
 VoStackSDD: A Novel Ensemble Technique for

Software Defect Density Prediction

Jasmeet Kaur, Arvinder Kaur, and Kamaldeep Kaur

Abstract—Software defect density prediction is vital for

improving software quality and reducing maintenance costs.

Traditional models often fall short in predicting software defect

density, whereas our approach focuses on enhancing software

defect density prediction. This research paper presents a novel

ensemble learning model, VoStack, designed for software defect

density prediction. VoStack, a fusion of Voting and Stacking

Regressors, is evaluated against several individual machine

learning models, including RidgeCV, SVR, Huber,

RandomForest, GradientBoosting, and KNeighbors, across nine

datasets from the Tera-Promise and GitHub Bug Prediction

Repositories. Each model's performance is evaluated through

various statistical and error metrics. Results demonstrate that

VoStack consistently outperforms individual models, achieving

the lowest error rates and highest predictive accuracy across all

datasets. Statistical analyses confirm the significance of these

performance differences. This study highlights VoStack's

effectiveness in enhancing predictive accuracy for defect density

prediction, offering a robust approach for software quality

assurance.

 Index terms—Software Defect Density Prediction, VoStack

Regressor, Ensemble Modeling, Feature selection, Predictive

performance.

I. INTRODUCTION

Software defect density prediction is vital for ensuring

software excellence and minimizing maintenance expenses [1].

Accurately predicting defect density can help identify potential

issues early in the software development lifecycle, saving

significant time and resources in debugging and quality

assurance. Despite its importance, achieving reliable and robust

predictions remains a challenge, partly because of the complex

and multi-dimensional structure of software defect data [2].

Existing models for defect density prediction, such as

individual machine learning algorithms, often face limitations

in handling these complexities. Traditional models often

struggle with overfitting or underfitting, which can hinder their

ability to perform well on unseen data. Furthermore, the

performance of these models can vary significantly across

different datasets, making it difficult to achieve consistently

high accuracy [3]. Ensemble learning methods, which integrate

multiple models to boost prediction accuracy, have proven

effective in addressing these challenges [4]. Among these,

Voting and Stacking Regressors are notable for their ability to

Manuscript received January 16, 2025; revised February 6, 2025. Date of
publication July 15, 2025. Date of current version July 15, 2025.

All authors are with the Guru Gobind Singh Indraprastha University, New

Delhi, India (e-mails: jasmeet.20016490021@ipu.ac.in, arvinder@ipu.ac.in,
kdkaur99@ipu.ac.in).

Digital Object Identifier (DOI): 10.24138/jcomss-2025-0006

enhance model robustness and accuracy by aggregating

predictions from several base models.

This research introduces a novel ensemble model called

VoStack Regressor, designed to improve defect density

prediction by drawing on the complementary benefits of Voting

and Stacking Regressors. Our approach combines multiple base

models, including RandomForestRegressor, XGBRegressor,

and more, to aggregate predictions via a Voting Regressor, and

then refines these predictions using a Stacking Regressor with

Random Forest as the meta-model. Our aim focuses on

addressing limitations found in traditional models while

boosting accuracy and robustness in defect density predictions

The primary research problem we address is the development

of a more reliable and accurate model for defect density

prediction. Our problem statement is: How can we improve the

predictive performance and robustness of software defect

density models through ensemble learning techniques? To

effectively address this challenge, we examine the research

questions mentioned below:

• RQ1: How does the VoStack Regressor's effectiveness

compare to that of individual learning models?

• RQ2: How does VoStack Regressor compare to

individual Voting and Stacking models in terms of

performance?

• RQ3: Does the statistical analysis validate the results

for VoStack Regression’s defect density prediction?

To validate our approach, we utilize nine datasets from the

Tera-Promise [5,6] and GitHub bug [5] prediction repository,

evaluating the performance of the VoStack Regressor against

individual base models and traditional methods.

This paper introduces the novel ensemble model, VoStack

for improving prediction performance for defect density. In

fact, the significant contributions of this study include:

1. A robust ensemble model, VoStack, developed by

combining Voting and Stacking Regressors to

overcome issues with traditional approaches.

2. Comprehensive evaluation of VoStack’s performance

across nine datasets from the Tera-Promise and

GitHub Bug Prediction repositories.

3. Demonstration of VoStack’s superiority over

individual machine learning models and traditional

ensemble methods through detailed statistical and

error metric analyses.

4. Validation of the model’s robustness and predictive

reliability using statistical significance tests.

306 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025

1845-6421/09/2025-0006 © 2025 CCIS

mailto:jasmeet.20016490021@ipu.ac.in
mailto:arvinder@ipu.ac.in

The paper is structured as follows: Section II discusses the

related work and provides background information on defect

density pre-diction and ensemble learning methods. Section III

details our methodology, including data preprocessing, feature

selection using the Recursive Feature Elimination, and the

architecture of the VoStack Regressor model. Section IV

discusses the results, highlighting the performance of our

proposed model. Section V discusses the implications of our

findings, potential future work, and concludes with a summary

of our contributions to the field and Section VI addresses threats

to validity.

II. RELATED WORK

Recent advancements in software defect prediction have

leveraged diverse machine learning and ensemble techniques to

enhance predictive performance. Wang et al. [7] employed the

XGBoost model, incorporating data preprocessing, feature

selection, and hyperparameter tuning to improve defect

detection accuracy. Hussain et al. [8] introduced a CodeBERT-

based approach for multiclass software defect prediction,

utilizing NLP techniques to classify defects and demonstrating

notable accuracy improvements over models like RoBERTa

and GPT-2. Yang et al. [9] proposed an Ensemble Kernel-

Mapping-Based Ranking Support Vector Machine

(EKMRSVM) for rank-oriented defect prediction, optimizing

model parameters through sequential minimal optimization and

achieving superior ranking accuracy across multiple datasets.

Dong et al. [10] introduced a novel ensemble classifier selection

method using the Double Fault Disagreement (DFD) metric,

which enhances predictive performance while reducing

computational costs. Goyal [11] conducted a systematic review

of class imbalance learning (CIL) techniques in software defect

prediction, analyzing 91 datasets and emphasizing the

effectiveness of ensemble-based hybrid methods, particularly

with AUC as a robust evaluation metric. Mustaqeem et al. [12]

presented a bibliographic survey of 79 studies, identifying gaps

in dataset limitations, validation methodologies, and feature

selection, advocating for AI-driven hybrid approaches to

improve defect prediction models. Chan and Keung [13]

proposed a metamorphic testing (MT) framework for

unsupervised software defect prediction, validating models

without labeled data and demonstrating its robustness across

various machine learning algorithms and datasets. These studies

collectively highlight the growing sophistication of software

defect prediction models, incorporating advanced ensemble

learning, NLP, class imbalance handling, and validation

techniques to improve defect detection and model reliability.

