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Abstract—In this paper, we present a comparative analy-
sis of Synthetic Minority Oversampling TEchnique (SMOTE)
and Random OverSampling Examples (ROSE) oversampling
techniques for K Nearest Neigbhors KNN-based autonomous
vehicle behavior modeling. We address the challenges posed by
imbalanced and mixed datasets in the context of autonomous
vehicle testing, where the majority of test outcomes are classified
as ”OK” (safe) and fewer as ”KO” (unsafe). We propose an
enhanced approach that extends our previous work by incorpo-
rating ROSE as an alternative to SMOTE for generating synthetic
samples. We integrate these resampling techniques with Leave-
One-Out Cross-Validation (LOO-CV), applying resampling at
each iteration to ensure data balancing is tailored to each
training set. Additionally, we investigate the impact of different
encoding strategies for categorical variables, including OneHot,
binary encoding, and Factor Analysis of Mixed Data (FAMD).
Our research aims to develop a robust classification model
capable of accurately predicting autonomous vehicle behavior
while effectively managing class imbalance and mixed data types,
despite the limited availability of data due to costly and time-
consuming testing procedures.

Index Terms—IA, Autonomous Vehicles, SMOTE, ROSE.

I. INTRODUCTION

THe integration of Artificial Intelligence (AI) in various
domains, including smart cities, is prominently reflected

in vehicles equipped with Advanced Driver Assistance Sys-
tems (ADAS) and autonomous vehicles. The AI embedded in 
autonomous vehicles, which spans a range of functionalities, 
including perception, localization, and more, faces two sig-
nificant challenges: a  lack of repeatability, leading to variable 
behaviors under identical conditions, and a lack of robustness
due to overfitting, which impairs its ability to generalize to new
situations [1]. Given that vehicles are critical safety systems, 
even a minor failure rate is unacceptable. Therefore, before
being marketed in Europe, vehicles must undergo a series 
of laboratory and open road tests that simulate real world
conditions. Track tests on vehicles with proprietary models are
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notably costly and time-consuming due to the extensive setup
of testing resources, resulting in limited available data. The
tests are carried out with different values of the variables that
define the scenarios. The variables encompass both qualitative
(categorical) and quantitative (numerical), resulting in a mixed
data set.

Furthermore, during track testing, it was observed that there
were more successful tests, labeled OK, than unsuccessful
ones, labeled KO. Since the Autonomous Driving system
(AD) is designed, validated, and tested primarily within its
Operational Design Domain (ODD), the test results are pre-
dominantly OK, with occasional KO results. This leads to
imbalanced data, as the predominance of successful outcomes
complicates the accurate prediction and identification of po-
tential failures.

Thus, our primary objective is to construct a robust classifi-
cation model capable of accurately predicting the behavior of
autonomous vehicles. This includes addressing the challenges
posed by unbalanced and mixed datasets, where input variables
encompass both qualitative and quantitative data. Additionally,
due to the limited amount of data resulting from costly and
time-consuming tests, our focus is on developing a model
that can effectively manage the uneven distribution of data
classes, ensuring reliable predictions across various real-world
scenarios encountered on the road.

In our previous work [2], we successfully addressed our
objective by implementing three data resampling techniques:
SMOTE, SMOTE-NC, and SMOTE-ENC. These methods
were applied to tackle class imbalance and improve the perfor-
mance of classification models. Building on this foundation,
the present paper offers several key contributions to the field
of autonomous vehicle behavior modeling:

• Extended resampling techniques: We introduce ROSE
(Random OverSampling Examples) as an alternative to
SMOTE for generating synthetic samples in imbalanced
datasets. This expansion provides a new perspective on
addressing class imbalance in the context of autonomous
vehicle testing.

• Integration with Leave-One-Out Cross-Validation: We
propose a novel approach of applying resampling tech-
niques at each iteration of the LOO-CV process. This
ensures that data rebalancing is tailored to each training
set while maintaining the integrity of the test data, leading
to a more robust evaluation of model performance.
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• Comprehensive encoding strategy comparison: We in-
vestigate the impact of different encoding strategies for
categorical variables, including OneHot, binary encod-
ing, and Factor Analysis of Mixed Data (FAMD). This
comparison aims to determine the most effective method
for preserving information and enhancing resampling
technique performance in mixed-type datasets.

• Application to autonomous vehicle behavior modeling:
We apply these advanced techniques to the critical do-
main of autonomous vehicle testing, addressing the chal-
lenges of limited data availability due to costly and time-
consuming testing procedures.

The rest of this article is organized as follows: in Section
II, we present the related works, highlighting the existing
approaches for data sampling and their applications. Section
III describes in detail the adopted methodology, including
the SMOTE and ROSE oversampling techniques and their
integration with the kNN algorithm. Section IV focuses on
the experiments carried out, the configurations used and the
evaluation metrics, and the results are discussed in this section.
Finally, Section V concludes the article by summarizing the
main contributions and suggesting avenues for future research.

II. RELATED WORKS

In the field of machine learning, the quality and balance of
training data are crucial for ensuring both model performance
and generalizability. When datasets exhibit a significant degree
of class imbalance—where certain classes are considerably
underrepresented—this imbalance can introduce substantial
bias into the learning process. Such bias often causes models
to favor the majority class, leading to suboptimal performance,
especially in terms of precision and recall for minority classes.
This challenge becomes particularly critical in high-stakes
applications such as fraud detection, medical diagnosis, and,
pertinent to this study, the modeling of autonomous vehicle
behavior. In these cases, the inability to effectively identify and
account for minority classes can not only degrade the model’s
overall effectiveness but also lead to costly misclassifications
with serious implications for safety in sensitive contexts like
autonomous driving.

