is an N×N binary transformation matrix with entries
0 and 1, and ϕTSV R,m and ϕTm are the transpose of the m-th
row of ϕSV R and ϕ, respectively.

As the CPA sensing matrices contain only -1 and +1, the
sensing matrices are divided into two distinct sets of comple-
mentary sensing matrices ϕ+ = 1

2 (1 + ϕ) and ϕ− = 1 − ϕ+,
where 1 is a M×N matrix whose entries are 1. Next, the rows
of ϕ+ and ϕ− are reshaped into two sets of complementary
sensing patterns. Since there are two sets of complementary
sensing matrices, there are two measurement vectors y+ =
ϕ+x and y− = ϕ−x. Lastly, the CS measurements are
obtained as y = 1

2 (y+ − y−). In such a case, the sensing
matrix is replaced by ϕ̂ = 1

2 (ϕ+ − ϕ−), and Equation (1)
becomes

1

2
(y+ − y−) =

1

2
(ϕ+ − ϕ−)x. (5)

Figure 4 illustrates the workflows of UR and SVR image
reconstruction. This paper compares the performance of UR
and SVR sensing patterns and the performance of the proposed
CNN with ReconNet [21] and TVAL3 [34]. BM3D [35]
denoising algorithm is used to remove the edge effect caused
by the image blocks.

B. The Proposed Convolutional Neural Network

Figure 5 shows the architecture of the proposed CNN. The
image block size is set to 32×32 [27], [13]. The first layer of
the proposed CNN is a fully-connected (FC) layer that receives
a CS measurement y as input and returns a 1024× 1 feature
map as output. The second layer reshapes the feature map
returned by the FC layer to a 32× 32 feature map. The third
and seventh layers are 2-D convolutional layers that use a 3×3
kernel and generate 64 feature maps. The fourth, fifth, eighth,
and ninth layers are 2-D convolutional layers that use a 1× 1
kernel and generate 32 feature maps. The sixth and the final
layers are 2-D convolutional layers that use a 3 × 3 kernel
and generate a feature map. All convolutional layers use the
Rectified Linear Unit (ReLU) as an activation function except
for the final layer, which uses the sigmoid function. The output
of the ninth layer is the reconstructed image x̂. Zero padding
is used to keep a constant feature map size across all layers.

The simulations and network training were performed on an
Intel Core i5-7200U 3.1 GHz laptop with 4GB of RAM. The
image dataset CIFAR-10 [36] was used in the network training,
with all images converted to grayscale prior to processing. A
sensing matrix ϕ is generated for each sensing ratio, SR =
M/N . This paper selects SR values of 0.01, 0.04, and 0.10
in accordance with [21]. A set of CS measurements of the
training images is obtained before training the network. This
set of CS measurements is the input of the proposed CNN.
The optimizer used in the network training was Adadelta with
a default learning rate of 0.001. The batch size was set to 16
and the number of training epochs was 5000. Mean squared
error (MSE) was used as the loss function.

IV. RESULTS AND DISCUSSIONS

A. SVR versus UR Sensing Patterns using the Proposed CNN

Table I shows the mean structural similarity index measure
(SSIM) and image reconstruction time with standard deviation
(n = 20) for SVR and UR images reconstructed using
the proposed CNN. As observed, SVR images consistently
show higher structural similarity compared to UR images,
indicating that the CNN effectively preserves image details
during the reconstruction process. This aligns with the authors’
expectations, as SVR images typically exhibit greater spatial
consistency due to their higher effective resolution, which the
proposed CNN can leverage to enhance image quality. This
improvement in SSIM could be beneficial for applications
where fine image details are crucial, such as in medical
imaging. On the other hand, the mean reconstruction times
for SVR and UR images do not show a significant difference.
This indicates that the proposed CNN processes both types of
images with comparable efficiency.