We review recent work on software defect prediction. While

software defect prediction has been extensively studied using

machine learning and ensemble techniques, most existing

research focuses on binary or multiclass classification of

defects. In contrast, defect density prediction, which is the focus

of our work, estimates the number of defects per unit of code,

providing a more granular measure of software reliability.

Defect density is a critical metric for measuring the

effectiveness and quality of software development efforts.

Numerous studies have employed statistical methods, machine

learning algorithms, and fuzzy logic approaches to investigate

the association between static code metrics and defect density.

Each of these studies has contributed to a progressive

improvement in predictive accuracy by building on the findings

and addressing the limitations of prior research.

A. Statistical Methods for Software Defect Density Prediction.

Nagappan and Ball [14] analyzed the impact of code churn

metrics on defect density using regression techniques. Their

findings indicated a strong correlation, suggesting that code

churn metrics serve as effective predictors of defect density.

Rahmani and Khazanchi [15] examined the connection between

defect density and factors such as software size, developer

involvement, and the number of downloads. Verma and Kumar

[16] studied how defect density is influenced by five distinct

metrics from open-source projects, basing their conclusions on

the statistical significance of determination coefficients.

Similarly, Mandhan Verma and Kumar [17] extended this

analysis to seven metrics, confirming a statistically significant

association with defect density Marchenko and Abrahamsson

[18] introduced a framework for analyzing the association

between code metrics and defect density in embedded systems,

employing two tools to predict defect rates with high accuracy.

Verma et al. [19] also investigated the impact of module size on

defect density, suggesting that splitting larger modules into

smaller ones can substantially improve defect density.

Li et al. [20] introduced an alternate modification index, a

measure of how frequently multiple developers modify the

source code, revealing a positive association with defect

density. Mohagheghi et al. [21] examined the effect of

component size and reuse on defect density; they found that

reused components generally have a much lower defect density

than those which are not reused.

B. Traditional Approaches for Software Defect Density

Prediction

 Sherriff et al. [22] applied five metrics to analyze fourteen

projects to predict defect density, demonstrating the

applicability of machine learning algorithms in this domain.

Kutlubay et al. [23] applied machine learning algorithms to

NASA datasets, classifying modules as defective or defect-free

and predicting defect density. Their study concluded that

decision trees outperformed radial basis function neural

networks for this task. Using decision trees, Knab et al. [24]

analyzed sixteen metrics from seven software releases, and

found that factors such as the number of functions, change

coupling, and lines of code had a negligible effect on defect

density prediction. López-Martín et al. [25] tested two variants

of support vector regression (SVR) on twenty-one projects from

the ISBSG dataset and found that the v-SVR with polynomial

kernels outperformed traditional statistical regression methods

in predicting defect density in unseen software projects. In

another study, López et al. [26] introduced the Transformed K-

nearest Neighborhood Output Distance Minimization (TKDM)

algorithm, which showed superior performance over other

models in predicting defect density in software projects from

the ISBSG dataset.

Rathaur et al. [27] employed multiple linear regression to

predict defect density in open-source products from the Git

system, identifying the number of developers and code churn as

 J. KAUR et al.: VOSTACKSDD: A NOVEL ENSEMBLE TECHNIQUE FOR SOFTWARE DEFECT DENSITY PREDICTION 307

significant factors. Alghanim et al. [28] proposed a deep

learning model based on generalized regression neural

networks, achieving notable improvements in prediction

accuracy

C. Ensemble Methods for Software Defect Density Prediction.

Kumar et al. [29] applied fuzzy logic combined with neural

networks to predict defect density based on 4000 bug files based

on three metrics. They concluded that neural networks provided

better results than fuzzy logic systems. Yadav and Yadav [30]

proposed a fuzzy inference system using nine metrics collected

from four development phases, demonstrating the effectiveness

of fuzzy logic in defect density prediction. Khalsa [31] created

a fuzzy system model utilizing six metrics from the MOOD

suite, demonstrating that certain metrics had a direct correlation

with defect density, while others exhibited an inverse

relationship.

Azzeh et al. [32] proposed a defect density prediction model

known as the Grey-Fuzzy Model, which integrates grey system

theory and fuzzy logic to manage uncertainties in measurement.

Their model, validated against public defect datasets,

outperformed others on highly sparse datasets. Ensemble

learning techniques were competitive for datasets with lower

sparsity, while statistical regression models were less effective.

Sensitivity analysis showed the model stability under varying

uncertainty levels.

D. Comparison with State-of-the-Art Methods

Recent studies in software defect prediction have primarily

focused on defect classification (binary/multiclass) rather than

defect density prediction. A comparative discussion is

summarized in Table I, which shows the key differences

between these approaches and the proposed VoStack model.

Our research introduces VoStack, a groundbreaking

ensemble model that combines Voting and Stacking techniques

for software defect density prediction. Previous studies have not

utilized Voting and Stacking individually or in combination for

this purpose. By integrating these two methodologies, VoStack

overcomes the limitations of existing models, significantly

enhancing prediction accuracy and robustness. This innovative

approach provides a notable improvement over conventional

methods, demonstrating superior performance across diverse

datasets.

III. METHODOLOGY

This paper introduces the ensemble-based VoStack

framework which combines multiple supervised machine

learning algorithms for software defect density estimation. The

entire procedure, as given in Figure 1, contains the following

basic steps: preprocessing, feature extraction, model

generation, and model validation. Before the application,

datasets from both Tera-PROMISE and GitHub Bug Prediction

repositories are processed with data cleansing, normalization,

and an 75-25 train-test split using StandardScaler.

Dimensionality reduction is performed using Recursive Feature

Elimination with RidgeCV for feature selection. The VoStack

model uses a combination of RidgeCV, SVR, Huber Regressor,

Random Forest, Gradient Boosting, and K-Neighbors

Regressor using Voting Regressor for stability and Stacking

Regressor with Random Forest as the meta-learner for

refinement of predictions. MSE, RMSE, MAE, MAPE, and R²

were used to check the effectiveness of VoStack compared to

the other models. In the following sections, the dataset

description, preprocessing, feature selection, proposed model

workflow, and results are described that lead to the final dataset

and evaluation of VoStack's predictive performance.

TABLE I

COMPARISON WITH STATE-OF-THE-ART DEFECT PREDICTION METHODS

Work Task Methodology Performance/Complexity

vs VoStack

Wang

et al.

[7]

Defect

classification

XGBoost +

preprocessing,

FS, tuning

High accuracy, but high

computational cost; not

designed for continuous

density prediction.

VoStack targets

regression tasks with

lower complexity and

competitive performance.

Hussain

et al.

[8]

Multiclass

defect

classification

CodeBERT-

based NLP

Excellent for text-based

defect classification;

unsuitable for numeric

defect density prediction.

VoStack focuses on

structured feature-based

prediction with

lightweight models.

Yang et

al. [9]

Defect

ranking

Ensemble

Kernel-

Mapping Rank

SVM

Optimized for ranking

tasks, not density

estimation. VoStack

directly predicts defect

density values and offers

simpler model

architecture.

