
Abstract—The exponential growth of connected devices 

in modern communication networks drives an increasing 

demand for higher data rates and ultra-low latency. This 

study addresses the challenge of maintaining reliable 

performance, especially at the network edges where signal 

degradation is most severe. Carrier Aggregation (CA) 

emerges as a key enabler to enhance network capacity and 

efficiency in fifth-generation (5G) systems. Utilizing the 

SIMU5G simulation framework, this research evaluates the 

impact of CA on critical performance metrics. The results 

demonstrate significant improvements, including increased 

throughput, enhanced Signal-to-Interference-plus-Noise 

Ratio (SINR), reduced latency, optimized Channel Quality 

Index (CQI), and improved efficiency of the Hybrid 

Automatic Repeat Request (HARQ) mechanism. These 

findings highlight the pivotal role of CA in overcoming 

network limitations and optimizing 5G performance, 

offering practical insights for real-world deployments and 

future network enhancements. 

Index Terms—Carrier Aggregation, 5G, SIMU5G, Signal-to-

interference-plus-noise ratio, HARQ, CQI. 

I. INTRODUCTION

HE increasing reliance on wireless communication

technologies has led to a substantial rise in the number of 

devices connected to modern networks. This growth places 

significant demands on communication systems to not only 

expand their capacity but also ensure secure and efficient 

services to users [1]. Over time, communication networks have 

evolved from providing basic voice services to offering diverse 

and advanced solutions, such as real-time video streaming, 

healthcare applications, and the Internet of Things (IoT), which 

enables seamless integration of devices and systems into a 

unified network [2-4]. 
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Fifth-generation (5G) communication technologies have 

marked a major breakthrough in addressing these challenges by 

delivering high-speed connectivity, reduced latency, and 

improved network capacity. This new generation of 

communication supports a wide range of advanced applications 

that drive technological and economic development. Key 

technologies, including carrier aggregation (CA), millimeter 

waves, massive MIMO, and non-orthogonal multiple access 

(NOMA), play an essential role in achieving these performance 

improvements [2-6]. 

To standardize 5G deployment, the Third Generation 

Partnership Project (3GPP) has defined two key configurations 

for integrating the New Radio (NR) with the 5G Core Network 

(5GC). The Standalone (SA) mode operates independently, 

allowing NR to function as a self-sufficient network. In 

contrast, the Non-Standalone (NSA) mode combines NR and 

LTE technologies to enhance network performance and 

flexibility. Each configuration has its specific advantages and is 

adopted based on user requirements and operational scenarios. 

Figure 1 illustrates the primary implementation options for 

these configurations [7-9]. 

Fig .1. 4G and 5G implementation options. 

There are numerous key features supported by the fifth 

generation (5G), including improved energy efficiency, 

reduced access times, and enhanced productivity. Carrier 
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aggregation (CA) has emerged as a crucial technology in 5G, 

addressing these challenges by combining multiple spectrum 

bands. This integration has proven to significantly boost 

network capacity and efficiency, contributing to the overall 

performance improvements in 5G networks [10]. 

The main contributions of this manuscript can be 

summarized as follows: 

1. Comprehensive modelling and simulation using SIMU5G

to evaluate carrier aggregation (CA) technology and

improve overall network performance (throughput, SINR,

CQI).

2. Address user challenges at network edges by enhancing

user performance, reducing latency, and improving call

quality.

3. Analyze the impact of CA on different applications (VOIP,

CBR, Burst applications).

In this study, we compare network performance with and 

without the application of Carrier Aggregation (CA), analyzing 

its effects through various metrics across three diverse 

applications. The paper is organized as follows: Section II 

reviews related works in the field. Section III provides an 

overview of the core technologies in 5G. Section IV outlines 

several key applications utilized in 5G. Section V develops a 

CA model for 5G. Section VI presents and discusses the results. 

Section VII concludes with the most significant findings of this 

study. 

II. RELATED WORK

A low-complexity traffic partitioning algorithm, utilizing the 

fuzzy relative integral derivative control method, was proposed 

for a network configuration. This network includes a single user 

connected to a new 5G radio base station (Next Generation 

NodeB - 5G Base Station (gNB)) and a secondary gNB station. 