Figure 6 shows the ground truths and images reconstructed
using the proposed CNN with SR = 0.10 for SVR and
UR sensing patterns. The results show that SVR outperforms
UR sensing patterns. Visually, the image details of images
reconstructed with SVR sensing patterns appear clearer. This
observation, together with the quantitative results shown in
Table I, shows that SVR sensing patterns performed better
than UR sensing patterns using the proposed CNN.
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Fig. 3. The process of creating a set of (a) UR and (b) SVR sensing patterns [27]. The black and white pixels are entries 0 and 1, respectively.

Fig. 4. Workflows of UR and SVR image reconstruction.

Z. SHIN et al.: LEARNING-BASED IMAGE RECONSTRUCTION FOR SPATIAL-VARIANT SINGLE-PIXEL IMAGING 265



Fig. 5. Architecture of the proposed CNN.

TABLE I
THE MEAN SSIM AND IMAGE RECONSTRUCTION TIME (s) WITH STANDARD DEVIATION (n = 20) FOR IMAGES RECONSTRUCTED USING THE PROPOSED

CNN, FOR SVR AND UR FRAMEWORKS.

SR=0.10
SVR UR

SSIM Time SSIM Time
Mean s.d. Mean s.d. Mean s.d. Mean s.d.

airplane 0.786 1.14E-16 2.7883 0.0229 0.774 3.42E-16 2.8640 0.0691
baboon 0.454 2.85E-16 2.7258 0.0280 0.416 1.14E-16 2.8565 0.0564
Barbara 0.659 0.00E+00 2.7242 0.3782 0.624 3.42E-16 2.7766 0.0599

boat 0.652 2.28E-16 2.8242 0.1009 0.614 1.14E-16 2.8043 0.0407
cat 0.675 0.00E+00 2.9250 0.2011 0.643 1.14E-16 3.3482 0.3592

fruits 0.744 2.28E-16 2.6539 0.1491 0.695 0.00E+00 2.7347 0.0555
goldhill 0.651 0.00E+00 2.6484 0.0927 0.623 0.00E+00 2.8103 0.0626

cameraman 0.819 0.00E+00 2.9773 0.1119 0.776 2.28E-16 2.7008 0.0634
peppers 0.800 2.28E-16 2.5500 0.1146 0.779 2.28E-16 3.1526 0.3682
Zelda 0.786 1.14E-16 2.5359 0.0841 0.764 1.14E-16 3.4967 0.5790

SR=0.04
SVR UR

SSIM Time SSIM Time
Mean s.d. Mean s.d. Mean s.d. Mean s.d.

airplane 0.727 1.14E-16 2.7336 0.0206 0.659 1.14E-16 2.7951 0.0610
baboon 0.364 1.14E-16 2.7031 0.1374 0.324 5.70E-17 2.7556 0.0551
Barbara 0.594 1.14E-16 3.2742 0.8833 0.542 1.14E-16 2.7083 0.0603

boat 0.559 0.00E+00 2.8508 0.3604 0.506 1.14E-16 2.7472 0.0645
cat 0.620 1.14E-16 3.0305 0.3245 0.570 2.28E-16 3.2516 0.4793

fruits 0.609 2.28E-16 2.5938 0.1559 0.552 1.14E-16 2.7466 0.1132
goldhill 0.572 1.14E-16 2.6344 0.1508 0.503 0.00E+00 2.9137 0.1700

cameraman 0.701 2.28E-16 2.6984 0.0362 0.660 1.14E-16 2.6469 0.0440
peppers 0.732 2.28E-16 2.5211 0.1389 0.684 0.00E+00 3.4001 0.5367
Zelda 0.665 0.00E+00 2.5156 0.0888 0.645 2.28E-16 3.4245 0.6704

SR=0.01
SVR UR

SSIM Time SSIM Time
Mean s.d. Mean s.d. Mean s.d. Mean s.d.