Class imbalance also affects traditional classification meth-
ods by skewing their focus toward the prevalent class and
diminishing their performance with respect to rare or minority
classes [3] [4]. For instance, logistic regression tends to
underestimate the probabilities of the minority class in skewed
datasets, while linear discriminant analysis can exhibit bias
due to unequal covariance matrices that favor the dominant
class. Even nonparametric methods, designed to optimize
classification accuracy, may fail when accuracy measures are
calculated without regard to class distribution, often resulting
in high performance for the majority class at the expense of
the minority class.

In addition to training challenges, evaluating model per-
formance in the presence of rare classes presents its own
set of complexities. In classification tasks, evaluating the
accuracy of the classifier is as critical as model training,
particularly in a class imbalance context. This is because both

the selection of the best classification rule among alternatives
and its applicability to real-world problems hinge on accurate
performance measurements. The choice of evaluation metrics
becomes pivotal, as common measures like overall error rate
can be misleading in imbalanced settings. For example, in a
dataset where a rare class represents only 1% of the data, a
naive classifier that assigns all observations to the majority
class could achieve a 99% accuracy, yet fail entirely in
identifying the minority class [5] [6] [7]

To address this, class-independent metrics such as precision,
recall, F-measure, and G-mean have been proposed, derived
from confusion matrix observations. Precision measures the
fraction of positive predictions that are correct, while recall
focuses on the fraction of true positives identified. While
precision is affected by class distribution, recall alone provides
limited insight into false positive rates. These measures are
often used together or combined into composite scores like the
F-measure or G-mean. The Receiver Operating Characteristic
(ROC) curve and its corresponding Area Under the Curve
(AUC) metric are also popular tools for evaluating classifiers
in imbalanced contexts. ROC curves illustrate the trade-off
between true positive rate (sensitivity) and false positive rate
(1-specificity), with steeper curves and larger AUC values
indicating better performance. A completely random classifier
would result in a diagonal ROC curve, while a perfect classifier
yields a point in the top-left corner of the ROC space [8].

Despite the advances in performance metrics, challenges
remain in estimating model accuracy reliably, especially for
rare classes. Popular approaches, such as the apparent error
(resubstitution) or holdout method, and more sophisticated
methods like cross-validation or bootstrapping, are commonly
employed [9]. However, the scarcity of rare class examples
often leads to high-variance error estimates, undermining
confidence in performance assessments. This limitation under-
scores the need for robust evaluation strategies that accurately
reflect classifier effectiveness in real-world, imbalanced data
scenarios. Without such strategies, even the most sophisticated
learning methods risk yielding misleading conclusions about
their performance, particularly when applied to sensitive do-
mains with rare events.

To address the challenges of imbalanced data, researchers
in [10] have organized existing methods into four principal
categories. The first category, data-level approaches, aims to
adjust the distribution of training data to reduce imbalance.
These techniques typically involve either oversampling the
minority class or undersampling the majority class, or in
some cases, a hybrid approach combining both. By balancing
the dataset at the data level, these methods enhance the
model’s exposure to minority class examples, thus improving
its ability to learn from underrepresented instances without
modifying the underlying algorithm. The second category
consists of algorithm-level approaches, which adapt the learn-
ing algorithms themselves to mitigate the effects of data
imbalance. Rather than modifying the dataset, these methods
involve making adjustments within the algorithm’s structure
to improve sensitivity to minority classes. By altering aspects
of the learning process such as adjusting decision thresh-
olds, modifying loss functions, or introducing minority class-
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focused constraints—these techniques allow models to handle
imbalanced datasets more effectively, enhancing classifica-
tion performance for all classes. The third category, cost-
sensitive methods, incorporates class-dependent misclassifi-
cation costs directly into the learning process. By assigning
higher penalties to errors associated with the minority class,
cost-sensitive approaches create an internal bias within the
model that prioritizes accuracy for underrepresented classes.
This strategy has proven valuable in applications where the
cost of misclassifying minority class instances is significantly
higher, allowing models to operate with greater sensitivity to
the specific requirements of imbalanced data contexts. A fourth
category has recently emerged: deep learning-based methods.
Deep learning techniques have shown considerable promise
in handling data imbalance due to their capacity for complex
feature transformation and representation. By leveraging the
high dimensionality and adaptability of deep neural networks,
these methods create sophisticated features that can better
capture the underlying patterns of minority classes, even in
highly imbalanced datasets. This emerging class of techniques
is particularly well-suited to applications involving large-scale,
complex data, where traditional approaches may struggle to
adequately represent minority class characteristics. Together,
these four categories encompass a range of approaches aimed
at mitigating the impact of data imbalance on model perfor-
mance, providing researchers and practitioners with a diverse
set of tools to enhance classification accuracy across imbal-
anced datasets.

One approach to tackle the challenge of imbalanced data
involves employing algorithms that dynamically adjust the
learning phase of classification models to accommodate the
inherent disparities. Within scholarly research, a spectrum of
techniques has emerged, typically falling into two overarching
categories as outlined by [11]: single-class learning algorithms
and ensemble learning methods.

Single-class learning algorithms operate by training models
exclusively on data representing a single class, a strategy tai-
lored to effectively address imbalanced datasets. Their primary
objective is to identify instances belonging to the majority
class and subsequently classify new samples using similarity
metrics. This approach serves as a cornerstone in mitigating
the impact of class imbalances on model performance.