Communication between the two stations occurs via X2. 

Following network parameter adjustments and enabling the 

network to operate with non-adjacent carrier aggregation (CA) 

technology across different bands, including sub-6 GHz and 

millimeter wave bands, the proposed algorithm used temporary 

stored information to manage local communications across 

these bands and minimize repeated feedback from the user. The 

algorithm achieved over 90% of the required resource 

utilization rate in various user transmissions, reflecting a 10% 

improvement compared to baseline results [11]. 

Additionally, monitoring was conducted in an industrial area 

in Karawang, where CA technology was utilized in an out-of-

plane scenario with line of sight, monitoring multiple 

parameters. A significant increase in data rate was observed 

while maintaining wide coverage [12]. 

In this context, each user (UE) is assigned a primary cell 

(PCell) and multiple secondary cells (SCell). The primary cell 

remains active continuously, while secondary cells are activated 

or deactivated based on specific plans to select common 

component carriers and allocate resource blocks. This strategy 

aims to enhance user productivity, minimize energy 

consumption, and meet quality of service (QoS) requirements. 

The proposed plan has demonstrated superiority over 

comparable technologies [13]. 

Moreover, a comprehensive study identified key factors 

affecting the deployment of CA in 5G networks and analyzed 

the performance and impact on quality of experience (QoE) 

using the Prism5G deep learning framework [14]. 

The technology was applied in a Massive MIMO network 

with several cells and carrier waves, using alternating 

maximization algorithms to address two issues: balancing price 

trade-offs to solve energy consumption problems and 

increasing energy efficiency. The network demonstrated its 

effectiveness in improving energy efficiency (EE), fairness, and 

reducing energy consumption [15]. 

Overall, the study concluded that CA technology is not 

merely a method for increasing data rate and capacity through 

spectrum width expansion. Instead, it serves as a diversity 

technology to enhance mobile communication system 

performance. By dividing existing spectrum into sub-blocks, 

each treated as a component carrier, the data rate can be 

increased without additional spectrum, achieving high spectral 

efficiency through proposed mathematical models and 

analytical expressions that describe the technology's 

performance, considering ergodic and secrecy capacities [4]. 

III. CARRIER AGGREGATION (CA) IN 5G

Carrier Aggregation (CA) was first introduced in LTE-10 as 

one of the most important technologies that support high data 

rates. In this technology, unused spectrum is added to the basic 

carrier wave to benefit from it in increasing bandwidth and 

improving the overall performance of the network. Each carrier 

wave from the group of aggregated waves is called a component 

carrier (CC) and the group of aggregated waves is called Radio 

Frequency (RF). The user using the technology can aggregate 

up to 5 carrier waves for each carrier wave with a frequency 

range of up to 20 MHz, thus the frequency range becomes 100 

MHz for LTE [16-17]. As for the 5G the capabilities of this 

technology have been expanded and the carrier waves CCs can 

operate at different frequencies and use more than 16 carriers 

and a bandwidth of up to 400 MHz [18]. In OFDM systems, 

windowing design is used to mitigate Inter-Carrier Interference 

(ICI) and Out-of-Band Emissions (OOBE), which are critical 

factors affecting Carrier Aggregation performance. The 

windowing technique addresses these issues by applying a 

smooth function to the time-domain signal to reduce sharp 

edges. Windowing reduces inter-carrier interference, leading to 

lower error rates [19]. Windowing enhances the signal-to-

interference-plus-noise ratio, improving signal quality [20]. 

This allows more efficient carrier aggregation without causing 

harm to adjacent users [21]. 

The base station and user devices operate in different 

spectrum ranges in 5G. This depends on several factors, 

including the applications used in the network, the transmission 

range, and others. Table I below shows the spectrum divisions 

[22].  
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TABLE I 

5G CHANNEL FREQUENCY 

FREQUENCY RANGE SPECTRUM 

FR1 410 MHz -7125 MHz 

FR2 24250 MHz – 52600 MHz 
 

A. Implement Carrier Aggregation (CA) 

There are three ways to implement carrier aggregation 

technology [23-24]: 

 

A.1 Intra-band contiguous CA scheme: Includes the 

combination of the frequency of adjacent carriers that are 

adjacent to each other and belong to the same band as shown in 

Figure 2. 

