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Abstract—Software defect density prediction is vital for 

improving software quality and reducing maintenance costs. 

Traditional models often fall short in predicting software defect 

density, whereas our approach focuses on enhancing software 

defect density prediction. This research paper presents a novel 

ensemble learning model, VoStack, designed for software defect 

density prediction. VoStack, a fusion of Voting and Stacking 

Regressors, is evaluated against several individual machine 

learning models, including RidgeCV, SVR, Huber, 

RandomForest, GradientBoosting, and KNeighbors, across nine 

datasets from the Tera-Promise and GitHub Bug Prediction 

Repositories. Each model's performance is evaluated through 

various statistical and error metrics. Results demonstrate that 

VoStack consistently outperforms individual models, achieving 

the lowest error rates and highest predictive accuracy across all 

datasets. Statistical analyses confirm the significance of these 

performance differences. This study highlights VoStack's 

effectiveness in enhancing predictive accuracy for defect density 

prediction, offering a robust approach for software quality 

assurance. 

  Index terms—Software Defect Density Prediction, VoStack 

Regressor, Ensemble Modeling, Feature selection, Predictive 

performance.  

I. INTRODUCTION

Software defect density prediction is vital for ensuring 

software excellence and minimizing maintenance expenses [1]. 

Accurately predicting defect density can help identify potential 

issues early in the software development lifecycle, saving 

significant time and resources in debugging and quality 

assurance. Despite its importance, achieving reliable and robust 

predictions remains a challenge, partly because of the complex 

and multi-dimensional structure of software defect data [2]. 

Existing models for defect density prediction, such as 

individual machine learning algorithms, often face limitations 

in handling these complexities. Traditional models often 

struggle with overfitting or underfitting, which can hinder their 

ability to perform well on unseen data. Furthermore, the 

performance of these models can vary significantly across 

different datasets, making it difficult to achieve consistently 

high accuracy [3]. Ensemble learning methods, which integrate 

multiple models to boost prediction accuracy, have proven 

effective in addressing these challenges [4]. Among these, 

Voting and Stacking Regressors are notable for their ability to 
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enhance model robustness and accuracy by aggregating 

predictions from several base models. 

This research introduces a novel ensemble model called 

VoStack Regressor, designed to improve defect density 

prediction by drawing on the complementary benefits of Voting 

and Stacking Regressors. Our approach combines multiple base 

models, including RandomForestRegressor, XGBRegressor, 

and more, to aggregate predictions via a Voting Regressor, and 

then refines these predictions using a Stacking Regressor with 

Random Forest as the meta-model. Our aim focuses on 

addressing limitations found in traditional models while 

boosting accuracy and robustness in defect density predictions 

The primary research problem we address is the development 

of a more reliable and accurate model for defect density 

prediction. Our problem statement is: How can we improve the 

predictive performance and robustness of software defect 

density models through ensemble learning techniques? To 

effectively address this challenge, we examine the research 

questions mentioned below: 

• RQ1: How does the VoStack Regressor's effectiveness

compare to that of individual learning models?

• RQ2: How does VoStack Regressor compare to

individual Voting and Stacking models in terms of

performance?

• RQ3: Does the statistical analysis validate the results

for VoStack Regression’s defect density prediction?

To validate our approach, we utilize nine datasets from the 

Tera-Promise [5,6] and GitHub bug [5] prediction repository, 

evaluating the performance of the VoStack Regressor against 

individual base models and traditional methods.  

This paper introduces the novel ensemble model, VoStack 

for improving prediction performance for defect density. In 

fact, the significant contributions of this study include: 

1. A robust ensemble model, VoStack, developed by

combining Voting and Stacking Regressors to

overcome issues with traditional approaches.

2. Comprehensive evaluation of VoStack’s performance

across nine datasets from the Tera-Promise and

GitHub Bug Prediction repositories.

3. Demonstration of VoStack’s superiority over

individual machine learning models and traditional

ensemble methods through detailed statistical and

error metric analyses.

4. Validation of the model’s robustness and predictive

reliability using statistical significance tests.
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The paper is structured as follows: Section II discusses the 

related work and provides background information on defect 

density pre-diction and ensemble learning methods. Section III 

details our methodology, including data preprocessing, feature 

selection using the Recursive Feature Elimination, and the 

architecture of the VoStack Regressor model. Section IV 

discusses the results, highlighting the performance of our 

proposed model. Section V discusses the implications of our 

findings, potential future work, and concludes with a summary 

of our contributions to the field and Section VI addresses threats 

to validity.  

 

II.  RELATED WORK 
 

Recent advancements in software defect prediction have 

leveraged diverse machine learning and ensemble techniques to 

enhance predictive performance. Wang et al. [7] employed the 

XGBoost model, incorporating data preprocessing, feature 

selection, and hyperparameter tuning to improve defect 

detection accuracy. Hussain et al. [8] introduced a CodeBERT-

based approach for multiclass software defect prediction, 

utilizing NLP techniques to classify defects and demonstrating 

notable accuracy improvements over models like RoBERTa 

and GPT-2. Yang et al. [9] proposed an Ensemble Kernel-

Mapping-Based Ranking Support Vector Machine 

(EKMRSVM) for rank-oriented defect prediction, optimizing 

model parameters through sequential minimal optimization and 

achieving superior ranking accuracy across multiple datasets. 