For instance, in [12] authors proposed an innovative
anomaly detection technique centered around a one-class
Support Vector Machine (SVM), leveraging its capability to
discern outliers in datasets characterized by skewed distribu-
tions. Similarly, authors in [13] leveraged a one-class SVM
to discern deviations between normal and anomalous data,
exemplifying the versatility of this approach in detecting and
addressing imbalances within datasets.

Numerous investigations have delved into the realm of
ensemble learning as a solution to the challenges posed by
imbalanced data, with particular emphasis on two primary
methodologies: bagging and boosting.

The classic bagging approach entails the utilization of
bootstrap sampling. In case of classification multiple classifiers
are trained on diverse subsets of the dataset, culminating in
a collective decision through voting for the final prediction.

To tailor bagging to address the intricacies of imbalanced
datasets, various adaptations have been proposed. For instance,
UnderBagging, introduced by [14], alleviates the impact of
class imbalance by strategically under-sampling the majority
class.

In contrast, boosting operates by iteratively training classi-
fiers with a focus on rectifying misclassifications encountered
during previous iterations. AdaBoost. M2 stands as a promi-
nent example of this methodology [15].

In the pursuit of solutions for handling imbalanced data,
another effective avenue lies in the realm of cost-sensitive
methods. These algorithms take into account the costs asso-
ciated with misclassification during their internal operations.
Specifically, they assign a higher cost to the misclassifica-
tion of minority class instances compared to majority class
instances [10]. By incorporating this cost consideration into
their decision-making process, these methods aim to optimize
performance in scenarios where imbalanced classes pose sig-
nificant challenges.

Moreover, the domain of deep learning has emerged as a
powerful tool in various domains, demonstrating remarkable
efficacy in tackling imbalanced datasets. Notably, [16] pro-
posed a novel approach leveraging Deep Neural Networks
(DNNs) to address imbalanced data scenarios. Their method-
ology involves utilizing DNNs to extract intricate features
from samples belonging to the minority class, subsequently
generating new pseudo-features to compensate for the scarcity
of minority class samples. It’s crucial to note that this approach
doesn’t generate entirely new data instances; instead, it focuses
on enhancing the classification capabilities for unique and
underrepresented samples through feature augmentation.

Finally, the simplest and most intuitive approach to address
imbalanced data is to intervene at the data level, either by
oversampling, adding new instances to the minority class, or
by removing some elements from the majority class, or by
employing a hybrid process.

In our study, due to constraints related to a limited dataset,
we have chosen to use a combination of oversampling tech-
niques to address class imbalance, specifically SMOTE (Syn-
thetic Minority Over-sampling Technique), Random Over-
sampling, and ROSE (Random Over-Sampling Examples).
SMOTE involves generating synthetic instances for the mi-
nority class by interpolating between existing examples of the
same class within the feature space, which helps to reduce
overfitting compared to simple replication [17].

Random Oversampling, a simpler approach, balances the
dataset by randomly duplicating existing instances of the mi-
nority class. While effective in improving class representation,
this method can sometimes lead to overfitting, as duplicated
instances do not introduce new variability to the dataset.

To mitigate this limitation, we also employed ROSE, an
advanced oversampling method that generates synthetic exam-
ples for both classes through a smoothed bootstrap sampling
approach. This technique leverages kernel density estimation
to create synthetic data points around the existing instances,
introducing controlled variability while maintaining the un-
derlying distribution of the dataset. ROSE not only addresses
the imbalance but also helps improve the model’s robustness
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and generalization by avoiding the rigidity introduced by
duplicated or overly-similar synthetic data [18].

Essentially, SMOTE increases the representation of the
minority class by creating new data points that closely re-
semble existing minority instances. This method strategically
interpolates between neighboring samples of the minority
class, effectively addressing the imbalance issue. As a result, it
enhances the model’s capability to identify patterns and make
accurate predictions across all classes.

Moreover, by leveraging SMOTE in the context of our study,
we aim to bolster the robustness and generalization capabilities
of our predictive model, enabling it to perform more reliably
in real-world scenarios characterized by imbalanced class
distributions.

Expanding on the groundwork laid by the original SMOTE
technique, a plethora of adaptations and variations have since
been introduced to further refine its efficacy. For instance, [19]
documented approximately 100 variants of SMOTE by 2018,
and the landscape has continued to evolve with the emergence
of new approaches.

Among these variants, Borderline-SMOTE, introduced by
[20], targets individuals belonging to the minority class re-
siding at the borders, specifically those instances with neigh-
boring points in the majority class. Similarly, [21] proposed
two additional variants, namely SMOTE-ENN and SMOTE-
Tomek, which take into account distribution overlaps and class
boundaries when generating synthetic instances.

Furthermore, [22] introduced the Adaptive synthetic sam-
pling approach for imbalanced learning (ADASYN) method ,
which focuses on synthesizing data points for challenging in-
stances of minority classes by comprehensively understanding
the underlying distribution of these instances. [23] proposed
SMOTE-D, a deterministic approach that synthesizes artificial
data points specifically for negative classes (majority class).

However, it’s worth noting that while the original SMOTE
technique and its variants are well-suited for numerical data,
they face challenges when applied to datasets containing
categorical variables. In such cases, these methods may fail
to accurately identify the categories of qualitative variables,
potentially leading to the creation of new and unintended
categories.