airplane 0.542 2.28E-16 2.5898 0.0593 0.502 1.14E-16 2.7139 0.0718
baboon 0.252 0.00E+00 2.5195 0.0232 0.236 0.00E+00 2.6262 0.0503
Barbara 0.424 1.14E-16 2.9539 0.6824 0.414 1.14E-16 2.6386 0.0499

boat 0.357 1.14E-16 2.6172 0.1873 0.360 1.14E-16 2.6635 0.0515
cat 0.449 1.71E-16 2.7516 0.2617 0.422 0.00E+00 2.7850 0.1691

fruits 0.366 1.71E-16 2.4289 0.1719 0.360 1.14E-16 2.6927 0.1394
goldhill 0.334 1.14E-16 2.3656 0.0861 0.325 5.70E-17 3.0895 0.6060

cameraman 0.461 1.14E-16 2.5414 0.0554 0.449 2.85E-16 2.6078 0.1095
peppers 0.539 0.00E+00 2.4156 0.1529 0.516 2.28E-16 3.7746 0.6382
Zelda 0.384 1.71E-16 2.3336 0.3656 0.364 1.14E-16 3.4768 0.6348
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Fig. 6. The ground truths and images reconstructed using the proposed CNN
with SR = 0.10 for SVR and UR sensing patterns.

B. Comparison of Image Reconstruction Algorithms

Table II shows the mean SSIM and image reconstruction
time with standard deviation (n = 20) for SVR images
reconstructed using different image reconstruction methods.
The results show that for SR = 0.10 and 0.04, the pro-
posed CNN shows similar performance to TVAL3 in terms
of mean SSIM but significantly lower reconstruction time.
Additionally, the proposed CNN generally shows better SSIM
and time performance as compared to ReconNet. The results
demonstrate that the proposed CNN can achieve image quality
comparable to the well-established TVAL3 method, while also
offering an advantage in computational efficiency. The per-
formance improvement over TVAL3 and ReconNet highlights
the potential of the proposed CNN as an effective solution for
scenarios where both high-quality image reconstructions and
timely results are essential.

Figure 7 shows the ground truth and images reconstructed
with SR = 0.10 using the proposed CNN, ReconNet, and
TVAL3. The results show that the proposed CNN outperforms
ReconNet and TVAL3 in terms of SSIM. Visually, the image
details of the images reconstructed with the proposed CNN
are clearer than those reconstructed with other methods.

The results in Table II and Figure 7 show that the proposed
CNN outperforms ReconNet in terms of mean SSIM and time
efficiency. It is worth mentioning that the image reconstruction
time required for the proposed CNN is drastically lower than
TVAL3, although TVAL3 may yield better image quality in
some cases. Hence, the proposed CNN is more favorable when
considering the efficiency and image quality trade-off, as it

Fig. 7. The ground truth and the images reconstructed using various methods
with SR = 0.10.

demonstrates significant time reduction and comparable image
quality to TVAL3.

V. CONCLUSION

This paper proposes a learning-based SVR approach aimed
at effectively optimizing both image quality and processing
speed in single-pixel imaging. In general, the primary goal in
single-pixel imaging is to enhance the image acquisition and
reconstruction efficiency while preserving high image quality.
SVR sensing patterns were proven efficient, especially for
lower SR conditions, that fewer measurements are required
as compared to UR images yet maintain a comparable image
quality. CNN had been shown to improve the time efficiency
of the single-pixel imaging with CS.

The image reconstruction time of the proposed CNN using
both SVR and UR sensing patterns does not show an ob-
vious difference. In addition, the proposed SVR with CNN
demonstrates improved image quality and time efficiency in
most cases compared to ReconNet. Notably, the proposed
CNN achieves similar performance to TVAL3 in terms of
image quality while offering much greater efficiency in image
reconstruction.