 

 

 

 

 

 

 
Fig. 2. Intra-band contiguous CA scheme. 

 

A.2 Intra-band non-contiguous CA scheme: In which the 

frequency carriers belong to the same band are combined but 

are not adjacent and have a gap between them as shown in 

Figure 3. 

 

 

 

 

 

 

 
Fig. 3. Intra-band non-contiguous CA scheme. 

 

A.3 Inter-band non-contiguous CA scheme: Refers to the 

collection of frequency carriers belonging to different 

frequency bands and distributed in a non-adjacent manner as 

shown in Figure 4. 

 

 

 

 

 

 

 
Fig. 4. Inter-band non-contiguous CA scheme. 

IV. APPLICATIONS AND TECHNOLOGIES SUPPORTED BY 5G 
 

5G supports many applications, including the following. 

VOIP: Voice over Internet Protocol is one of the most 

important applications in fifth generation communication 

networks and provides many benefits to users. It enables the 

user to request a phone number and contact another party with 

a smartphone supporting the VOIP application. The connection 

is made by transferring data on IP packets via the data 

connection in the phone [25-26].  

Burst: In 5G, this term refers to the user receiving a large 

batch of data at high speed within a short period and continuing 

to receive data in batches. This technology is used with 

applications that do not require a continuous flow of data and 

require high speeds, such as online games and high-resolution 

videos. For example, we have a high-quality video clip 

consisting of 60 frames per second, and each frame can be sent 

and processed within a period of 16.67 milliseconds. This is 

considered a continuous batch of data, and these batches 

continue to be sent until the video clip is complete. The user can 

be in a power-saving mode, and this was one of the solutions to 

address the problem of dealing with a limited battery. 5G can 

know the end of the transmission via the user's control level 

signals and inform him to enter power-saving mode 

immediately without affecting the data. The image below 

represents BURST, where the batch contains different groups 

of data called PDU Sets as shown in Figure 5 [27-28]. 

Constant bit rate (CBR): is a type of data transmission in 

networks in which all data is sent at a constant and continuous 

bit rate during a unit of time, where all units of time carry the 

same number of bits. It is used in applications that require data 

to be transmitted in a guaranteed and continuous manner, such 

as video transmission [29]. 
 

Fig. 5. PDU sets and data burst example. 

V. MODELLING AND SIMULATION 
 

There are several software tools available for simulating 5G 

networks. In this research, we utilized the Simu5G model 

library, which is based on the OMNeT++ simulator, to simulate 

a 5G network. OMNeT++ is renowned for its framework 

designed for discrete event simulation, allowing for the 

modeling of various network types, such as optical, wired, and 

wireless networks. This is achieved by programming 

communication layers and employing modules that range from 

simple to complex, interconnected by gateways and capable of 

exchanging messages. Users can create protocol layers, connect 

them, and develop intricate models. Furthermore, numerous 

other features can be leveraged during the design and 

implementation phases [30].  

As for the Simu5G framework, it simulates the 5G New 

Radio RAN and CN data level. The most important elements in 

its library are the complex units gNodeB and NrUe, which 

represent the UE and gNB, including NR capabilities, and their 

internal structure is shown in Figure 6. 

 All nodes can be located and defined in a three-dimensional 
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Cartesian plane, which allows the distances between them to be 

calculated. The UE includes all protocol layers from the 

application layer to the physical layer and TCP/UDP vectors 

and IP protocols. Its functions are implemented in a network 

interface card called NrNicUe [31]-[33]. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6. High-level architecture of Simu5G's main modules. 
 