To address this limitation, [17] introduced an extension
known as SMOTE-NC (SMOTE-Nominal Continuous), which
specifically caters to datasets with both nominal and continu-
ous variables. Building upon this, [24] proposed a further ex-
tension named SMOTE-ENC, which enhances the capabilities
of SMOTE-NC by refining its handling of categorical data.

In the field of road safety and autonomous vehicles (AVs),
addressing the challenges posed by imbalanced datasets has
become a focal point of research, particularly in predicting
accident severity and associated risks. Authors of [25] pro-
posed an innovative methodology to overcome these chal-
lenges by utilizing California DMV collision reports (2019-
2021) enriched with environmental and road data from Open-
StreetMap. Through the application of resampling techniques,
such as SMOTE and ROSE, they successfully balanced data
classes, enhancing the predictive accuracy of their models.
Furthermore, their study integrated advanced feature selec-

tion methods, including Mutual Information, Random Forest,
and XGBoost, to identify critical factors influencing accident
severity, such as vehicle manufacturers, collision types, and
points of interest (POIs). The combination of SMOTE and
Random Forest demonstrated the highest predictive perfor-
mance, highlighting the value of a well-balanced dataset before
feature selection.

Similarly, authors of [26] focused on cybersecurity in
the Internet of Autonomous Vehicles (IoVs) by developing
an intelligent intrusion detection system (IDS) capable of
addressing the imbalance inherent in car hacking datasets.
Using rebalancing techniques such as NearMiss, Random
Over-Sampling (ROS), and TomLinks in conjunction with
machine learning models like k-Nearest Neighbors (k-NN),
Logistic Regression, and Naive Bayes, their approach achieved
exceptional performance. Notably, the k-NN model combined
with ROS and TomLinks reached a 100% detection rate,
surpassing existing methods and demonstrating the importance
of tailored strategies for imbalanced datasets in enhancing
system robustness.

Lane-changing behavior (LC), a critical component of traffic
safety research, has also been extensively studied due to
its complexity and its potential to cause accidents. Previous
approaches have largely relied on machine learning models for
risk prediction, yet these methods often face limitations due
to class imbalances, where high-risk instances are significantly
underrepresented. To address these challenges, oversampling
techniques such as SMOTE and ADASYN, as well as gen-
erative adversarial networks (GANs), have been employed.
However, their reliability in practical scenarios remains vari-
able. Recent advancements, such as the CMSS (Control
Method for Synthetic Samples) developed by [27], offer a
promising alternative by integrating oversampling techniques
with optimization algorithms like Particle Swarm Optimization
(PSO). This method not only improves predictive accuracy
but also enhances model generalizability and interpretability
using tools like SHAP (Shapley Additive Explanations) to
strategically adjust synthetic samples.

These studies collectively underscore the critical importance
of developing robust methodologies for handling imbalanced
datasets. They demonstrate significant progress in improving
predictive models, enhancing cybersecurity in connected ve-
hicle networks, and advancing risk detection systems, thereby
contributing to safer and more reliable autonomous driving
technologies.

In this paper, we aim to apply well-established methods
for addressing unbalanced data to the task of predicting
the behavior of AI-equipped vehicles. Specifically, we focus
on scenarios that push the boundaries of their operational
domains. By leveraging these advanced techniques, we seek to
enhance the accuracy and reliability of behavioral predictions
for autonomous vehicles operating under challenging and
edge-case conditions. This approach not only addresses the
inherent data imbalance but also contributes to the robustness
of AI models in critical real-world applications where ensuring
safety and performance is paramount.
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III. SYSTEM MODEL

We consider a real-world dataset Xl,pwhere l ∈ [1, L] and
p ∈ [1, P ]. L is the number of individuals and P is the number
of variables. We have a mixed dataset, i.e., M qualitative
variables and N quantitative variables such that P = M +N .

The dataset used in this study is proprietary and originates
from tests conducted by UTAC, the official organization re-
sponsible for vehicle approval in France. Due to the sensitive
nature of vehicle testing data, accessing public datasets in this
domain proves to be particularly challenging, as confidentiality
and data protection are critical concerns.

Since we are dealing with binary classification, we will
adopt the notation used in the literature. The positive class
corresponds to the minority class, and the negative class
corresponds to the majority class [28]. We consider Imbalance
Ratio (IR) as the ratio of the number of instances in the
majority class to the number of instances in the minority class
[29]. Mathematically, it can be expressed as:

IR =
Cmaj

Cmin
(1)

such as:
• Cmaj represents the size of the majority class
• Cmin represents the size of the minority class
IR = 1 represents a perfectly balanced dataset. The dataset

is considered imbalanced when IR > 1.5, and extremely
imbalanced when IR ≥ 9 [28].

In the context of our study, a significant constraint is the
limited size of our dataset, a situation frequently encountered
in many real-world applications, particularly in behavioral
prediction for autonomous vehicles. This small data problem
increases the risks of overfitting and makes it challenging to
accurately assess the model’s performance. To address this
limitation and maximize the use of each available instance,
we have chosen to implement cross-validation. This approach
allows us to evaluate the model’s robustness while effectively
using the available data.

In this context, we have opted to implement the Leave-One-
Out Cross-Validation (LOO-CV) method. Unlike traditional k-
fold cross-validation, where the data is divided into multiple
subsets, LOO-CV involves using a single instance as the test
set and the remaining data as the training set, iteratively taking
a new observation as the test set each time. This technique
is particularly suitable for small datasets as it enables the
use of all available data for training in each iteration, thus
maximizing the exploitation of rare examples and minimizing
the risk of bias due to a small sample size.