Dong et

al. [10]

Defect

prediction

Ensemble

Classifier

Selection using

DFD metric

Focused on optimizing

binary classifiers'

combination; VoStack

extends ensemble

learning (Voting +

Stacking) to regression

with emphasis on

robustness and stability.

Azzeh

et al.

[32]

Defect

density

prediction

Grey-Fuzzy

Model

Good under data sparsity,

but complex fuzzy

system; VoStack

maintains prediction

accuracy with simpler,

interpretable ensemble

models.

A. Datasets

Our study focuses on defect density analysis, which requires

accurate bug count information. We utilized nine datasets from

the Tera-Promise [5,6] and Github bug prediction [5]

repositories, all of which are publicly available and frequently

used in software engineering research for defect prediction. The

selected datasets include three from Tera-PROMISE ('ant 1.3',

'tomcat', and 'jedit 3.2') and six from GitHub

308 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025

('BroadleafCommerce-broadleaf-3.0.10-GA', 'Neo4j',

'Hazelcast3.3', 'ory', and 'titan-0.5.1'). The original datasets did

not contain defect density information, so we calculated it using

Eq. (1):

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝐷𝑒𝑓𝑒𝑐𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑢𝑔𝑠

𝐿𝑖𝑛𝑒 𝑜𝑓 𝐶𝑜𝑑𝑒
 * 1000 (1)

 Fig. 1. Proposed Methodology

The datasets are first loaded and then cleaned by handling

missing values and removing duplicates to ensure data quality.

After cleaning, data is standardized and normalized using the

Standard Scaler tool available in the scikit-learn library.

Standardization ensures that each feature contributes equally

during model training by normalizing the data to ensure a mean

of 0 and a standard deviation of 1.

 The datasets are then partitioned into an 75-25 ratio for

training and testing purposes. Table II presents the datasets

utilized in this study, while Table III lists the independent and

dependent variables for each dataset.

B. Feature Selection Using RFE

In this study, Recursive Feature Elimination (RFE) was

utilized with RidgeCV as the estimator for selecting the most

relevant features in the dataset, aiming to improve model

performance and interpretability. RFE operates by recursively

fitting the model and removing the least important feature based

on the estimator’s coefficients.

Mathematically, for each iteration, the RFE algorithm

computes the importance score for each feature based on the

absolute values of the coefficients in the Ridge regression

model. RidgeCV, a variant of ridge regression that incorporates

cross-validation to select the best regularization parameter

(alpha), minimizes a loss function penalized by the L2 norm:

 min(∑ (𝑦𝑖 − 𝑋𝑖β)2𝑛
𝑖=1 + α ∑ β𝑗

2𝑝
𝑗=1) (2)

where 𝑦𝑖 represents the taget varable, 𝑋𝑖 the predictors, the

coefficients, β number of observations, n the number of

predictors and α regularization parameter that controls the

shrinkage of coefficients. The parameter n_features_to_select

was set to 5. This means Recursive Feature Elimination (RFE)

iteratively removed the least important features until only 5

features remained. This process effectively reduced the datasets

dimensionality, focusing on the most predictive variables. By

doing so, it enhanced the subsequent model's performance and

generalization capabilities while reducing the risk of overfitting

and minimizing computational complexity. Table IV displays

the features selected through the RFE method.

TABLE II
DESCRIPTION OF DATASETS.

Dataset Project Lang Gran

Total

Source

Code

Element

s

Defectiv

e Source

Code

Element

s

% of

Buggy

Source

Code

Element

s

GitHub

Bug

Prediction

Broadleaf

Commerce
Java File 1,719 286 16.64%

NEON04J Java File 3278 32 0.98%

HAZEL Java File 2,228 317 14.23%

Oryx Java File 280 44 15.71%

MapDB

0.9.6
Java file 137 22 16.06%

Tera -

Promise

ANT 1.3 Java Class 125 20 0

Tomcat Java class 858 77 8.97%

“jedit 3.2” Java class 272 90 33.09%

“Jedit 4.2” Java class 367 48
1308.0

%

TABLE III

DATASET INDEPENDENT AND DEPENDENT VARIABLES

C. Proposed Model

In this analysis, we propose a unique ensemble learning

model, termed VoStack, which combines the strengths of voting

and stacking ensemble methods to enhance predictive

accurateness and robustness. The Vostack model is designed to

leverage the diverse capabilities of multiple base learners and a

meta-learner, thereby optimizing the overall predictive

performance by minimizing bias and variance.

The construction of the VoStack model involves two main

phases: the voting phase and the stacking phase. In the voting

phase, a set of base regressors, including RidgeCV, Support

Vector Regressor (SVR), Huber Regressor, Random Forest

Regressor (RF), Gradient Boosting Regressor (GBR), and K-

Nearest Neighbors Regressor (KNN), are combined using a

Voting Regressor. Each base model is assigned equal weights,

and their predictions are aggregated by averaging:

Datasets Independent Dependent

Tera- Promise

“Wmc, dit, noc, cbo, rfc, lcom,
ca, ce, npm, lcom3, dam, moa,

mfa, cam, ic, cbm, amc, max_cc,

avg_cc”

Defect_Density

GitHub Bug

Prediction

“McCC, CLOC, PDA, PUA,

LLOC, McCC, CLOC,No. of

previous fixes, No. of

committers, No. of previous

modifications, No. of developers
commits”

Defect_Density

 J. KAUR et al.: VOSTACKSDD: A NOVEL ENSEMBLE TECHNIQUE FOR SOFTWARE DEFECT DENSITY PREDICTION 309

 [�̂� 𝑉𝑜𝑡𝑖𝑛𝑔   =  
1

𝑀
  ∑ �̂� 𝑚

𝑀
𝑚=1]

where �̂� 𝑚 represents the prediction of the base regressor, and

M is the total number of base regressors.

TABLE IV

SELECTED FEATURES USING THE RFE METHOD FOR EACH DATASET

Dataset Selected Features

Ant 1.3 'dit', 'dam', 'moa', 'cam'

BroadleafCommerce 'Number of previous fixes', 'Number of

committers', 'Number of previous

modifications'

NEON04J 'McCC', 'McCC.1', 'Number of previous

fixes', 'Number of committers'

Hazelcast 'PDA', 'McCC.1', 'Number of previous

fixes', 'Number of committers'

Jedit 3.2 'cbo', 'lcom3', 'moa', 'mfa', 'cam'

ory 'McCC', 'PDA', 'PUA', 'McCC.1'

Titan 'PDA', 'Number of previous fixes', 'Number

of committers', 'Number of previous

modifications',

Jedit 4.2 'lcom3', 'dam', 'mfa', 'cam'

Tomcat 'cbo', 'lcom3', 'moa', 'mfa', 'cam'

In the stacking stage, the output from the voting regressor

serves as input to a Stacking Regressor along with the original

dataset. The stacking regressor employs a meta-learner, in this

case, a Random Forest Regressor, to learn the optimal

combination of predictions from the voting regressor and the

original input features. The meta-learner is trained to minimize

the mean squared error (MSE):

 𝑚𝑖𝑛
𝜃

 
1

𝑁
  ∑ (𝑦𝑖   −  �̂� 𝑠𝑡𝑎𝑐𝑘(𝑋𝑖 ,  �̂� 𝑉𝑜𝑡𝑖𝑛𝑔,𝑖;  𝜃))

2
𝑁
𝑖=1

where 𝑦𝑖 is the actual target value, �̂� 𝑠𝑡𝑎𝑐𝑘is the prediction of

the stacking regressor, 𝑋𝑖 are the original input features,

�̂� 𝑉𝑜𝑡𝑖𝑛𝑔,𝑖is the output from the voting regressor, and 𝜃

represents the parameters of the meta-learner.