A. System Model 
 

The proposed model is based on a simulation of a 5G network 

to study the impact of carrier aggregation (CA) technology on 

three different 5G applications (VOIP, BURST, CBR) and its 

impact on user throughput, spectral efficiency, and other 

indicators. In addition, it compares the results before and after 

using the technology through a communications network 

consisting of one gNB and 6 users randomly distributed over an 

area of 1000 * 1000 connected to the gNB in the downlink 

transmission. Also, it compares the results after operating the 

network without adding the carrier aggregation technology and 

after adding it, noting that the number of carriers is 4 and the 

technology is type 2. Intra-band non-contiguous.  

 

B. Model Assumptions 
 

The proposed model is based on a set of assumptions, 

including the use of a Stand-Alone (SA) network type and 

homogeneous networks. The network dimensions are defined 

as 1000×1000 meters to cover a specific area. It consists of one 

gNB (Next Generation NodeB) and four background cells 

(bgCell) to support communication. Additionally, six users are 

distributed within the network to simulate system performance 

and analyze the impact of carrier aggregation on various 

performance metrics. 

C. Simulation Parameter 
 

The simulation parameters of the network architecture 

adopted to describe this model are listed in Table II. 

 

Figure 7 shows the network structure on which the study was 

conducted using SIMU5G, showing the location of the base 

station and users in addition to the locations of the bgCell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. The network structure using SIMU5G 
 

VI. RESULTS AND DISCUSSION 
 

The simulation results are divided into two categories. The 

first category contains simulation results without using carrier 

aggregation technology and relying on a single primary carrier. 

Three different applications in the network are used to study the 

network efficiency and its impact on users. 

The second category includes simulation results after 

applying the mentioned technology to the network (using four 

carriers) and using the same three applications to study the 

extent of the impact of this technology on the network through 

a set of results including (Delay, Received Pcket, SINR, 

Average Channel Quality Indicator (CQI) DL, Automatic 

Repeat Request (HARQ) Error Rate). 

The results appeared as follows: 

A. Frame Delay (mean)  

It represents the time taken to process and transmit one data 

frame from the base station to the user. It includes the delay in 

sending and receiving, as well as the delay in the channel due 

to various conditions. Figures 8, and 9 show average users 

frame delay using CBR, VOIP applications without and with 

CA technique, respectively. The burst packet delay (mean) 

describes the time delay experienced by a packet as it travels 

from the sender to the recipient. It encompasses various types 

of delays, including those associated with transmission, 

propagation, and transport, among others. 

TABLE II 
SIMULATION PARAMETER 

PARAMETER VALUE 

gNB-tx-power 43dBm 

app CBR , VOIP ,  BURST 

Number of CC’s 4 
Carrier-Frequency (800MHz, 1.8 GHz, 2.3GHz, 3.5GHz) 

Channel-delay 5e-08 s 

SINR6 -1.9103 dB 
Fading_type JAKE 

Propagation-Model Free Space Model 

Path-loss 2 
ue_height 1.5 m 

gNB-height 25 m 
Building_height 20 m 

User Status Constant 
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Fig. 8. Average users frame delay using CBR, VOIP applications 

without CA technique. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 9. Average users frame delay using CBR, VOIP applications 

with CA technique. 

 

In Figures 8, 9, and 10, the broadcast was received by users 

at close and medium distances from the gNB, while the far users 

(Us0, Us1) could not receive it because the signal is exposed to 

different conditions in the channel during propagation, such as 

interference, diffraction, and refraction. As a result, the signal 

fades before reaching the user due to the long distances. When 

CA technology is applied, we notice that the reception delay is 

reduced for all users. Also, the users far from the base station 

started receiving the broadcast from it and showed the delay, 

despite its high value and improvement rate when using carrier 

aggregation technology for each user, as shown in Figures 8, 

and 9 for CBR and VOIP applications and Figure 10 for Burst 

application and the overall improvement rate for each 

application is as follows CBR (81.6%), VOIP (83.5%) and 

Burst (80.2%). 
 

B. Received Packet  
 

It is the packet that arrives or is received by the final receiver 

in the communication network after it is sent from the source 

and passes through the transmission channel. Figures 11 and 12 

represent users received packet using CBR, VOIP, and burst 

applications without and with CA technique. 