An important aspect of our approach is the integration of
oversampling techniques to manage class imbalance. However,
it is crucial to note that oversampling techniques are applied
exclusively to the training data at each step of the cross-
validation process. Thus, during each iteration of the LOO
process, the training data is resampled to adjust the class
distribution, while the instance used as the test data remains
an unmodified real example. This approach helps maintain the
integrity of the test data and prevents model contamination,
ensuring that oversampling does not influence the evaluation
of the model’s performance on unseen data. At each iteration,

the imbalance ratio is kept constant and set to 1.5, which is
the value recommended based on the results of our previous
research. This rate was chosen because it provided optimal
performance in that context. Consequently, we propose an
adaptive approach that ensures the number of elements remains
consistent across iterations. This approach also ensures that the
testing is always performed on real examples from the original
dataset, preserving the integrity of the evaluation process while
maintaining the desired balance during training. This method
is detailed in the algorithm 1, which illustrates how, at each
step of the LOO, only the training data is oversampled.

Algorithm 1: Pseudo Algorithm of kNN-over-LOO
X : Initial dataset
L : Number of individuals
for i = 1 to L do

Xtest := X[i]
Xtrain := X[N − i]
Xtrain−resample := RESAMPLE(Xtrain)
Train(kNN(Xtrain−resample))

end

The RESAMPLE method represents one of the various
oversampling techniques like SMOTE, SMOTE-NC, SMOTE-
ENC, and ROSE.

A. Resampling Method based on SMOTE

In this section we will give more details about the applica-
tion of SMOTE method and its variants to our problem.

1) SMOTE (Synthetic Minority Over-sampling Technique):
This method is used to oversample individuals in the positive
class. A randomly selected element xl from the minority class
is chosen, and the K-nearest neighbors (KNN) algorithm is
applied to find its K nearest neighbors. Then a new element
rj is generated betweenxland one of its neighbors xlkusing a
parameter α, according to the following equation.

rk = xl + α.(xlk − xl) (2)

2) SMOTE-NC (Synthetic Minority Over-sampling Tech-
nique Nominal Continuous): it is a variant of SMOTE adapted
to mixed data [17] that does not require encoding categorical
variables.

Its operation follows algorithm 2.
When identifying the K-nearest neighbors, the distance

calculation is adjusted slightly to account for the presence of
non-encoded qualitative variables in the dataset. For nominal
features, the distance is defined as the median of the standard
deviations of the quantitative values, ensuring consistency
regardless of the labels.

While SMOTE-NC performs well with binary classes, it
faces challenges when dealing with nominal features that
have multiple labels. Specifically, it struggles to interpret the
varying relationships between each label and the minority
class target. Moreover, SMOTE-NC requires the dataset to
include at least one continuous attribute to operate correctly.
To address these limitations, an improved version of SMOTE,
named SMOTE-ENC, was introduced in [24]
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Algorithm 2: Pseudo algorithm of SMOTE-NC

for xl positive individuals do
Identify the K nearest neighbors of xl;
for p=1:P do

if xl,p is numerical then
Randomly choose one of the K nearest
neighbors, denoted as xlk;
rk,p = α · xl,p + (1− α) · xlk,p;

else
rk,p = mode of the most frequent category
among the K nearest neighbors;

end
end

end

3) SMOTE-ENC (Synthetic Minority Over-sampling Tech-
nique Encoded Nominal Continuous): It is an improved ver-
sion of the SMOTE-NC variant, specifically developed for
mixed datasets, which encodes nominal variables as numerical
values. In this method, the numerical differences represent the
importance of the change in relation to the minority classes.

The encoding of qualitative variables relies on χ2 distance,
which determines if two categorical variables are associated.
However, the objective here is not to analyze the relationship
between the target variable and the categorical variables,
but rather to measure the distance between two points with
different labels [24].

Algorithm 3: Encoding with SMOTE-ENC [24]

N : the number of continuous variables;
M : the number of categorical variables;
v: median of the standard deviations of continuous
variables;

Cmin: size of the minority class;
S: size of the training dataset;
IRENC = Cmin

S ;
for m = 1 : M do

for each label E do
Em = total number of label of variable m in

the training dataset;
E′

m = Em × IRENC ;
Emin

m number of labels in the minority class;
χ =

Emin
m −E′

m

E′
m

;
if N > 0 then

E = χ× v;
else

E = χ;
end

end
end

After all categorical variables have been transformed into
quantitative variables using the algorithm 3, a new dataset
consisting solely of quantitative variables is created. At this
stage, the SMOTE (Synthetic Minority Over-sampling Tech-

nique) method can be applied to balance the minority classes
within the dataset.

B. Resampling Method based on ROSE

The principle behind ROSE is based on the idea that any
additional data we collect follows the probability distribution
of the underlying population of data belonging to the mi-
nority class. Therefore, one approach is to approximate this
probability distribution and then sample from it to simulate
the collection of real examples [18]. This is exactly what the
ROSE algorithm does, as shown in algorithm 4.

Algorithm 4: Pseudo algorithm of ROSE

X: input data;
y: output labels;
k: minority class;
Nk: number of synthetic points to generate;
s: control factor for the kernel width (s = 1 by
default);

Step 1: Estimate the conditional distribution
P (x|y = k)

Compute the smoothing matrix h using Silverman’s
rule:

h = s ·N−1/(d+4)
k ·Dσ

where Dσ is the diagonal matrix of feature standard
deviations, and d is the dimensionality of the data.