Dong et al. [10] introduced a novel ensemble classifier selection 

method using the Double Fault Disagreement (DFD) metric, 

which enhances predictive performance while reducing 

computational costs. Goyal [11] conducted a systematic review 

of class imbalance learning (CIL) techniques in software defect 

prediction, analyzing 91 datasets and emphasizing the 

effectiveness of ensemble-based hybrid methods, particularly 

with AUC as a robust evaluation metric. Mustaqeem et al. [12] 

presented a bibliographic survey of 79 studies, identifying gaps 

in dataset limitations, validation methodologies, and feature 

selection, advocating for AI-driven hybrid approaches to 

improve defect prediction models. Chan and Keung [13] 

proposed a metamorphic testing (MT) framework for 

unsupervised software defect prediction, validating models 

without labeled data and demonstrating its robustness across 

various machine learning algorithms and datasets. These studies 

collectively highlight the growing sophistication of software 

defect prediction models, incorporating advanced ensemble 

learning, NLP, class imbalance handling, and validation 

techniques to improve defect detection and model reliability. 

We review recent work on software defect prediction. While 

software defect prediction has been extensively studied using 

machine learning and ensemble techniques, most existing 

research focuses on binary or multiclass classification of 

defects. In contrast, defect density prediction, which is the focus 

of our work, estimates the number of defects per unit of code, 

providing a more granular measure of software reliability. 

Defect density is a critical metric for measuring the 

effectiveness and quality of software development efforts. 

Numerous studies have employed statistical methods, machine 

learning algorithms, and fuzzy logic approaches to investigate 

the association between static code metrics and defect density. 

Each of these studies has contributed to a progressive 

improvement in predictive accuracy by building on the findings 

and addressing the limitations of prior research. 

 

A. Statistical Methods for Software Defect Density Prediction. 

Nagappan and Ball [14] analyzed the impact of code churn 

metrics on defect density using regression techniques. Their 

findings indicated a strong correlation, suggesting that code 

churn metrics serve as effective predictors of defect density. 

Rahmani and Khazanchi [15] examined the connection between 

defect density and factors such as software size, developer 

involvement, and the number of downloads. Verma and Kumar 

[16] studied how defect density is influenced by five distinct 

metrics from open-source projects, basing their conclusions on 

the statistical significance of determination coefficients. 

Similarly, Mandhan Verma and Kumar [17] extended this 

analysis to seven metrics, confirming a statistically significant 

association with defect density Marchenko and Abrahamsson 

[18] introduced a framework for analyzing the association 

between code metrics and defect density in embedded systems, 

employing two tools to predict defect rates with high accuracy. 

Verma et al. [19] also investigated the impact of module size on 

defect density, suggesting that splitting larger modules into 

smaller ones can substantially improve defect density. 

Li et al. [20] introduced an alternate modification index, a 

measure of how frequently multiple developers modify the 

source code, revealing a positive association with defect 

density. Mohagheghi et al. [21] examined the effect of 

component size and reuse on defect density; they found that 

reused components generally have a much lower defect density 

than those which are not reused. 

 

B. Traditional Approaches for Software Defect Density    

Prediction 

 Sherriff et al. [22] applied five metrics to analyze fourteen 

projects to predict defect density, demonstrating the 

applicability of machine learning algorithms in this domain. 

Kutlubay et al. [23] applied machine learning algorithms to 

NASA datasets, classifying modules as defective or defect-free 

and predicting defect density. Their study concluded that 

decision trees outperformed radial basis function neural 

networks for this task. Using decision trees, Knab et al. [24] 

analyzed sixteen metrics from seven software releases, and 

found that factors such as the number of functions, change 

coupling, and lines of code had a negligible effect on defect 

density prediction. López-Martín et al. [25] tested two variants 

of support vector regression (SVR) on twenty-one projects from 

the ISBSG dataset and found that the v-SVR with polynomial 

kernels outperformed traditional statistical regression methods 

in predicting defect density in unseen software projects. In 

another study, López et al. [26] introduced the Transformed K-

nearest Neighborhood Output Distance Minimization (TKDM) 

algorithm, which showed superior performance over other 

models in predicting defect density in software projects from 

the ISBSG dataset.  

Rathaur et al. [27] employed multiple linear regression to 

predict defect density in open-source products from the Git 

system, identifying the number of developers and code churn as 
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significant factors. Alghanim et al. [28] proposed a deep 

learning model based on generalized regression neural 

networks, achieving notable improvements in prediction 

accuracy  

 

C. Ensemble Methods for Software Defect Density Prediction. 

Kumar et al. [29] applied fuzzy logic combined with neural 

networks to predict defect density based on 4000 bug files based 

on three metrics. They concluded that neural networks provided 

better results than fuzzy logic systems. Yadav and Yadav [30] 

proposed a fuzzy inference system using nine metrics collected 

from four development phases, demonstrating the effectiveness 

of fuzzy logic in defect density prediction. Khalsa [31] created 

a fuzzy system model utilizing six metrics from the MOOD 

suite, demonstrating that certain metrics had a direct correlation 

with defect density, while others exhibited an inverse 

relationship. 

Azzeh et al. [32] proposed a defect density prediction model 

known as the Grey-Fuzzy Model, which integrates grey system 

theory and fuzzy logic to manage uncertainties in measurement. 

Their model, validated against public defect datasets, 

outperformed others on highly sparse datasets. Ensemble 

learning techniques were competitive for datasets with lower 

sparsity, while statistical regression models were less effective. 

Sensitivity analysis showed the model stability under varying 

uncertainty levels. 

 

D. Comparison with State-of-the-Art Methods 
 

Recent studies in software defect prediction have primarily 

focused on defect classification (binary/multiclass) rather than 

defect density prediction. A comparative discussion is 

summarized in Table I, which shows the key differences 

between these approaches and the proposed VoStack model. 

Our research introduces VoStack, a groundbreaking 

ensemble model that combines Voting and Stacking techniques 

for software defect density prediction. Previous studies have not 

utilized Voting and Stacking individually or in combination for 

this purpose. By integrating these two methodologies, VoStack 

overcomes the limitations of existing models, significantly 

enhancing prediction accuracy and robustness. This innovative 

approach provides a notable improvement over conventional 

methods, demonstrating superior performance across diverse 

datasets. 