The VoStack model thus integrates the advantages of both

voting and stacking, allowing for a robust combination of model

predictions. This hybrid approach capitalizes on the diverse

strengths of individual models (base learners) in the voting

stage, and further refines the predictive power through a

second-layer model (meta-learner) in the stacking stage. In this

model, the Random Forest meta-learner is set to 100 estimators

to balance accuracy and efficiency, KNN is set to 5 neighbors

to prevent overfitting and underfitting, and SVR uses an RBF

kernel due to its ability to capture non-linear relationships in

defect density prediction. By using this dual-layer ensemble

method, the VoStack model enhances prediction accuracy and

provides improved generalization to unseen data, thereby

making it an effective model for regression tasks. Figure 2

presents the workflow of the proposed work.

Fig.2. Proposed VoStack Model Workflow

D. Performance Evaluation

All experiments we conducted using Python, utilizing

libraries including scikit-learn, pandas, NumPy, and seaborn for

data manipulation, analysis, and visualization. Machine

learning algorithms were implemented using scikit-learn. To

evaluate and contrast the predictive capabilities of our models

in defect density estimation, several key performance metrics

were employed. Table V provide the formulas and descriptions

of the performance metrics used, where ADDi represents the

actual defect density for the ith sample, and PDDi represents the

predicted defect density for the ith sample.

E. Baseline Method Selection and Justification

To ensure a fair and comprehensive evaluation, we selected

baseline models based on their frequent use and effectiveness

in prior software defect density prediction studies.

• Linear Models (RidgeCV, Huber Regressor): These

models serve as strong baselines for regression tasks due to

their robustness to noise (Huber) and ability to manage

multicollinearity (RidgeCV).
• Support Vector Regression (SVR): Widely used in defect

density prediction (e.g., López-Martín et al. [25]), SVR has

shown high prediction capability with small to medium-

sized datasets.

• Ensemble Models (Random Forest, Gradient Boosting):

Prior studies (e.g., Dong et al. [10]) indicate ensemble

methods significantly improve defect prediction by

capturing complex feature interactions.

• Instance-based Model (K-Nearest Neighbors): As tested by

López et al. [26] for defect density, KNN models provide a

non-parametric approach to comparison.

The models were selected to cover a diverse set of algorithmic

families linear, kernel-based, ensemble-based, and instance-

based to comprehensively benchmark VoStack's performance.

IV. RESULTS AND DISCUSSION

In this research, an ensemble learning model, VoStack,

which is a fusion of voting and stacking regressions, was

implemented to predict the density of the software defects. To

explore the research questions, we performed an analysis

comparing the performance of individual machine learning

models with the VoStack model. Specifically, we aimed to

(4)

(3)

310 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025

evaluate how VoStack performs in comparison to individual

Voting and Stacking models, and to quantify the percentage

improvement. Additionally, statistical tests were applied to

assess the significance of the performance differences. Various

single learning models were evaluated across nine different

datasets to benchmark performance. The metrics used for

comparison include Mean Squared Error (MSE), Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE), and R-

squared (R²). The results are presented and discussed for each

dataset below.

TABLE V

PERFORMANCE MEASURES FOR DEFECT DENSITY PREDICTION

Table VI shows that VoStack achieved the best performance

on the ANT 1.3 dataset, demonstrating its superior capability in

minimizing error metrics. With the lowest Mean Squared Error

(MSE) of 0.0340, Root Mean Squared Error (RMSE) of 0.1845,

and Mean Absolute Error (MAE) of 0.0593, along with the

highest R² of 0.7051, VoStack outperforms all other models. In

contrast, KNeighbors exhibited the highest error rates, with an

MSE of 0.1000 and RMSE of 0.3162, and the lowest R² of

0.1336.

Table VII reveals that VoStack again leads with the best

results for the BroadleafCommerce-broadleaf-3.0.10-GA

dataset, achieving the lowest MSE (0.8392), RMSE (0.9161),

and MAE (0.1652), alongside the highest R² of 0.9453.

RandomForest closely follows with a high R² of 0.9281,

indicating its strong performance. Conversely, models like

Huber and RidgeCV had lower R² values (0.6007 and 0.7089,

respectively), suggesting that they were less effective at

capturing the complexities of this dataset. In Table VIII,

VoStack continues its trend of superior performance on the

Neo4j dataset, with the lowest MSE (0.1998), RMSE (0.4469),

and MAE (0.0197), and the highest R² (0.8444). RandomForest

also performed admirably, with an R² of 0.8281. However,

RidgeCV and SVR, with R² values around 0.3687, performed

considerably.

Table IX shows that VoStack outperforms all models,

achieving the lowest MSE (11.8986), RMSE (3.4494), and

highest R² (0.8888). Random Forest follows closely (R² =

0.8855), while RidgeCV, SVR, and Huber show weaker

performance (R² < 0.56). This confirms VoStack’s superior

predictive accuracy.

Table X illustrates that VoStack delivered the best

performance for the ory dataset, achieving an MSE of 0.1064,

RMSE of 0.3262, MAE of 0.0579, and an R² of 0.9871. This

remarkable performance highlights VoStack accuracy.

RandomForest and KNeighbors also performed well, with R²

values of 0.9503 and 0.9582, respectively. In comparison,

RidgeCV and Huber, with R² values of 0.7979 and 0.7880, were

less effective. In Table XI, VoStack again excels with the

lowest MSE (0.0157), RMSE (0.1254), and MAE (0.0389), and

the highest R² (0.9183) for the Tomcat dataset. RandomForest

and KNeighbors also showed strong performance, with R²

values of 0.8457 and 0.7875. The SVR model, while better than

RidgeCV and Huber, did not match VoStack’s superior

performance.

Table XII indicates that VoStack achieved the best results for

the titan-0.5.1 dataset with an MSE of 0.3297, RMSE of 0.5742,

MAE of 0.1501, and R² of 0.9441. RandomForest followed

closely with an R² of 0.9241. Other models like RidgeCV and

SVR had lower R² values (0.4831 and 0.4380), demonstrating

that they were less effective for this dataset.

In Table XIII, VoStack again outperformed all other models on

the Jedit 3.2 dataset, with the lowest MSE (7.6378), RMSE

(2.7637), and MAE (0.5374), and the highest R² (0.8314).