Overall, the results indicate that the proposed CNN, com-
bined with SVR sensing patterns, enhances both the image
quality and time efficiency in single-pixel imaging with CS
framework. However, its performance may still be constrained
under diverse imaging conditions. Future work could examine
the robustness of the approach across a wider range of sce-
narios. Further studies on network architecture and training
efficiency may help reduce computational cost and enhance
reconstruction quality. Additionally, investigations into the
effects of different training strategies and hyperparameter
selections on image reconstruction could further refine the
performance of the proposed CNN.
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TABLE II
THE MEAN SSIM AND IMAGE RECONSTRUCTION TIME (s) WITH STANDARD DEVIATION (n = 20) FOR SVR IMAGES RECONSTRUCTED USING

DIFFERENT IMAGE RECONSTRUCTION METHODS.

SR=0.10
Proposed ReconNet TVAL3

SSIM Time SSIM Time SSIM Time
Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

airplane 0.786 1.14E-16 2.788 0.023 0.737 0.00E+00 2.923 0.020 0.794 1.52E-09 20.673 1.876
baboon 0.454 2.85E-16 2.726 0.028 0.401 1.71E-16 2.922 0.028 0.387 1.45E-08 23.775 1.208
Barbara 0.659 0.00E+00 2.724 0.378 0.618 1.14E-16 2.860 0.027 0.591 2.13E-07 25.442 1.582

boat 0.652 2.28E-16 2.824 0.101 0.580 1.14E-16 2.926 0.047 0.653 4.24E-08 22.850 1.356
cat 0.675 0.00E+00 2.925 0.201 0.630 2.28E-16 2.965 0.077 0.637 2.45E-08 22.374 1.301

fruits 0.744 2.28E-16 2.654 0.149 0.684 2.28E-16 3.127 0.267 0.714 2.42E-06 25.980 1.472
goldhill 0.651 0.00E+00 2.648 0.093 0.590 0.00E+00 3.400 0.428 0.658 8.98E-09 26.573 11.339

cameraman 0.819 0.00E+00 2.977 0.112 0.801 3.42E-16 2.769 0.022 0.843 2.20E-08 19.127 0.621
peppers 0.800 2.28E-16 2.550 0.115 0.769 0.00E+00 3.681 0.596 0.786 2.65E-08 25.391 10.622
Zelda 0.786 1.14E-16 2.536 0.084 0.730 2.28E-16 2.817 0.029 0.792 5.15E-08 23.515 4.921

SR=0.04
Proposed ReconNet TVAL3

SSIM Time SSIM Time SSIM Time
Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

airplane 0.727 1.14E-16 2.734 0.021 0.575 2.28E-16 2.888 0.038 0.725 1.45E-05 22.819 1.208
baboon 0.364 1.14E-16 2.703 0.137 0.307 0.00E+00 2.805 0.028 0.340 2.31E-06 23.116 1.486
Barbara 0.594 1.14E-16 3.274 0.883 0.527 2.28E-16 2.783 0.034 0.585 2.19E-06 24.032 1.796

boat 0.559 0.00E+00 2.851 0.360 0.453 0.00E+00 2.942 0.122 0.588 4.51E-06 22.667 1.458
cat 0.620 1.14E-16 3.030 0.325 0.539 2.28E-16 2.821 0.056 0.595 4.28E-06 23.442 1.120

fruits 0.609 2.28E-16 2.594 0.156 0.533 1.14E-16 2.912 0.138 0.526 4.47E-06 25.751 1.493
goldhill 0.572 1.14E-16 2.634 0.151 0.460 0.00E+00 3.949 1.018 0.589 2.51E-06 22.932 4.301

cameraman 0.701 2.28E-16 2.698 0.036 0.704 0.00E+00 2.781 0.138 0.750 2.63E-08 19.185 0.564
peppers 0.732 2.28E-16 2.521 0.139 0.653 2.28E-16 3.278 0.544 0.734 4.30E-07 23.799 4.804
Zelda 0.665 0.00E+00 2.516 0.089 0.559 0.00E+00 2.778 0.043 0.754 1.16E-05 27.591 12.741
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