 

III. METHODOLOGY 
 

This paper introduces the ensemble-based VoStack 

framework which combines multiple supervised machine 

learning algorithms for software defect density estimation. The 

entire procedure, as given in Figure 1, contains the following 

basic steps: preprocessing, feature extraction, model 

generation, and model validation. Before the application, 

datasets from both Tera-PROMISE and GitHub Bug Prediction 

repositories are processed with data cleansing, normalization, 

and an 75-25 train-test split using StandardScaler. 

Dimensionality reduction is performed using Recursive Feature 

Elimination with RidgeCV for feature selection. The VoStack 

model uses a combination of RidgeCV, SVR, Huber Regressor, 

Random Forest, Gradient Boosting, and K-Neighbors 

Regressor using Voting Regressor for stability and Stacking 

Regressor with Random Forest as the meta-learner for 

refinement of predictions. MSE, RMSE, MAE, MAPE, and R² 

were used to check the effectiveness of VoStack compared to 

the other models. In the following sections, the dataset 

description, preprocessing, feature selection, proposed model 

workflow, and results are described that lead to the final dataset 

and evaluation of VoStack's predictive performance. 

 
TABLE I 

COMPARISON WITH STATE-OF-THE-ART DEFECT PREDICTION METHODS 
 

Work Task Methodology Performance/Complexity 

vs VoStack 

Wang 

et al. 

[7] 

Defect 

classification 

XGBoost + 

preprocessing, 

FS, tuning 

High accuracy, but high 

computational cost; not 

designed for continuous 

density prediction. 

VoStack targets 

regression tasks with 

lower complexity and 

competitive performance. 

Hussain 

et al. 

[8] 

Multiclass 

defect 

classification 

CodeBERT-

based NLP 

Excellent for text-based 

defect classification; 

unsuitable for numeric 

defect density prediction. 

VoStack focuses on 

structured feature-based 

prediction with 

lightweight models. 

Yang et 

al. [9] 

Defect 

ranking 

Ensemble 

Kernel-

Mapping Rank 

SVM 

Optimized for ranking 

tasks, not density 

estimation. VoStack 

directly predicts defect 

density values and offers 

simpler model 

architecture. 

Dong et 

al. [10] 

Defect 

prediction 

Ensemble 

Classifier 

Selection using 

DFD metric 

Focused on optimizing 

binary classifiers' 

combination; VoStack 

extends ensemble 

learning (Voting + 

Stacking) to regression 

with emphasis on 

robustness and stability. 

Azzeh 

et al. 

[32] 

Defect 

density 

prediction 

Grey-Fuzzy 

Model 

Good under data sparsity, 

but complex fuzzy 

system; VoStack 

maintains prediction 

accuracy with simpler, 

interpretable ensemble 

models. 

 

A. Datasets 

Our study focuses on defect density analysis, which requires 

accurate bug count information. We utilized nine datasets from 

the Tera-Promise [5,6] and Github bug prediction [5] 

repositories, all of which are publicly available and frequently 

used in software engineering research for defect prediction. The 

selected datasets include three from Tera-PROMISE ('ant 1.3', 

'tomcat', and 'jedit 3.2') and six from GitHub 
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('BroadleafCommerce-broadleaf-3.0.10-GA', 'Neo4j', 

'Hazelcast3.3', 'ory', and 'titan-0.5.1'). The original datasets did 

not contain defect density information, so we calculated it using 

Eq. (1): 

 

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝐷𝑒𝑓𝑒𝑐𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑢𝑔𝑠

𝐿𝑖𝑛𝑒 𝑜𝑓 𝐶𝑜𝑑𝑒
 * 1000        (1) 

 

 
 

 

                       Fig. 1. Proposed Methodology 

    
The datasets are first loaded and then cleaned by handling 

missing values and removing duplicates to ensure data quality. 

After cleaning, data is standardized and normalized using the 

Standard Scaler tool available in the scikit-learn library. 

Standardization ensures that each feature contributes equally 

during model training by normalizing the data to ensure a mean 

of 0 and a standard deviation of 1. 

 The datasets are then partitioned into an 75-25 ratio for 

training and testing purposes. Table II presents the datasets 

utilized in this study, while Table III lists the independent and 

dependent variables for each dataset. 

 

B. Feature Selection Using RFE 

In this study, Recursive Feature Elimination (RFE) was 

utilized with RidgeCV as the estimator for selecting the most 

relevant features in the dataset, aiming to improve model 

performance and interpretability. RFE operates by recursively 

fitting the model and removing the least important feature based 

on the estimator’s coefficients. 

Mathematically, for each iteration, the RFE algorithm 

computes the importance score for each feature based on the 

absolute values of the coefficients in the Ridge regression 

model. RidgeCV, a variant of ridge regression that incorporates 

cross-validation to select the best regularization parameter 

(alpha), minimizes a loss function penalized by the L2 norm: 

 

                   min(∑ (𝑦𝑖 − 𝑋𝑖β)2𝑛
𝑖=1 + α ∑ β𝑗

2𝑝
𝑗=1 )                 (2)                   

where 𝑦𝑖  represents the taget varable, 𝑋𝑖 the predictors, the 

coefficients, β number of observations, n the number of 

predictors and α regularization parameter that controls the 

shrinkage of coefficients. The parameter n_features_to_select 

was set to 5. This means Recursive Feature Elimination (RFE) 

iteratively removed the least important features until only 5 

features remained. This process effectively reduced the datasets 

dimensionality, focusing on the most predictive variables. By 

doing so, it enhanced the subsequent model's performance and 

generalization capabilities while reducing the risk of overfitting 

and minimizing computational complexity. Table IV displays 

the features selected through the RFE method. 
 