RandomForest and KNeighbors also performed well, with R²

values of 0.8031 and 0.7762. SVR and Huber, with lower R²

values (0.3534 and 0.4523), demonstrated less effectiveness.

Table XIV shows that VoStack managed to provide the best

performance for the Jedit 4.2 dataset with an MSE of 72.9464,

RMSE of 8.5409, MAE of 0.9952, and an R² of 0.1818. Despite

the challenges of this dataset, VoStack still performed better

than other models. RandomForest also showed reasonable

performance with an R² of 0.1526, while other models faced

significant difficulties, as evidenced by their low R² values.

Across all nine datasets, VoStack consistently shows superior

performance in terms of error metrics (MSE, RMSE, MAE) and

predictive accuracy (R²) compared to individual single learning

models. This confirms that VoStack ensemble approach

enhances performance in software defect density prediction.

RQ2: How Does VoStack Compare to Individual Voting and

Stacking Models in Performance?

To address research question 2 regarding the performance of

VoStack compared to individual Voting and Stacking models,

the analysis demonstrates that VoStack consistently

outperforms both approaches across various datasets. Table

XIV shows that VoStack achieves significantly lower Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and

Mean Absolute Error (MAE) compared to both Voting and

Stacking models. Additionally, VoStack demonstrates higher

R-squared (R²) values, indicating better predictive accuracy.

In the ANT 1.3 dataset, VoStack MSE is 50.80% lower than

voting and 33.46 % lower than Stacking. Its RMSE is 29.79 %

lower than voting and 18.40 % lower than Stacking. These

trends are consistent across other datasets as well, highlighting

VoStack effectiveness in reducing prediction errors. Table XV

shows the performance comparison of VoStack, Voting, and

Stacking models.

Metric Formula Description

Root Mean

Squared

Error

(RMSE)

√
1

𝑛
∑(𝐴𝐷𝐷𝑖 − 𝑃𝐷𝐷𝑖)

2

𝑛

𝑖=1

Indicates the average

error magnitude in

predicted defect density

values.

Mean
Squared

Error

(MSE)

1

𝑛
∑(𝐴𝐷𝐷𝑖   −  𝑃𝐷𝐷𝑖)2

𝑛

𝑖=1

Computes the average of

the squared errors
between the predicted

and actual defect density

values.

Mean
Absolute

Error (MAE)

1

𝑛
∑ |

𝑛

𝑖=1

𝐴𝐷𝐷𝑖   −  𝑃𝐷𝐷𝑖|

Calculates the average
absolute error in

predicted defect density

R-squared

(R2)

1 −
∑ (𝐴𝐷𝐷𝑖 − 𝑃𝐷𝐷𝑖)2𝑛

𝑖=1

∑ (𝐴𝐷𝐷𝑖 − 𝐴𝐷𝐷̅̅ ̅̅ ̅̅)2𝑛
𝑖=1

Represents the
percentage of variance in

the actual defect density

that is accounted for by
the predicted defect

density.