Step 2: Generate synthetic points
for i = 1 to Nk do

Randomly select a point xi from Xk;
Place a Gaussian kernel centered on xi;
Sample a new point xnew from this kernel;
Add xnew to Xsynthetic;

end

1) Estimating the conditional distribution P (x|y = k)
ROSE estimates the probability distribution P (x|y = k)
for each class k using kernel density estimation (KDE),
a method for estimating the underlying probability dis-
tribution from observed data. such that

p(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(3)

KDE operates by selecting a kernel function K(x) (com-
monly a Gaussian) and positioning this function over
each data point. The kernel function is then scaled and
summed to produce a smooth estimate of the probability
distribution. The scale of the kernel can be adjusted to
improve the accuracy of the estimate.
The kernel function is a hyperparameter, and while there
are various options for kernels, a Gaussian kernel with a
scale parameter σ is commonly used, as it satisfies basic
properties like smoothness and symmetry. In the case
of ROSE, this Gaussian kernel is used to estimate the
distribution of each class and generate synthetic samples.
Where:
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• p(x) is the estimated density at x.
• n is the total number of data points.
• xl are the data points.
• K(·) is the kernel function (for example, a Gaussian

function).
• h is the bandwidth parameter, which controls the

width of the kernel.
2) Generating synthetic points

• Randomly select a point
• Center a Gaussian distribution on it
• Then sample a point from the Gaussian distribution.

C. Proposed Strategy

To apply the classification method to imbalanced data, we
will follow four distinct strategies as shown in figure 1. These
strategies are designed to enhance the model’s performance by
addressing the class imbalance issue, thereby ensuring better
accuracy and robustness of the predictions.

Fig. 1. Proposed strategies for classifying imbalanced data

• Strategy 1: In this strategy, we use the classic version
of SMOTE, which applies to numerical data. Since our
dataset contains mixed data, we consider two approaches:

– Perform binary encoding for variables with two
categories and OneHot encoding for variables with
multiple categories.

– Alternatively, use the FAMD (Factor Analysis of
Mixed Data ) method to directly process mixed data.

Once all categorical variables have been handled (either
encoded or transformed using FAMD), we will apply
SMOTE to rebalance the minority classes. Finally, we
will use a classifier on this rebalanced dataset to improve
the accuracy and robustness of the predictions.

• Strategy 2: Since SMOTE-NC is suitable for mixed data,
we apply it to our dataset without requiring prior encod-
ing of variables, as mentioned in Strategy 1. SMOTE-NC
directly handles both numerical and categorical variables,
simplifying the class rebalancing process. After applying
SMOTE-NC and obtaining a balanced dataset, we will
consider binary/OneHot encoding or the FAMD approach
to process categorical variables. Finally, we will use
a classifier on this rebalanced dataset to improve the
accuracy and robustness of the predictions.

• Strategy 3: This strategy relies on SMOTE-ENC, which
integrates its own encoding technique, detailed in [24].
Unlike traditional approaches that require a separate step
for encoding categorical variables, SMOTE-ENC directly
incorporates this process into its resampling algorithm.
Once the data is rebalanced using SMOTE-ENC, we
proceed with classification.

• Strategy 4: This strategy is similar to Strategy 1 but
replaces SMOTE with the ROSE algorithm. Like in Strat-
egy 1, we handle mixed data using either binary/OneHot
encoding or the FAMD method. ROSE will then be
applied to generate synthetic samples by estimating the
probability distribution P (x|y = k) for the minority class
and drawing samples from it. Finally, we will train a
classifier on this rebalanced dataset to improve prediction
accuracy and robustness.

IV. SIMULATION & RESULTS

In this section, we present conducted simulations and
analyze the results obtained, highlighting key insights and
evaluating the performance of the proposed approach under
various conditions

A. Simulation Setup
We consider in this study a dataset comprising L = 142×a

individuals and P = 21×a variables, categorized as N = 6×a
quantitative variables and M = 15 × a qualitative variables.
Among the qualitative variables, 14×a are binary, and hence,
binary encoding will be applied to them. Additionally, a vari-
ables with multiple categories will undergo OneHot Encoding
(OHE) as detailed in [30]. For the rest of the numerical
application a = 1

To simplify the initial study, we opted to use kNN-based
classification. Therefore, we first normalize the data using
Standard Scaler, which involves centering and scaling each
variable.

The output variable y is binary, with two categories: OK rep-
resenting the negative class Cmaj = 127 and KO representing
the positive class Cmin = 15. This results in an imbalance
ratio IR = 127

15 = 8, 46 >> 1.5, which indicating a scenario
of imbalanced dataset.

As specified in algorithm 1 we will use the LeaveOneOut
process for the traing and test of the model. Our assessment
will utilize evaluation metrics ( accuracy, precision, recall and
F1 score) as specified in [8].