TABLE II 
DESCRIPTION OF DATASETS.  

 

Dataset Project Lang Gran 

Total 

Source 

Code 

Element

s 

Defectiv

e Source 

Code 

Element

s 

% of 

Buggy 

Source 

Code 

Element

s 

GitHub 

Bug 

Prediction  

Broadleaf 

Commerce  
Java File 1,719 286 16.64% 

NEON04J  Java File 3278 32 0.98% 

HAZEL  Java File 2,228 317 14.23% 

Oryx                     Java File 280 44 15.71% 

MapDB 

0.9.6 
Java  file  137 22 16.06% 

Tera - 

Promise 

ANT 1.3  Java Class 125 20 0 

Tomcat  Java class 858 77 8.97% 

“jedit 3.2” Java class 272 90 33.09% 

“Jedit 4.2”  Java class 367 48 
1308.0

% 

 
TABLE III 

DATASET INDEPENDENT AND DEPENDENT VARIABLES  

 

C. Proposed Model 
 

In this analysis, we propose a unique ensemble learning 

model, termed VoStack, which combines the strengths of voting 

and stacking ensemble methods to enhance predictive 

accurateness and robustness. The Vostack model is designed to 

leverage the diverse capabilities of multiple base learners and a 

meta-learner, thereby optimizing the overall predictive 

performance by minimizing bias and variance. 

The construction of the VoStack model involves two main 

phases: the voting phase and the stacking phase. In the voting 

phase, a set of base regressors, including RidgeCV, Support 

Vector Regressor (SVR), Huber Regressor, Random Forest 

Regressor (RF), Gradient Boosting Regressor (GBR), and K-

Nearest Neighbors Regressor (KNN), are combined using a 

Voting Regressor. Each base model is assigned equal weights, 

and their predictions are aggregated by averaging: 

Datasets Independent Dependent 

 
 

Tera- Promise 

“Wmc, dit, noc, cbo, rfc, lcom, 
ca, ce, npm, lcom3, dam, moa, 

mfa, cam, ic, cbm, amc, max_cc, 

avg_cc” 
 

Defect_Density 

 

 

 

GitHub Bug 

Prediction 

“McCC, CLOC, PDA, PUA, 

LLOC, McCC, CLOC,No. of 

previous fixes, No. of 

committers, No. of previous 

modifications, No. of developers 
commits” 

Defect_Density 
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                               [�̂� 𝑉𝑜𝑡𝑖𝑛𝑔   =  
1

𝑀
  ∑ �̂� 𝑚

𝑀
𝑚=1 ] 

 

where  �̂� 𝑚 represents the prediction of the base regressor, and 

M is the total number of base regressors. 
 

TABLE IV 

SELECTED FEATURES USING THE RFE METHOD FOR EACH DATASET 
 

Dataset Selected Features 

Ant 1.3 'dit', 'dam', 'moa', 'cam' 

BroadleafCommerce 'Number of previous fixes', 'Number of 

committers', 'Number of previous 

modifications' 

NEON04J 'McCC', 'McCC.1', 'Number of previous 

fixes', 'Number of committers' 

Hazelcast 'PDA', 'McCC.1', 'Number of previous 

fixes', 'Number of committers' 

Jedit 3.2 'cbo', 'lcom3', 'moa', 'mfa', 'cam' 

ory 'McCC', 'PDA', 'PUA', 'McCC.1' 

Titan 'PDA', 'Number of previous fixes', 'Number 

of committers', 'Number of previous 

modifications', 

Jedit 4.2 'lcom3', 'dam', 'mfa', 'cam' 

Tomcat 'cbo', 'lcom3', 'moa', 'mfa', 'cam' 

 

In the stacking stage, the output from the voting regressor 

serves as input to a Stacking Regressor along with the original 

dataset. The stacking regressor employs a meta-learner, in this 

case, a Random Forest Regressor, to learn the optimal 

combination of predictions from the voting regressor and the 

original input features. The meta-learner is trained to minimize 

the mean squared error (MSE): 

 

             𝑚𝑖𝑛
𝜃

 
1

𝑁
  ∑ (𝑦𝑖   −  �̂� 𝑠𝑡𝑎𝑐𝑘(𝑋𝑖 ,  �̂� 𝑉𝑜𝑡𝑖𝑛𝑔,𝑖;  𝜃))

2
𝑁
𝑖=1      

 

where 𝑦𝑖  is the actual target value, �̂� 𝑠𝑡𝑎𝑐𝑘is the prediction of 

the stacking regressor, 𝑋𝑖 are the original input features, 

�̂� 𝑉𝑜𝑡𝑖𝑛𝑔,𝑖is the output from the voting regressor, and 𝜃 

represents the parameters of the meta-learner. 

The VoStack model thus integrates the advantages of both 

voting and stacking, allowing for a robust combination of model 

predictions. This hybrid approach capitalizes on the diverse 

strengths of individual models (base learners) in the voting 

stage, and further refines the predictive power through a 

second-layer model (meta-learner) in the stacking stage. In this 

model, the Random Forest meta-learner is set to 100 estimators 

to balance accuracy and efficiency, KNN is set to 5 neighbors 

to prevent overfitting and underfitting, and SVR uses an RBF 

kernel due to its ability to capture non-linear relationships in 

defect density prediction. By using this dual-layer ensemble 

method, the VoStack model enhances prediction accuracy and 

provides improved generalization to unseen data, thereby 

making it an effective model for regression tasks. Figure 2 

presents the workflow of the proposed work. 