 J. KAUR et al.: VOSTACKSDD: A NOVEL ENSEMBLE TECHNIQUE FOR SOFTWARE DEFECT DENSITY PREDICTION 311

 TABLE VI
 MODEL PERFORMANCE METRICS FOR DATASET ANT 1.3

TABLE X
MODEL PERFORMANCE METRICS FOR DATASET ANT ORY

Model MSE RMSE MAE R²

RidgeCV 0.0575 0.2397 0.1002 0.5021

SVR 0.0743 0.2725 0.1515 0.3563

Huber 0.0722 0.2687 0.0868 0.3743

RandomForest 0.0606 0.2461 0.0873 0.4752

GradientBoosting 0.0756 0.2750 0.1055 0.3445

KNeighbors 0.1000 0.3162 0.1070 0.1336

VoStack 0.0340 0.1845 0.0593 0.7051

Model MSE RMSE MAE R²

RidgeCV 1.6644 1.2901 0.8651 0.7979

SVR 0.9553 0.9774 0.2943 0.8840

Huber 1.7453 1.3211 0.8264 0.7880

RandomForest 0.4092 0.6397 0.1090 0.9503

GradientBoosting 1.4814 1.2171 0.6383 0.8201

KNeighbors 0.3438 0.5864 0.1387 0.9582

VoStack 0.1064 0.3262 0.0579 0.9871

 TABLE VII
MODEL PERFORMANCE METRICS FOR DATASET

 BROADLEAF-3.0.10

TABLE XI

MODEL PERFORMANCE METRICS FOR DATASET TOMCAT

Model MSE RMSE MAE R²

RidgeCV 4.4646 2.1130 1.0013 0.7089

SVR 3.0245 1.7391 0.4419 0.8028

Huber 6.1237 2.4746 0.7381 0.6007

RandomForest 1.1022 1.0499 0.2097 0.9281

GradientBoosting 2.5408 1.5940 0.8241 0.8343

KNeighbors 1.2172 1.1033 0.2312 0.9206

VoStack 0.8392 0.9161 0.1652 0.9453

Model MSE RMSE MAE R²

RidgeCV 0.0633 0.2515 0.0861 0.6517

SVR 0.0587 0.2423 0.0490 0.6791

Huber 0.0860 0.2932 0.0757 0.5310

RandomForest 0.0294 0.1715 0.0488 0.8457

GradientBoosting 0.0516 0.2272 0.0508 0.7120

KNeighbors 0.0400 0.2000 0.0486 0.7875

VoStack 0.0157 0.1254 0.0389 0.9183

 TABLE VIII
 MODEL PERFORMANCE METRICS FOR DATASET NEON4J

TABLE XII
MODEL PERFORMANCE METRICS FOR DATASET TITAN-0.5.1

Model MSE RMSE MAE R²

RidgeCV 0.8103 0.9002 0.0780 0.3687

SVR 0.8104 0.9002 0.0967 0.3686

Huber 0.8346 0.9136 0.0486 0.3498

RandomForest 0.2207 0.4698 0.0282 0.8281

GradientBoosting 0.3791 0.6157 0.0490 0.7046

KNeighbors 0.4553 0.6748 0.0320 0.6453

VoStack 0.1998 0.4469 0.0197 0.8444

Model MSE RMSE MAE R²

RidgeCV 2.1297 1.4594 0.6651 0.4831

SVR 2.3001 1.5166 0.4846 0.4380

Huber 2.2312 1.4937 0.4739 0.4545

RandomForest 0.4083 0.6389 0.1650 0.9241

GradientBoosting 1.1596 1.0778 0.3870 0.7203

KNeighbors 0.5038 0.7091 0.1426 0.8996

VoStack 0.3297 0.5742 0.1501 0.9441

TABLE IX

MODEL PERFORMANCE METRICS FOR DATASET
HAZEL CAST 3.3

TABLE XIII
MODEL PERFORMANCE METRICS FOR DATASET JEDIT-3.2

Model MSE RMSE MAE R²

RidgeCV 47.2517 6.8740 3.4255 0.5584

SVR 58.6603 7.6590 1.8261 0.4518

Huber 51.0300 7.1435 2.0407 0.5231

RandomForest 12.2498 3.5000 0.6037 0.8855

GradientBoosting 38.9605 6.2418 2.1262 0.6359

KNeighbors 22.8702 4.7823 1.2789 0.7863

VoStack 11.8986 3.4494 0.6050 0.8888

Model MSE RMSE MAE R²

RidgeCV 26.1298 5.1117 1.2708 0.4569

SVR 29.8747 5.4689 1.6342 0.3534

Huber 26.3022 5.1295 1.2348 0.4523

RandomForest 9.1130 3.0188 0.6465 0.8031

GradientBoosting 13.8542 3.7208 0.9457 0.6897

KNeighbors 10.4473 3.2317 0.7384 0.7762

VoStack 7.6378 2.7637 0.5374 0.8314

312 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025

TABLE XIV
MODEL PERFORMANCE METRICS FOR DATASET JEDIT-4.2

than other models. RandomForest also showed reasonable

performance with an R² of 0.1526, while other models faced

significant difficulties, as evidenced by their low R² values.

Across all nine datasets, VoStack consistently shows superior

performance in terms of error metrics (MSE, RMSE, MAE) and

predictive accuracy (R²) compared to individual single learning

models. This confirms that VoStack ensemble approach

enhances performance in software defect density prediction.

RQ2: How Does VoStack Compare to Individual Voting and

Stacking Models in Performance?

To address research question 2 regarding the performance of

VoStack compared to individual Voting and Stacking models,

the analysis demonstrates that VoStack consistently

outperforms both approaches across various datasets. Table

XIV shows that VoStack achieves significantly lower Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and

Mean Absolute Error (MAE) compared to both Voting and

Stacking models. Additionally, VoStack demonstrates higher

R-squared (R²) values, indicating better predictive accuracy.

In the ANT 1.3 dataset, VoStack MSE is 50.80% lower than

voting and 33.46 % lower than Stacking. Its RMSE is 29.79 %

lower than voting and 18.40 % lower than Stacking. These

trends are consistent across other datasets as well, highlighting

VoStack effectiveness in reducing prediction errors. Table XV

shows the performance comparison of VoStack, Voting, and

Stacking models.

Figures 3 through 6 further illustrate these performance

improvements. Figure 3 displays the comparative MSE results,

Figure 4 shows the RMSE comparisons, Figure 5 highlights the

MAE differences, and Figure 6 presents the R² values for each

model. The visual representations confirm that VoStack

achieves superior accuracy and robustness, validating its

enhanced performance in software defect density prediction.

Fig. 3. MSE Comparison Across Datasets

TABLE XV
PERFORMANCE COMPARISON OF VOSTACK, VOTING

& STACKING MODELS

Metric Dataset Voting vs VoStack

(%)

Stacking vs VoStack

(%)

MSE ANT 1.3 50.80 33.46

BroadleafCommerce 48.62 19.82

NEON04J 62.96 19.11

HAZEL 54.46 1.51

ORY 77.77 71.52

Tomcat 58.60 33.64

titan-0.5.1 82.47 61.42

mapdb-0.9.6 61.84 94.06

Jedit 4.2 13.36 0.26

RMSE ANT 1.3 29.79 18.40

BroadleafCommerce 28.32 10.46

NEON04J 39.16 10.08

HAZEL 32.52 0.76

ORY 52.85 46.63

Tomcat 35.66 18.54

titan-0.5.1 58.13 37.89

mapdb-0.9.6 38.23 75.63

Jedit 4.2 6.92 0.13

MAE ANT 1.3 38.87 20.93

BroadleafCommerce 62.29 19.30

NEON04J 60.28 4.37

HAZEL 61.31 2.32

ORY 82.94 47.32

Tomcat 30.06 1.86

titan-0.5.1 73.29 31.36

mapdb-0.9.6 62.98 76.39

Jedit 4.2 11.65 2.23

R² ANT 1.3 75.66 26.63

BroadleafCommerce 5.80 1.45

NEON04J 48.87 4.71

HAZEL 75.33 0.50

ORY 38.47 21.97

Tomcat 59.38 19.48

titan-0.5.1 37.24 15.21

mapdb-0.9.6 17.14 1366.30

Jedit 4.2 70.56 0.81

Model MSE RMSE MAE R²

RidgeCV 86.4471 9.2977 1.4023 0.0304

SVR 88.3487 9.3994 1.1696 0.0091

Huber 89.0708 9.4377 1.1301 0.0010

RandomForest 75.5488 8.6919 1.0619 0.1526

GradientBoosting 77.6623 8.8126 1.1449 0.1289

KNeighbors 90.5228 9.5143 1.2961 0.0153

VoStack 72.9464 8.5409 0.9952 0.1818

 J. KAUR et al.: VOSTACKSDD: A NOVEL ENSEMBLE TECHNIQUE FOR SOFTWARE DEFECT DENSITY PREDICTION 313

Fig. 4. RMSE Comparison Across Datasets

Fig. 5. MAE Comparison Across Datasets

Fig. 6. R² Comparison Across Datasets

RQ3: Does the statistical analysis validate the results for

VoStack Regression’s defect density prediction?

The Wilcoxon Signed Rank Test is used in the statistical

analysis to confirm VoStack Regression's superior performance

in defect density prediction. VoStack continuously

outperformed baseline models (RidgeCV, SVR, Huber,

RandomForest, GradientBoosting, and KNeighbors) in terms of

MSE, RMSE, MAE, and R2 for all important metrics. VoStack

had the best fit to the data, as evidenced by the highest R2 and

the lowest MSE, RMSE, and MAE, which show less prediction

mistakes.

TABLE XVI

STATISTICAL COMPARISON OF MODEL PERFORMANCE

Metric Model p-value Conclusion

MSE RidgeCV 0.014 Reject H₀: Significant difference

MSE SVR 0.030 Reject H₀: Significant difference

MSE Huber 0.002 Reject H₀: Significant difference

MSE RandomForest 0.010 Reject H₀: Significant difference

MSE GradientBoosting 0.025 Reject H₀: Significant difference

MSE KNeighbors 0.045 Reject H₀: Significant difference

RMSE RidgeCV 0.012 Reject H₀: Significant difference

RMSE SVR 0.022 Reject H₀: Significant difference

RMSE Huber 0.001 Reject H₀: Significant difference

RMSE RandomForest 0.009 Reject H₀: Significant difference

RMSE GradientBoosting 0.020 Reject H₀: Significant difference

RMSE KNeighbors 0.041 Reject H₀: Significant difference

MAE RidgeCV 0.005 Reject H₀: Significant difference

MAE SVR 0.010 Reject H₀: Significant difference

MAE Huber 0.001 Reject H₀: Significant difference

MAE RandomForest 0.010 Reject H₀: Significant difference

MAE GradientBoosting 0.030 Reject H₀: Significant difference

MAE KNeighbors 0.045 Reject H₀: Significant difference

R² RidgeCV 0.015 Reject H₀: Significant difference

R² SVR 0.040 Reject H₀: Significant difference

R² Huber 0.010 Reject H₀: Significant difference

R² RandomForest 0.010 Reject H₀: Significant difference

R² GradientBoosting 0.030 Reject H₀: Significant difference

R² KNeighbors 0.043 Reject H₀: Significant difference

These performance differences are statistically significant, as

confirmed by the Wilcoxon test p-values, which were

considerably less than 0.05. As a result, the usefulness of

VoStack over the comparable models is validated by the study,

which shows that it offers more robust, accurate, and

dependable defect density forecasts. Table XVI presents the

statistical comparison of model performance based on the

Wilcoxon test.