B. Results & discussion
As the primary goal is to implement a classifier, this section

is dedicated to evaluating the performance of the k-Nearest
Neighbors (kNN) algorithm combined with the Leave-One-
Out (LOO) validation technique. The classification is imple-
mented with original data by encoding the categorical variables
by the mean of OneHot encoding. The kNN algorithm depends
on a key hyperparameter, k, which specifies the number of
neighbors taken into account. The value of k is determined
empirically by varying it and analyzing the corresponding
performance metrics. This process enables the identification
of the optimal k value that maximizes accuracy.
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TABLE I
KNN PERFORMANCE WITH IMBALANCED DATA

Original data AFDM

k 10 8

Confusion Matrix

KO OK
KO 1 14
OK 0 127

Predicted Class

R
ea

l
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ss

KO OK
KO 1 14
OK 0 127

Predicted Class

R
ea

l
C

la
ss

Fig. 2. Performance of kNN with imbalanced original data

Fig. 3. ROC curve with imbalanced original data (k = 10)

1) Performances of Different Strategies with OneHot/Binary
Encoding: Figure 2 depicts the performance of the kNN
algorithm as a function of the hyperparameter k. The best
performance is achieved at k = 10, where the model attains
an accuracy of 88%. However, a closer analysis reveals an
accuracy of 99% for the majority OK class and only 6% for the
minority KO class. This indicates that the model struggles to
correctly classify the minority class and is biased towards the
majority class. Furthermore, an examination of the ROC curve
and the AUC score in Figure 3 highlights the model’s subop-
timal behavior, with an AUC of 0.63, suggesting near-random
performance. This poor outcome is primarily attributed to the
imbalanced class distribution, which significantly hampers the
model’s ability to effectively differentiate between the two
classes.

Table I presents the confusion matrix, providing a detailed
view of the model’s performance. The results indicate that
the model incorrectly classified one OK instance as ”KO”
and misclassified 14 KO instances as OK. These findings
highlight the significant challenges posed by the imbalanced
class distribution, which causes the model to favor the majority
OK class at the expense of accurately identifying the minority
KO class.

In our study aimed at predicting whether a vehicle test
outcome is OK or KO, we emphasize the importance of both
false positives and false negatives. Misclassifying a KO as
OK could lead to safety risks, while misclassifying an OK
as KO results in unnecessary losses for the manufacturer due
to disqualification. To mitigate these issues, we evaluated the
model’s accuracy for both OK and KO classifications.

As highlighted in Table II, Strategy 2 demonstrates the
highest performance for OK tests, misclassifying only 3 OK
instances as KO. However, for KO tests, Strategy 1 proves to
be the most effective, achieving 60% accuracy, with Strategy 4
following closely. In stark contrast, Strategy 2 performs poorly
on KO tests, failing to correctly classify any KO instances and
yielding an AUC of 0.45, indicative of the kNN model’s near-
random behavior.

Notably, Strategies 1, 3, and 4 significantly improve the
accuracy for the KO class compared to the standard kNN
approach, which struggles with the challenges posed by com-
pletely imbalanced data.

2) Performances of Different Strategies with FAMD Encod-
ing: The ROC curve shown in Figure 5, with an AUC of
0.53, indicates that the model’s ability to differentiate between
classes is nearly equivalent to random guessing. This is further
corroborated by the confusion matrix, which shows that only
3 instances of the KO class are correctly identified, while 12
are misclassified. In contrast, the OK class is better handled,
with 101 correctly classified instances versus 26 errors. These
results underscore the limitations of Strategy 1 in addressing
class imbalance.

When comparing the performance of kNN across datasets
encoded using binary encoding, One-Hot encoding, and
AFDM principal components, a similar overall behavior is ob-
served. However, the model leveraging principal components
distinguishes itself by accurately classifying all OK instances.

Table III shows a notable improvement in the accuracy for
KO, which increases from 6% with standard kNN to 20% and
13% with Strategies 1 and 4, respectively. This underscores the
importance of addressing class imbalance before developing
classifiers.
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TABLE II
COMPARISON OF DIFFERENT STRATEGIES BASED ON PERFORMANCE METRICS FOR OneHot/Binary encoding (IR = 1.5)

Strategy 1 Strategy 2 Strategy 3 Strategy 4

AccuracyOK 73% 98% 76% 83%

AccuracyKO 60% 0% 33% 53%

AUC 0.68 0.45 0.65 0.67

Confusion Matrix

KO OK
KO 9 6
OK 34 93

Predicted Class
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ss

KO OK
KO 0 15
OK 3 124

Predicted Class
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KO OK
KO 5 10
OK 30 97

Predicted Class

R
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ss

KO OK
KO 8 7
OK 22 105

Predicted Class

R
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l
C
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ss

By comparing Tables II and III, it is evident that One-
Hot/Binary encoding outperforms the other methods, par-
ticularly in classifying KO cases. This encoding technique
provides the model with a more effective representation of the
data, enabling better differentiation between the minority KO
class and the majority OK class. The improved performance in
classifying KO cases suggests that One-Hot/Binary encoding
helps mitigate the effects of class imbalance, allowing the
model to better manage the challenges posed by the under-
represented KO class.

Fig. 4. Performance of kNN with imbalanced FAMD data

Fig. 5. ROC curve with imbalanced FAMD data (k = 8)

In a real industrial application, it is crucial to ensure that
the generated synthetic data accurately reflects the distribu-

tion of actual data to maintain the model’s reliability and
effectiveness. To verify this, it is important to analyze the
characteristics of both real and synthetic data, ensuring they
are comparable and represent the same underlying patterns.

Upon examining Figures 6 and 7, which present the box
plots for both real and synthetic data, we observe that they
are scaled similarly. This indicates that the synthetic data
falls within the same range and distribution as the real data,
which contradicts the conclusions of the article [31], which
demonstrates that synthetic examples generated by these tech-
niques, such as SMOTE, are often incorrectly attributed to
the minority class, thereby misleading classification models.
Moreover, the consistency in scale suggests that the synthetic
data retains the key features and variability of the real-world
data, which is crucial for ensuring accurate and robust model
performance in real-world conditions.