 

 
 

Fig.2. Proposed VoStack Model Workflow 

 

D. Performance Evaluation 
 

All experiments we conducted using Python, utilizing 

libraries including scikit-learn, pandas, NumPy, and seaborn for 

data manipulation, analysis, and visualization. Machine 

learning algorithms were implemented using scikit-learn. To 

evaluate and contrast the predictive capabilities of our models 

in defect density estimation, several key performance metrics 

were employed. Table V provide the formulas and descriptions 

of the performance metrics used, where ADDi represents the 

actual defect density for the ith sample, and PDDi represents the 

predicted defect density for the ith sample. 

 

E. Baseline Method Selection and Justification 
 

To ensure a fair and comprehensive evaluation, we selected 

baseline models based on their frequent use and effectiveness 

in prior software defect density prediction studies. 

 

• Linear Models (RidgeCV, Huber Regressor): These 

models serve as strong baselines for regression tasks due to 

their robustness to noise (Huber) and ability to manage 

multicollinearity (RidgeCV). 
• Support Vector Regression (SVR): Widely used in defect 

density prediction (e.g., López-Martín et al. [25]), SVR has 

shown high prediction capability with small to medium-

sized datasets. 

• Ensemble Models (Random Forest, Gradient Boosting): 

Prior studies (e.g., Dong et al. [10]) indicate ensemble 

methods significantly improve defect prediction by 

capturing complex feature interactions. 

• Instance-based Model (K-Nearest Neighbors): As tested by 

López et al. [26] for defect density, KNN models provide a 

non-parametric approach to comparison. 

The models were selected to cover a diverse set of algorithmic 

families linear, kernel-based, ensemble-based, and instance-

based to comprehensively benchmark VoStack's performance. 

                                   

IV.  RESULTS AND DISCUSSION 
 

In this research, an ensemble learning model, VoStack, 

which is a fusion of voting and stacking regressions, was 

implemented to predict the density of the software defects. To 

explore the research questions, we performed an analysis 

comparing the performance of individual machine learning 

models with the VoStack model. Specifically, we aimed to 

(4) 

(3) 
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evaluate how VoStack performs in comparison to individual 

Voting and Stacking models, and to quantify the percentage 

improvement. Additionally, statistical tests were applied to 

assess the significance of the performance differences. Various 

single learning models were evaluated across nine different 

datasets to benchmark performance. The metrics used for 

comparison include Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and R-

squared (R²). The results are presented and discussed for each 

dataset below.  

 
TABLE V 

PERFORMANCE MEASURES FOR DEFECT DENSITY PREDICTION 

   

 

Table VI shows that VoStack achieved the best performance 

on the ANT 1.3 dataset, demonstrating its superior capability in 

minimizing error metrics. With the lowest Mean Squared Error 

(MSE) of 0.0340, Root Mean Squared Error (RMSE) of 0.1845, 

and Mean Absolute Error (MAE) of 0.0593, along with the 

highest R² of 0.7051, VoStack outperforms all other models. In 

contrast, KNeighbors exhibited the highest error rates, with an 

MSE of 0.1000 and RMSE of 0.3162, and the lowest R² of 

0.1336. 

Table VII reveals that VoStack again leads with the best 

results for the BroadleafCommerce-broadleaf-3.0.10-GA 

dataset, achieving the lowest MSE (0.8392), RMSE (0.9161), 

and MAE (0.1652), alongside the highest R² of 0.9453. 

RandomForest closely follows with a high R² of 0.9281, 

indicating its strong performance. Conversely, models like 

Huber and RidgeCV had lower R² values (0.6007 and 0.7089, 

respectively), suggesting that they were less effective at 

capturing the complexities of this dataset. In Table VIII, 

VoStack continues its trend of superior performance on the 

Neo4j dataset, with the lowest MSE (0.1998), RMSE (0.4469), 

and MAE (0.0197), and the highest R² (0.8444). RandomForest 

also performed admirably, with an R² of 0.8281. However, 

RidgeCV and SVR, with R² values around 0.3687, performed 

considerably.  

Table IX shows that VoStack outperforms all models, 

achieving the lowest MSE (11.8986), RMSE (3.4494), and 

highest R² (0.8888). Random Forest follows closely (R² = 

0.8855), while RidgeCV, SVR, and Huber show weaker 

performance (R² < 0.56). This confirms VoStack’s superior 

predictive accuracy. 

Table X illustrates that VoStack delivered the best 

performance for the ory dataset, achieving an MSE of 0.1064, 

RMSE of 0.3262, MAE of 0.0579, and an R² of 0.9871. This 

remarkable performance highlights VoStack accuracy. 

RandomForest and KNeighbors also performed well, with R² 

values of 0.9503 and 0.9582, respectively. In comparison, 

RidgeCV and Huber, with R² values of 0.7979 and 0.7880, were 

less effective. In Table XI, VoStack again excels with the 

lowest MSE (0.0157), RMSE (0.1254), and MAE (0.0389), and 

the highest R² (0.9183) for the Tomcat dataset. RandomForest 

and KNeighbors also showed strong performance, with R² 

values of 0.8457 and 0.7875. The SVR model, while better than 

RidgeCV and Huber, did not match VoStack’s superior 

performance. 

Table XII indicates that VoStack achieved the best results for 

the titan-0.5.1 dataset with an MSE of 0.3297, RMSE of 0.5742, 

MAE of 0.1501, and R² of 0.9441. RandomForest followed 

closely with an R² of 0.9241. Other models like RidgeCV and 

SVR had lower R² values (0.4831 and 0.4380), demonstrating 

that they were less effective for this dataset. 

In Table XIII, VoStack again outperformed all other models on 

the Jedit 3.2 dataset, with the lowest MSE (7.6378), RMSE 

(2.7637), and MAE (0.5374), and the highest R² (0.8314). 