In this study, we also identify key factors that could threaten

the validity of our findings, categorized into internal and

external validity. Internal validity refers to potential biases

within the study, such as when a model performs well on the

training data but fails to generalize effectively to unseen

314 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025

datasets. Bias in feature selection and issues with data quality,

including noisy or incomplete data, can also affect performance.

Furthermore, inconsistent tuning of hyperparameters might

result in variability in the model's outcomes. External validity

addresses the extent to which our findings can be generalized.

The datasets utilized may not accurately represent other

software systems, and the model’s performance could differ

across various computational settings. Finally, the relevance of

the results may be constrained to the software domain, limiting

their applicability in other areas.

V. CONCLUSION AND FUTURE WORK

This paper introduces a novel ensemble learning model,

VoStack, for the prediction of defect density. The model was

implemented using benchmark datasets from the Tera-

PROMISE and GitHub bug prediction repository and

demonstrated its ability to achieve competitive performance

consistently. VoStack combines the strengths of the multiple

regression classifiers Random Forest Regressor, SVR, XGB

Regressor, Huber Regressor, and KNeighbors into a robust

ensemble approach. Integrating Recursive Feature Elimination

(RFE) for feature selection further bolstered the model's

predictive power by ensuring that only the most relevant

features were utilized. This step improved prediction accuracy

while also reducing computational complexity, enhancing the

model's overall efficiency. The VoStack model outperformed

individual base models, showing significant improvements in

RMSE, MSE, MAE, and R² metrics across multiple datasets,

indicating its robustness and reliability for defect density

prediction. Future work will explore the integration of

additional machine learning techniques and datasets, as well as

real-world applications, to further validate and enhance the

model's performance and applicability.

REFERENCES

[1] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, “Software

Defect Prediction Analysis Using Machine Learning Techniques,”

Sustainability, vol. 15, no. 6, p. 5517, Mar. 2023, doi:
https://doi.org/10.3390/su15065517.

[2] R. R. Althar, D. Samanta, D. Konar, and S. Bhattacharyya, Software Source
Code: Statistical Modeling. Berlin, Germany: Walter de Gruyter GmbH &

Co. KG, Jul. 2021.

[3] A. Boloori, A. Zamanifar, and A. Farhadi, “Enhancing software defect
prediction models using metaheuristics with a learning to rank approach,”

Discover Data, vol. 2, no. 1, Nov. 2024, doi:

https://doi.org/10.1007/s44248-024-00016-0.
[4] A. Alazba and H. Aljamaan, “Software Defect Prediction Using Stacking

Generalization of Optimized Tree-Based Ensembles,” Applied Sciences,

vol. 12, no. 9, p. 4577, Apr. 2022, doi:
https://doi.org/10.3390/app12094577.

[5] G. Boetticher, “The PROMISE Repository of Empirical Software

Engineering Data,” Jan. 2007.

[6] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public

unified bug dataset for java and its assessment regarding metrics and bug

prediction,” Software Quality Journal, vol. 28, no. 4, pp. 1447–1506, Jun.
2020, doi: https://doi.org/10.1007/s11219-020-09515-0.

[7] Z. Tian, J. Xiang, S. Zhenxiao, Y. Zhang, and Y. Yan, "Software defect

prediction based on machine learning algorithms," in Proc. 2019 IEEE 5th
Int. Conf. Comput. Commun. (ICCC), Chengdu, China, Dec. 2019, pp.

520–525, doi: 10.1109/ICCC47050.2019.9064412.

[8] R. G. Hussain, K.-C. Yow, and M. Gori, “Leveraging an Enhanced
CodeBERT-Based Model for Multiclass Software Defect Prediction via

Defect Classification,” IEEE Access, pp. 1–1, Jan. 2025, doi:
https://doi.org/10.1109/access.2024.3525069.

[9] Z. Yang, L. Lu, and Q. Zou, “Ensemble Kernel-Mapping-Based Ranking

Support Vector Machine for Software Defect Prediction,” IEEE
Transactions on Reliability, vol. 73, no. 1, pp. 664–679, May 2023, doi:

https://doi.org/10.1109/tr.2023.3272651.

[10] X. Dong, J. Wang, and Y. Liang, “A Novel Ensemble Classifier Selection
Method for Software Defect Prediction,” IEEE Access, pp. 1–1, Jan. 2025,

doi: https://doi.org/10.1109/access.2025.3537658.

[11] S. R. Goyal, “Current Trends in Class Imbalance Learning for Software
Defect Prediction,” IEEE Access, pp. 1–1, Jan. 2025, doi:

https://doi.org/10.1109/access.2025.3532250.

[12] M. Mustaqeem, M. Alam, S. Mustajab, F. Alshanketi, S. Alam, and M.
Shuaib, “Comprehensive Bibliographic Survey and Forward-Looking

Recommendations for Software Defect Prediction: Datasets, Validation

Methodologies, Prediction Approaches, and Tools,” IEEE Access, vol. 13,
pp. 866–903, 2025, doi: https://doi.org/10.1109/access.2024.3517419.

[13] P. Y. P. Chan and J. Keung, “Validating Unsupervised Machine Learning

Techniques for Software Defect Prediction With Generic Metamorphic
Testing,” IEEE Access, vol. 12, pp. 165155–165172, 2024, doi:

https://doi.org/10.1109/access.2024.3494044.

[14] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” International Conference on Software Engineering,

May 2005, doi: https://doi.org/10.1145/1062455.1062514.

[15] C. Rahmani and Deepak Khazanchi, “A Study on Defect Density of Open
Source Software,” pp. 679–683, Aug. 2010, doi:

https://doi.org/10.1109/icis.2010.11.

[16] D. K. Verma and S. Kumar, “Prediction of Defect Density for Open Source
Software using Repository Metrics.,” Journal of Web Engineering, vol. 16,

pp. 293–310, Jun. 2017.

[17] N. Mandhan, D. K. Verma, and S. Kumar, “Analysis of approach for
predicting software defect density using static metrics,” May 2015, doi:

https://doi.org/10.1109/ccaa.2015.7148499.