To enhance the analysis, we can observe the table IV that
shows a comparison between real and synthetic data using
several similarity metrics: Wasserstein distance and mean fea-
ture variation. Wasserstein distance measures the dissimilarity
between two probability distributions in terms of optimal
transport, and it is particularly used in generative models, as
shown by [32]. Finally, Mean Feature Variance evaluates the
dispersion of data for each feature, providing a measure of the
stability of synthetic data compared to real data. Overall, the
synthetic data are close to the real data, with relatively low
Wasserstein distances, indicating good overall correspondence.
Lastly, the feature variance remains constant, showing similar
dispersion across both datasets. These results indicate that, in
general, the synthetic data resemble the real data, but there
are notable differences in certain specific aspects, highlighting
areas for improvement in the generative model

The fact that the synthetic data remains within the Opera-
tional Design Domain (ODD) of the vehicle further assures
that the generated data can be safely used for testing and
model training, reflecting realistic scenarios the vehicle may
encounter. This alignment minimizes the risk of introducing
biases or errors that could arise from synthetic data that
deviates significantly from the real-world distribution.

V. CONCLUSION

In this study, we conducted a comparative analysis of
SMOTE and ROSE oversampling techniques for kNN-based
autonomous vehicle behavior modeling. Autonomous vehicles
rely on proprietary artificial intelligence systems that are
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TABLE III
COMPARISON OF DIFFERENT STRATEGIES BASED ON PERFORMANCE METRICS FOR FAMD encoding (IR = 1.5)

Strategy 1 Strategy 4

AccuracyOK 80% 98%

AccuracyKO 20% 13%

AUC 0.53 0.67

Confusion Matrix

KO OK
KO 3 12
OK 26 101

Predicted Class

R
ea
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ss

KO OK
KO 2 13
OK 2 125

Predicted Class

R
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l
C
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ss

Fig. 6. Box plot on real & synthetic data with OneHot/binary encoding

Fig. 7. Box plot on real & synthetic data with FAMD

often inaccessible, necessitating the use of predictive mod-
els to ensure operational reliability. These models integrate
various data sources and employ advanced machine learning
techniques to enhance navigation, object recognition, and
obstacle avoidance capabilities, ultimately ensuring safe and
efficient operation. Before commercialization in Europe, these
vehicles undergo rigorous testing in diverse scenarios, where
outcomes are classified as either OK (safe) or KO (unsafe).
A significant challenge arises from the inherent imbalance in
the dataset, characterized by a predominance of OK cases
relative to KO cases. Addressing this imbalance is crucial for

TABLE IV
COMPARISON BETWEEN REAL AND SYNTHETIC DATA USING
WASSERSTEIN DISTANCE AND MEAN FEATURE VARIANCE

Feature Wasserstein Distance Mean Feature Variance

X1 1.13

1.09

X2 0.85

X3 0.23

X4 0.39

X5 0.71

X6 0.48

X7 0.49

X8 0.36

X9 0.35

X10 0.23

X11 0.08

X12 0.16

X13 0.39

X14 0.31

X15 0.77

X16 0.45

X17 0.07

X18 0.36

X19 0.36

X20 0.31

X21 0.09

X22 0.08

X23 0.09

developing robust classifiers capable of accurately predicting
vehicle behavior.

Our primary objective was to construct a reliable classi-
fication model that effectively manages the uneven distribu-
tion of data classes while accommodating both qualitative
and quantitative variables. Given the limited amount of data
resulting from costly and time-consuming tests, we focused on
enhancing model performance through resampling techniques.
In our previous work, we successfully implemented three data
resampling methods—SMOTE, SMOTE-NC, and SMOTE-
ENC—to tackle class imbalance. Building on this foundation,
we extended our approach by incorporating ROSE (Random
OverSampling Examples) as an alternative method for gen-
erating synthetic samples. ROSE approximates the underlying
probability distribution of the minority class and samples from
it, providing a different perspective on data augmentation.
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Additionally, we integrated these resampling techniques
with the Leave-One-Out Cross-Validation (LOO-CV) method,
applying resampling at each iteration to ensure that data
rebalancing is tailored to each training set while preserving
the integrity of the test data. This approach allows for a more
robust evaluation of model performance on unseen examples.
Furthermore, we explored various encoding strategies for
categorical variables. In addition to conventional One-Hot and
binary encoding techniques, we introduced Factor Analysis of
Mixed Data (FAMD) as an alternative method for handling
mixed-type data. By comparing these encoding strategies, we
aimed to identify which method best preserves information
and enhances the performance of resampling techniques in the
context of class imbalance. Specifically, for the classification
of the minority KO class, we observed that the accuracy for
KO increased from 6% with imbalanced data to 60% with
SMOTE and 53% with ROSE. This emphasizes the importance
of building models on balanced data.

Our findings indicate that addressing class imbalance
through effective resampling techniques and appropriate en-
coding strategies significantly improves classification perfor-
mance in autonomous vehicle behavior modeling. This re-
search contributes to the ongoing efforts to develop reliable
predictive models that can adapt to real-world scenarios while
ensuring safety in autonomous driving systems.

In conclusion, it is possible to improve various metrics,
particularly AUC, which measures the model’s ability to dis-
tinguish between the two classes (OK/KO), by exploring other
classification algorithms such as decision trees and random
forests. It would also be interesting to study the impact of
kernel choice in the ROSE method on the resampling results.
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