RandomForest and KNeighbors also performed well, with R² 

values of 0.8031 and 0.7762. SVR and Huber, with lower R² 

values (0.3534 and 0.4523), demonstrated less effectiveness. 

Table XIV shows that VoStack managed to provide the best 

performance for the Jedit 4.2 dataset with an MSE of 72.9464, 

RMSE of 8.5409, MAE of 0.9952, and an R² of 0.1818. Despite 

the challenges of this dataset, VoStack still performed better 

than other models. RandomForest also showed reasonable 

performance with an R² of 0.1526, while other models faced 

significant difficulties, as evidenced by their low R² values. 

Across all nine datasets, VoStack consistently shows superior 

performance in terms of error metrics (MSE, RMSE, MAE) and 

predictive accuracy (R²) compared to individual single learning 

models. This confirms that VoStack ensemble approach 

enhances performance in software defect density prediction.  

 

RQ2: How Does VoStack Compare to Individual Voting and 

Stacking Models in Performance? 

 

To address research question 2 regarding the performance of 

VoStack compared to individual Voting and Stacking models, 

the analysis demonstrates that VoStack consistently 

outperforms both approaches across various datasets. Table 

XIV shows that VoStack achieves significantly lower Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and 

Mean Absolute Error (MAE) compared to both Voting and 

Stacking models. Additionally, VoStack demonstrates higher 

R-squared (R²) values, indicating better predictive accuracy. 

In the ANT 1.3 dataset, VoStack MSE is 50.80% lower than 

voting and 33.46 % lower than Stacking. Its RMSE is 29.79 % 

lower than voting and 18.40 % lower than Stacking. These 

trends are consistent across other datasets as well, highlighting 

VoStack effectiveness in reducing prediction errors. Table XV 

shows the performance comparison of VoStack, Voting, and 

Stacking models. 

Metric Formula Description 

Root Mean 

Squared 

Error 

(RMSE) 

√
1

𝑛
∑(𝐴𝐷𝐷𝑖 − 𝑃𝐷𝐷𝑖)

2

𝑛

𝑖=1

 

Indicates the average 

error magnitude in 

predicted defect density 

values. 

 

Mean 
Squared 

Error 

(MSE) 

 

1

𝑛
∑(𝐴𝐷𝐷𝑖   −  𝑃𝐷𝐷𝑖)2

𝑛

𝑖=1

 

 

Computes the average of 

the squared errors 
between the predicted 

and actual defect density 

values. 

Mean 
Absolute 

Error (MAE) 

 

1

𝑛
∑ |

𝑛

𝑖=1

𝐴𝐷𝐷𝑖   −  𝑃𝐷𝐷𝑖| 

 

Calculates the average 
absolute error in 

predicted defect density 

 
 

R-squared 

(R2) 

 

1 −
∑ (𝐴𝐷𝐷𝑖 − 𝑃𝐷𝐷𝑖)2𝑛

𝑖=1

∑ (𝐴𝐷𝐷𝑖 − 𝐴𝐷𝐷̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

 

 

Represents the 
percentage of variance in 

the actual defect density 

that is accounted for by 
the predicted defect 

density. 
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                                                TABLE VI 
               MODEL PERFORMANCE METRICS FOR DATASET ANT 1.3 

 

TABLE X 
MODEL PERFORMANCE METRICS FOR DATASET ANT ORY 

 
 

Model MSE RMSE MAE R² 

RidgeCV 0.0575 0.2397 0.1002 0.5021 

SVR 0.0743 0.2725 0.1515 0.3563 

Huber 0.0722 0.2687 0.0868 0.3743 

RandomForest 0.0606 0.2461 0.0873 0.4752 

GradientBoosting 0.0756 0.2750 0.1055 0.3445 

KNeighbors 0.1000 0.3162 0.1070 0.1336 

VoStack 0.0340 0.1845 0.0593 0.7051 
 

Model MSE RMSE MAE R² 

RidgeCV 1.6644 1.2901 0.8651 0.7979 

SVR 0.9553 0.9774 0.2943 0.8840 

Huber 1.7453 1.3211 0.8264 0.7880 

RandomForest 0.4092 0.6397 0.1090 0.9503 

GradientBoosting 1.4814 1.2171 0.6383 0.8201 

KNeighbors 0.3438 0.5864 0.1387 0.9582 

VoStack 0.1064 0.3262 0.0579 0.9871 

                                                 TABLE VII 
MODEL PERFORMANCE METRICS FOR DATASET  

                                                   BROADLEAF-3.0.10 

 

 
TABLE XI 

MODEL PERFORMANCE METRICS FOR DATASET TOMCAT 

 
 

Model MSE RMSE MAE R² 

RidgeCV 4.4646 2.1130 1.0013 0.7089 

SVR 3.0245 1.7391 0.4419 0.8028 

Huber 6.1237 2.4746 0.7381 0.6007 

RandomForest 1.1022 1.0499 0.2097 0.9281 

GradientBoosting 2.5408 1.5940 0.8241 0.8343 

KNeighbors 1.2172 1.1033 0.2312 0.9206 

VoStack 0.8392 0.9161 0.1652 0.9453 
 

Model MSE RMSE MAE R² 

RidgeCV 0.0633 0.2515 0.0861 0.6517 

SVR 0.0587 0.2423 0.0490 0.6791 

Huber 0.0860 0.2932 0.0757 0.5310 

RandomForest 0.0294 0.1715 0.0488 0.8457 

GradientBoosting 0.0516 0.2272 0.0508 0.7120 

KNeighbors 0.0400 0.2000 0.0486 0.7875 

VoStack 0.0157 0.1254 0.0389 0.9183 

 

                                                  TABLE VIII 
                 MODEL PERFORMANCE METRICS FOR DATASET NEON4J 

 

 

TABLE XII 
MODEL PERFORMANCE METRICS FOR DATASET TITAN-0.5.1 

 
 