 
Fig. 10:  Average users frame delay using Burst application without 

& with CA technique. 

 

 

Fig. 11. Received packet using three applications without CA 

technique. 

 

Fig. 12. Users received packet using three applications with CA 

technique. 
 

In Figures 11 and 12, there was an improvement for all users 

after using the carrier aggregation technique, and its effect was 

clear for all users, especially those located at the edge of the cell 

(Us0, Us1). The results of the improvement percentage for each 

application were arranged as follows: CBR (75.1%), VOIP 

(63.1%), Burst (54.9%). 
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C. MAC throughput DL  

 

It is the actual rate of data transfer over the downlink through 

the Medium Access Control (MAC) layer responsible for 

determining how resources are allocated to users connected to 

the network. For six users, MAC throughput DL using CBR, 

VOIP, burst applications without and with CA technique is 

shown in Figure 13 and 14, respectively.  
 

Fig. 13. MAC Throughput DL users using the same applications 

without CA technology. 

 

Fig. 14. MAC Throughput DL users using the same applications with 

CA technology. 

 

Figures 13 and 14 illustrate the data transfer rate across the 

MAC layer in the downward direction. The impact of CA 

technology is clearly visible, as it significantly increases the 

amount of data transferred through the MAC layer from the 

gNB to the user in the CBR application. The improvement rate 

reached 63.8%, which is the highest improvement rate 

compared to other applications, with VOIP at 33.3% and burst 

at 7.8%. However, it appears that some users experienced a 

negative impact on their throughput rate in the MAC layer due 

to CA technology. 

 

D. Received SINR DL 
 

This term refers to the ratio of the received signal strength to 

the interference and noise in the downstream direction of the 

5G network. It serves as a measure of the signal quality received 

by the final receiver. A higher ratio indicates better signal 

quality. It is simply clear by comparing Figures 15, and 16 that 

Received SINR improves after using CA technique for all 

applications. 
 

Fig. 15. Users Received SINR without CA technique. 

 

Fig. 16. Users Received SINR with CA technique. 

 

Significant improvement in SINR is noted for most users, 

with the improvement percentage for each application being 

CBR (59.3%), VOIP (73.7%), and Burst (65.7%). This has 

improved the network capacity and stability of these 

applications, compared to the previous performance. 

 

E. Average CQI DL  
 

In 5G communications, this term refers to the arithmetic 

mean of the Channel Quality Index (CQI) in the downward 

direction over a specific period of time. The user's device 

measures the CQI and sends reports to the gNB to indicate the 

connection quality over the channel connecting them. The CQI 

value varies depending on the user's distance from the base 

station before using CA technology, as shown in Figure 17. For 

most users, it improves after implementing this technology, as 

illustrated in Figure 18 for all applications. 

As for the signal quality measure in the channel (CQI) shown 

in Figures 17, and 18. it is clear that it is low without using CA 

technology. The implementation of this technology resulted in 

an increased connection quality and improved CQI 

measurements for all users, regardless of their distance from the 

gNB and across all applications. The improvement ratios were 

CBR (62.7%), VOIP (59.2%), and Burst (56.1%), thus 
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enhancing the reliability of the connection. 

 
Fig. 17. Average CQI using CBR, VOIP, Burst applications without 

CA technique. 

Fig. 18. Average CQI using CBR, VOIP, Burst applications with CA 

technique. 

 

F.  HARQ Error Rate (mean)  
 

This term refers to a mechanism that consists of two 

technologies: Automatic Repeat Request (ARQ) and coding 

technology. This mechanism is used to enhance the reliability 

of data transmission in fifth-generation networks. When a 

packet received by the gNB or the user contains errors due to 

interference and noise, the user's device requests a 

retransmission. The retransmitted packet may include 

additional information to increase the likelihood of successful 

reception. Figure 19 shows HARQ before adding the 

technology and after adding it is shown in Figure 20 for all users 

and the three applications. 