[18] A. Marchenko and P. Abrahamsson, “Predicting Software Defect Density:
A Case Study on Automated Static Code Analysis,” Agile Processes in

Software Engineering and Extreme Programming, pp. 137–140, Jul. 2007,

doi: https://doi.org/10.1007/978-3-540-73101-6_18.
[19] D. Verma and S. Kumar, “An Improved Approach for Reduction of Defect

Density Using Optimal Module Sizes,” Advances in Software Engineering,
vol. 2014, pp. 1–7, 2014, doi: https://doi.org/10.1155/2014/803530.

[20] Z. Li, P. Liang, and B. Li, “Relating Alternate Modifications to Defect

Density in Software Development,” pp. 308–310, May 2017, doi:
https://doi.org/10.1109/icse-c.2017.132.

[21] M. Parastoo, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical study

of software reuse vs. defect-density and stability,” pp. 282–292, May 2004,
doi: https://doi.org/10.5555/998675.999433.

[22] M. Sherriff, N. Nagappan, L. Williams, and M. Vouk, “Early estimation of

defect density using an in-process Haskell metrics model,” ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 4, pp. 1–6, May 2005, doi:

https://doi.org/10.1145/1082983.1083285.

[23] O. Kutlubay, B. Turhan, and A.B. Bener, “A Two-Step Model for Defect
Density Estimation,” Aug. 2007, doi:

https://doi.org/10.1109/euromicro.2007.13.

[24] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities in
source code files with decision tree learners,” Mining Software

Repositories, May 2006, doi: https://doi.org/10.1145/1137983.1138012.

[25] Y. Villuendas-Rey, A. Bou Nassif, A. Bou-Nassif, and S. Banitaan,
“Upsilon-SVR Polynomial Kernel for Predicting the Defect Density in

New Software Projects,” International Conference on Machine Learning

and Applications, Dec. 2018, doi:
https://doi.org/10.1109/icmla.2018.00224.

[26] C. López-Martín, Y. Villuendas-Rey, M. Azzeh, A. Bou Nassif, and S.

Banitaan, “Transformed k-nearest neighborhood output distance
minimization for predicting the defect density of software projects,”

Journal of Systems and Software, vol. 167, p. 110592, Sep. 2020, doi:

https://doi.org/10.1016/j.jss.2020.110592.
[27] S. Rathaur, N. Kamath, and U. Ghanekar, “Software Defect Density

Prediction based on Multiple Linear Regression,” 2020 Second

International Conference on Inventive Research in Computing
Applications (ICIRCA), Jul. 2020, doi:

https://doi.org/10.1109/icirca48905.2020.9183110.

[28] F. Alghanim, M. Azzeh, A. El-Hassan, and H. Qattous, “Software Defect
Density Prediction Using Deep Learning,” IEEE Access, vol. 10, pp.

114629–114641, 2022, doi: https://doi.org/10.1109/access.2022.3217480.

 J. KAUR et al.: VOSTACKSDD: A NOVEL ENSEMBLE TECHNIQUE FOR SOFTWARE DEFECT DENSITY PREDICTION 315

https://doi.org/10.3390/su15065517
https://doi.org/10.1007/s44248-024-00016-0
https://doi.org/10.3390/app12094577
https://doi.org/10.1007/s11219-020-09515-0
https://doi.org/10.1109/access.2024.3525069
https://doi.org/10.1109/tr.2023.3272651
https://doi.org/10.1109/access.2025.3537658
https://doi.org/10.1109/access.2025.3532250
https://doi.org/10.1109/access.2024.3517419
https://doi.org/10.1109/access.2024.3494044
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1109/icis.2010.11
https://doi.org/10.1109/ccaa.2015.7148499
https://doi.org/10.1007/978-3-540-73101-6_18
https://doi.org/10.1155/2014/803530
https://doi.org/10.1109/icse-c.2017.132
https://doi.org/10.5555/998675.999433
https://doi.org/10.1145/1082983.1083285
https://doi.org/10.1109/euromicro.2007.13
https://doi.org/10.1145/1137983.1138012
https://doi.org/10.1109/icmla.2018.00224
https://doi.org/10.1016/j.jss.2020.110592
https://doi.org/10.1109/icirca48905.2020.9183110
https://doi.org/10.1109/access.2022.3217480

[29] V. Kumar, A. Sharma, and R. Kumar, “Applying Soft Computing
Approaches to Predict Defect Density in Software Product Releases: An

Empirical Study,” Computing and Informatics / Computers and Artificial

Intelligence, vol. 32, no. 1, pp. 203–224, Mar. 2013.
[30] H. B. Yadav and D. K. Yadav, “A fuzzy logic based approach for phase-

wise software defects prediction using software metrics,” Information and

Software Technology, vol. 63, pp. 44–57, Jul. 2015, doi:
https://doi.org/10.1016/j.infsof.2015.03.001.

[31] S. K. Khalsa, “A Fuzzified Approach for the Prediction of Fault Proneness

and Defect Density,” Jan. 2009.
[32] [M. Azzeh, Y. Alqasrawi, and Y. Elsheikh, “A soft computing approach

for software defect density prediction,” Journal of Software: Evolution and

Process, Mar. 2023, doi: https://doi.org/10.1002/smr.2553.

Jasmeet Kaur did her B.Tech in Information

Technology from Guru Tegh Bahadur Institute of

Technology, India and her M.Tech in Information
Technology from University School of Information

and Communication Technology (USICT), Guru

Gobind Singh Indraprastha University (GGSIPU),
India. Now she is working towards her Ph.D. in

Information Technology at USICT, GGSIPU. The

area of her doctoral research is focused on Machine
Learning based techniques for defect prediction

Arvinder Kaur is a Professor at the University

School of Information, Communication, and

Technology (USICT) and Dean of the University

School of Automation & Robotics (USAR) at Guru

Gobind Singh Indraprastha University (GGSIPU),
Delhi. She holds a Ph.D. from GGSIPU, an M.E. in

Computer Engineering, and a B.E. in Electrical

Engineering from Thapar Institute of Engineering
and Technology, Patiala. She has served as the Dean

of USICT and is the Chairperson of the Staff

Development Cell at GGSIPU. Her research
interests include software engineering, artificial intelligence, and computer

networks. Arvinder Kaur is also a lifetime member of ISTE and CSI.

Kamaldeep Kaur works as an Associate Professor
at the University School of Information,

Communication and Technology at Guru Gobind

Singh Indraprastha University located in Delhi,

India. In 2016, she graduated with her doctorate

from Guru Gobind Singh Indraprastha University.

Her research works focus on Neural Networks,
Natural Language Processing and Software

Engineering. She is a lifetime member of Indian

Society of Technical Education. A number of her
research papers have been published in journals

listed in Web of Science and presented at IEEE conferences. She is the

chairperson of IEEE Women in Engineering Chapter at University School of
Information and Communication Technology, Guru Gobind Singh Indraprastha

University.

316 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 3, SEPTEMBER 2025

https://doi.org/10.1016/j.infsof.2015.03.001