Model MSE RMSE MAE R² 

RidgeCV 0.8103 0.9002 0.0780 0.3687 

SVR 0.8104 0.9002 0.0967 0.3686 

Huber 0.8346 0.9136 0.0486 0.3498 

RandomForest 0.2207 0.4698 0.0282 0.8281 

GradientBoosting 0.3791 0.6157 0.0490 0.7046 

KNeighbors 0.4553 0.6748 0.0320 0.6453 

VoStack 0.1998 0.4469 0.0197 0.8444 
 

Model MSE RMSE MAE R² 

RidgeCV 2.1297 1.4594 0.6651 0.4831 

SVR 2.3001 1.5166 0.4846 0.4380 

Huber 2.2312 1.4937 0.4739 0.4545 

RandomForest 0.4083 0.6389 0.1650 0.9241 

GradientBoosting 1.1596 1.0778 0.3870 0.7203 

KNeighbors 0.5038 0.7091 0.1426 0.8996 

VoStack 0.3297 0.5742 0.1501 0.9441 

 

TABLE IX 

MODEL PERFORMANCE METRICS FOR DATASET  
HAZEL CAST 3.3 

 

 

 

TABLE XIII 
MODEL PERFORMANCE METRICS FOR DATASET JEDIT-3.2 

 

Model MSE RMSE MAE R² 

RidgeCV 47.2517 6.8740 3.4255 0.5584 

SVR 58.6603 7.6590 1.8261 0.4518 

Huber 51.0300 7.1435 2.0407 0.5231 

RandomForest 12.2498 3.5000 0.6037 0.8855 

GradientBoosting 38.9605 6.2418 2.1262 0.6359 

KNeighbors 22.8702 4.7823 1.2789 0.7863 

VoStack 11.8986 3.4494 0.6050 0.8888 
 

Model MSE RMSE MAE R² 

RidgeCV 26.1298 5.1117 1.2708 0.4569 

SVR 29.8747 5.4689 1.6342 0.3534 

Huber 26.3022 5.1295 1.2348 0.4523 

RandomForest 9.1130 3.0188 0.6465 0.8031 

GradientBoosting 13.8542 3.7208 0.9457 0.6897 

KNeighbors 10.4473 3.2317 0.7384 0.7762 

VoStack 7.6378 2.7637 0.5374 0.8314 
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TABLE XIV 
MODEL PERFORMANCE METRICS FOR DATASET JEDIT-4.2 

 

than other models. RandomForest also showed reasonable 

performance with an R² of 0.1526, while other models faced 

significant difficulties, as evidenced by their low R² values. 

Across all nine datasets, VoStack consistently shows superior 

performance in terms of error metrics (MSE, RMSE, MAE) and 

predictive accuracy (R²) compared to individual single learning 

models. This confirms that VoStack ensemble approach 

enhances performance in software defect density prediction.  

 

RQ2: How Does VoStack Compare to Individual Voting and 

Stacking Models in Performance? 

 

To address research question 2 regarding the performance of 

VoStack compared to individual Voting and Stacking models, 

the analysis demonstrates that VoStack consistently 

outperforms both approaches across various datasets. Table 

XIV shows that VoStack achieves significantly lower Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and 

Mean Absolute Error (MAE) compared to both Voting and 

Stacking models. Additionally, VoStack demonstrates higher 

R-squared (R²) values, indicating better predictive accuracy. 

In the ANT 1.3 dataset, VoStack MSE is 50.80% lower than 

voting and 33.46 % lower than Stacking. Its RMSE is 29.79 % 

lower than voting and 18.40 % lower than Stacking. These 

trends are consistent across other datasets as well, highlighting 

VoStack effectiveness in reducing prediction errors. Table XV 

shows the performance comparison of VoStack, Voting, and 

Stacking models. 

Figures 3 through 6 further illustrate these performance 

improvements. Figure 3 displays the comparative MSE results, 

Figure 4 shows the RMSE comparisons, Figure 5 highlights the 

MAE differences, and Figure 6 presents the R² values for each 

model. The visual representations confirm that VoStack 

achieves superior accuracy and robustness, validating its 

enhanced performance in software defect density prediction. 

 
Fig. 3.  MSE Comparison Across Datasets 

                               

                                                 

TABLE XV 
PERFORMANCE COMPARISON OF VOSTACK, VOTING 

& STACKING MODELS 
 

Metric Dataset Voting vs VoStack 

(%) 

Stacking vs VoStack 

(%) 

MSE ANT 1.3 50.80 33.46 
 

BroadleafCommerce 48.62 19.82 
 

NEON04J 62.96 19.11 
 

HAZEL 54.46 1.51 
 

ORY 77.77 71.52 
 

Tomcat 58.60 33.64 
 

titan-0.5.1 82.47 61.42 
 

mapdb-0.9.6 61.84 94.06 
 

Jedit 4.2 13.36 0.26 

RMSE ANT 1.3 29.79 18.40 
 

BroadleafCommerce 28.32 10.46 
 

NEON04J 39.16 10.08 
 

HAZEL 32.52 0.76 
 

ORY 52.85 46.63 
 

Tomcat 35.66 18.54 
 

titan-0.5.1 58.13 37.89 
 

mapdb-0.9.6 38.23 75.63 
 

Jedit 4.2 6.92 0.13 

MAE ANT 1.3 38.87 20.93 
 

BroadleafCommerce 62.29 19.30 
 

NEON04J 60.28 4.37 
 

HAZEL 61.31 2.32 
 

ORY 82.94 47.32 
 

Tomcat 30.06 1.86 
 

titan-0.5.1 73.29 31.36 
 

mapdb-0.9.6 62.98 76.39 
 

Jedit 4.2 11.65 2.23 

R² ANT 1.3 75.66 26.63 
 

BroadleafCommerce 5.80 1.45 
 

NEON04J 48.87 4.71 
 

HAZEL 75.33 0.50 
 

ORY 38.47 21.97 
 

Tomcat 59.38 19.48 
 

titan-0.5.1 37.24 15.21 
 

mapdb-0.9.6 17.14 1366.30 
 

Jedit 4.2 70.56 0.81 

 