In Figures 19 and 20, we observe that CA technology has 

significantly and distinctly improved the system performance 

compared to its previous performance in Figure 19. It has 

reduced connection problems and the need for automatic data 

retransmissions. Consequently, the user will not have to request 

retransmissions from the gNB. Although user user0 

encountered errors, they were not receiving data initially in the  
 

 

 

 

 

 

Fig.19. HARQ error rate without CA for three application users. 

 

 

absence of the technology. When they began receiving data, 

errors appeared, and the improvement percentage for each user 

is shown in Figure 20. 
 

 

Fig. 20. HARQ error rate with CA for three application users. 

 

G. Received throughput (Mbit/s) 

 

This measure indicates the speed at which data is actually 

received by the user from the network. It is influenced by 

several factors, including network load, interference, and noise, 

among others. This metric differs from the MAC Throughput 

DL statistic, which is specific to the MAC layer. In the SIMU5G 

framework, there is no such statistic available for the Burst 

application. However, we obtained throughput data for the CBR 

and VOIP applications, and the results were as shown in two 

Figures 21 and 22. 
 

Throughput demonstrated a significant improvement for all 

users when CA technology was implemented in the network. 

However, user 3 in the CBR application and user 2 in the VOIP 

application experienced a negative impact, as previously 

illustrated. The overall improvement rate for the CBR 

application was 54.5%, while the VOIP application saw an 

improvement rate of 51.8%. 
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Fig. 21. Users mean received throughput using CBR application 

without & with CA technique. 
 

 

Fig. 22. Users mean received throughput using VOIP application 

without & with CA technique. 
 

Table III provides a comprehensive analysis of various 

contents and characteristics related to wireless communication 

systems. We begin by detailing the main contents, ranging from 

[6] to [24], including the current work. Then, we move on to the 

number of CC’s (Carrier Components), showing the 

distribution of different standards. 

Next, we review deployment environments, starting from 

single-user to multi-user, and illustrate the different options for 

network configurations, whether SA (Standalone) or NSA 

(Non-Standalone). We also explore communication paths, 

focusing on both LOS (Line of Sight) and NLOS (Non-Line of 

Sight) paths, and the operating environments, whether indoor or 

outdoor. 

Finally, we provide an overview of performance measures, 

such as SNR (Signal-to-Noise Ratio) and SINR (Signal-to-

Interference-plus-Noise Ratio), and how they affect 

communication quality. This table aims to offer a precise and 

comprehensive understanding of these aspects to help us 

evaluate and improve the current system. 

It is worth noting that applying the Kaiser window improves 

the OOBE by 20% more than the Hahn window [21]. 
 

VII. CONCLUSION  

 

Carrier aggregation (CA) technology plays a pivotal role in 

improving network performance, especially in urban 

environments with heavy traffic. The results of this study, 

derived from simulations of a 5G standalone network (SA) with 

and without CA across three different downlink applications, 

demonstrate the significant benefits of this technology. CA 

significantly improved overall network efficiency, improving 

connection quality for all users. Specifically, the average frame 

delay decreased for most users, while those with favorable 

channel conditions experienced little impact from the 

introduction of CA as shown in Figures 9, 10 above. The 

number of received packets increased across all user groups by 

(64.3%) as an average increase for all applications. Several key 

performance metrics, including DL MAC throughput, SINR, 

and average DL CQI, showed significant improvements of 

(34.9%), (66.3%), and (59.3%), respectively, as an average 

increase for all applications. In addition, the retransmission 

error rate decreased for most users after implementing CA, and 

the improvement rates appeared as we explained previously. As 

for throughput, users showed a clear improvement in it with an 

overall rate of (53.1%), except for User 3 and User 2, who were 

negatively affected by the technology and affected the overall 

rate. Among the applications tested, VOIP and CBR 

applications benefited the most from CA, followed by Burst 

applications, which witnessed more significant performance 

improvements due to irregular data flow, which is characterized 

by sudden spikes and drops at specific periods. In the future, we 

will discuss the impact of speed on users and network 

performance and how the negative effects can be improved. In 

addition to increasing the number of carriers to 13 carriers, a 

study of the effect of Doppler on these carriers. 
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