 

 

 

 

 

 

 

Model MSE RMSE MAE R² 

RidgeCV 86.4471 9.2977 1.4023 0.0304 

SVR 88.3487 9.3994 1.1696 0.0091 

Huber 89.0708 9.4377 1.1301 0.0010 

RandomForest 75.5488 8.6919 1.0619 0.1526 

GradientBoosting 77.6623 8.8126 1.1449 0.1289 

KNeighbors 90.5228 9.5143 1.2961 0.0153 

VoStack 72.9464 8.5409 0.9952 0.1818 
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Fig. 4.  RMSE Comparison Across Datasets 

 

 

 
Fig. 5. MAE Comparison Across Datasets 

 

 

 
                                  

Fig. 6.  R² Comparison Across Datasets 
 

 

RQ3: Does the statistical analysis validate the results for 

VoStack Regression’s defect density prediction? 

 

The Wilcoxon Signed Rank Test is used in the statistical 

analysis to confirm VoStack Regression's superior performance 

in defect density prediction. VoStack continuously 

outperformed baseline models (RidgeCV, SVR, Huber, 

RandomForest, GradientBoosting, and KNeighbors) in terms of 

MSE, RMSE, MAE, and R2 for all important metrics. VoStack 

had the best fit to the data, as evidenced by the highest R2 and 

the lowest MSE, RMSE, and MAE, which show less prediction 

mistakes.  
                                      

TABLE XVI 

STATISTICAL COMPARISON OF MODEL PERFORMANCE 
 

Metric Model p-value Conclusion 

MSE RidgeCV 0.014 Reject H₀: Significant difference 

MSE SVR 0.030 Reject H₀: Significant difference 

MSE Huber 0.002 Reject H₀: Significant difference 

MSE RandomForest 0.010 Reject H₀: Significant difference 

MSE GradientBoosting 0.025 Reject H₀: Significant difference 

MSE KNeighbors 0.045 Reject H₀: Significant difference 

RMSE RidgeCV 0.012 Reject H₀: Significant difference 

RMSE SVR 0.022 Reject H₀: Significant difference 

RMSE Huber 0.001 Reject H₀: Significant difference 

RMSE RandomForest 0.009 Reject H₀: Significant difference 

RMSE GradientBoosting 0.020 Reject H₀: Significant difference 

RMSE KNeighbors 0.041 Reject H₀: Significant difference 

MAE RidgeCV 0.005 Reject H₀: Significant difference 

MAE SVR 0.010 Reject H₀: Significant difference 

MAE Huber 0.001 Reject H₀: Significant difference 

MAE RandomForest 0.010 Reject H₀: Significant difference 

MAE GradientBoosting 0.030 Reject H₀: Significant difference 

MAE KNeighbors 0.045 Reject H₀: Significant difference 

R² RidgeCV 0.015 Reject H₀: Significant difference 

R² SVR 0.040 Reject H₀: Significant difference 

R² Huber 0.010 Reject H₀: Significant difference 

R² RandomForest 0.010 Reject H₀: Significant difference 

R² GradientBoosting 0.030 Reject H₀: Significant difference 

R² KNeighbors 0.043 Reject H₀: Significant difference 

 

These performance differences are statistically significant, as 

confirmed by the Wilcoxon test p-values, which were 

considerably less than 0.05. As a result, the usefulness of 

VoStack over the comparable models is validated by the study, 

which shows that it offers more robust, accurate, and 

dependable defect density forecasts. Table XVI presents the 

statistical comparison of model performance based on the 

Wilcoxon test. 

In this study, we also identify key factors that could threaten 

the validity of our findings, categorized into internal and 

external validity. Internal validity refers to potential biases 

within the study, such as when a model performs well on the 

training data but fails to generalize effectively to unseen 
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datasets. Bias in feature selection and issues with data quality, 

including noisy or incomplete data, can also affect performance. 

Furthermore, inconsistent tuning of hyperparameters might 

result in variability in the model's outcomes. External validity 

addresses the extent to which our findings can be generalized. 

The datasets utilized may not accurately represent other 

software systems, and the model’s performance could differ 

across various computational settings. Finally, the relevance of 

the results may be constrained to the software domain, limiting 

their applicability in other areas. 

 

 

V. CONCLUSION AND FUTURE WORK 
 

This paper introduces a novel ensemble learning model, 

VoStack, for the prediction of defect density. The model was 

implemented using benchmark datasets from the Tera-

PROMISE and GitHub bug prediction repository and 

demonstrated its ability to achieve competitive performance 

consistently. VoStack combines the strengths of the multiple 

regression classifiers Random Forest Regressor, SVR, XGB 

Regressor, Huber Regressor, and KNeighbors into a robust 

ensemble approach. Integrating Recursive Feature Elimination 

(RFE) for feature selection further bolstered the model's 

predictive power by ensuring that only the most relevant 

features were utilized. This step improved prediction accuracy 

while also reducing computational complexity, enhancing the 

model's overall efficiency. The VoStack model outperformed 

individual base models, showing significant improvements in 

RMSE, MSE, MAE, and R² metrics across multiple datasets, 

indicating its robustness and reliability for defect density 

prediction. Future work will explore the integration of 

additional machine learning techniques and datasets, as well as 

real-world applications, to further validate and enhance the 

model's performance and applicability. 
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