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Abstract—From a software engineering perspective, a code
smell refers to poor code structure. Many studies have shown
that there is a significant negative relationship between code
smells and code quality. Thus, many approaches have been
proposed to detect and manage them. However, detecting code
smells remains a challenging problem. This paper introduces a
method (CSDSPN) based on a sum product network (SPN); a
probabilistic deep architecture not yet evaluated in the context
of code smell detection. SPNs are tractable density estimators
that compactly represent a joint probability distribution. The
main objective of this paper is to study the performance of a
Sum-Product Network as a classifier for code smell detection.
To fulfill this objective, the paper proposes an approach that
utilizes a classifier based on an SPN trained on data from previous
projects, to identify code smells in new source code. An empirical
study was conducted to assess the effectiveness of the proposed
method in detecting ’God Class,’ ’Long Method,’ and ’Feature
Envy’ code smells using well-known datasets. The empirical study
evaluated the proposed approach against against seven standard
and advanced machine learning models. The results of the study
demonstrate the potential of the proposed method in effectively
detecting code smells.

Index Terms—Code smells, Sum product network, Probability
distribution, source code.

I. INTRODUCTION

IN software engineering, it is crucial to develop high-quality
software and maintain this quality throughout software

evolution activities such as bug fixing, adding functionality,
modifying features, and so on. Code smells, considered as
poor code structures in software engineering [47], have a
negative impact on various aspects of code quality, includ-
ing understandability, testability, extensibility, reusability, and
maintainability [3]. While code smells are not bugs, they have
a negative relationship with software technical debt. Many
studies have demonstrated a negative correlation between
code smells and the understandability and maintainability of
software systems [14]. Research has shown that the more code
smells present in a system, the more expensive the evolution
activities become, and the higher the likelihood of introducing
additional bugs. Therefore, effectively detecting and managing
code smells is an important activity from a software engi-
neering perspective. While this activity incurs a cost, it is
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considered as a good strategy for reducing evolution costs 
and saving time in the long term. Therefore, detecting them is 
crucial to restore code quality through refactoring techniques 
[3] and to mitigate future maintenance costs and time [2]. 
Literature highlights that maintenance activities consume 80 
% of the total cost of the development process [4] and code 
smells significantly complicate it [2], [5]–[7]. Despite that 
many approaches have been proposed to detect code smells, 
the literature shows that the problem remains a challenging 
one [8], [9], [38]–[42], [45]. Moreover, Fontana et al [1], [2],
[42] indicated that we cannot deem any code smell detection 
technique superior to another and any approach can contribute 
to the process of prevention, detection, and fixing. While many 
approaches based on machine learning techniques have been 
proposed to detect code smells in software systems [39], the 
Sum-Product Network (SPN), a probabilistic deep architecture, 
while evaluated in bug prediction [50], has not yet been 
evaluated for code smell detection [39]. Sum-product networks 
(SPNs) are a type of density estimator with tractable inference 
properties, initially proposed by Poon and Domingos [35]. In 
many application domains, SPNs are seen as effective tools 
similar to neural networks [35], [36]. Another advantage of 
SPNs is their robustness to missing features. Additionally, 
many machine learning problems, such as classification, can 
be formulated as inference problems using a density estimator 
like SPNs. This idea has been previously evaluated in detecting 
defect in software systems with promising results [44].

Our main thesis is that SPNs are also well-suited for 
code smell detection. Therefore, this paper aims to evaluate 
the performance of SPNs as classifiers trained from data in 
detecting code smells. To achieve this goal, we propose a 
method called CSDSPN for detecting smells in source code. 
The proposed method is based on an SPN classifier built 
from existing ’smelly’ and ’non-smelly’ source codes from 
previous projects, using the LearnSPN algorithm [48]. The 
process uses a representation of source code based on a set of 
metrics extracted from it, rather than a textual representation. 
The method uses the learned SPN to determine whether 
a new source code is smelly or not, employing the MPE 
(Most Probable Explanation) inference method [35], [37]. An 
empirical study was conducted to assess the effectiveness of 
the proposed method in detecting ’God Class,’ ’Long Method,’ 
and ’Feature Envy’ code smells using well-known datasets. 
The experiment used eighteen realistic datasets developed over 
years of work by experienced developers. Additionally, the 
empirical study evaluated the proposed approach against seven 
standard and advanced machine learning models to validate its
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performance.
The main contributions of this paper are:
1) An approach based on a SPN to detect code smells in

source code.
2) An empirical study that evaluates the effectiveness of

the proposed approach on 18 well-known datasets.
3) A performance comparative study against seven standard

and advanced machine learning models.
The remainder of the paper is organized as follows: Section
II presents background information to help in understanding
the proposed approach; Section III discusses the state of the
art in the code smell detection domain; Section IV describes
the proposed approach; Section V presents the empirical study;
Section VI discusses the threats to the validity of our proposal;
and Section VII concludes and presents future works.

II. BACKGROUND

A. Code Smells

Fowler et al. [3] were the first to introduce the term ”code
smells” to the software engineering community in 1999 and
presented the main refactoring techniques to restore the design
quality of a software system. Code smells are symptoms that
indicate low code quality. They negatively impact the main
quality attributes such as understandability, reusability, and
maintainability [12], [13]. The literature classifies code smells
into two main categories: method-level and class-level smells
[3], [9]. There are many code smells, including God Class,
duplicated code, long method, long switch, long parameter
list, and more. For further details about code smells, readers
can refer to [11]. In this paper, we study the performance
of the proposed approach on two types of code smells: God
Class, which is a class-level smell, and feature-envy and long-
method, which are method-level smells. These smells are
defined as follows:

1) God Class: This smell indicates that a class is burdened
with numerous responsibilities, violating the Single Re-
sponsibility Principle (SRP).

2) Feature Envy: This occurs when a method primarily uses
members of other classes rather than its own, indicating
a misplacement of functionality.

3) Long Method: This refers to methods that implement
more than one functionality, often characterized by their
large size and poor cohesion. Long methods are difficult
to understand, extend, and modify. Additionally, they
often violate the Single Responsibility Principle (SRP).

B. Sum-product Networks

Probabilistic graphical modelling is an approach that uses
graph theory and probability to describe complex problems.
These models represent a joint distribution in a compact way.
Probabilistic graphical models, such as Bayesian networks
and Markov networks, are widely used to model problems
involving complex, uncertain knowledge. In this context, a
solution to the problem is computed through inference. Exam-
ples of such inferences include marginalization and conditional

Fig. 1. An example of a SPN.

probability computations. While these models allow questions
to be answered via inference, the complexity of the inference
process is NP-hard [37]. Sum-Product Networks (SPNs) [36]
are tractable probabilistic graphical models. They have the
ability to represent complex, highly multidimensional distri-
butions compactly. They are computational networks, similar
to traditional artificial neural networks, and are composed
of nodes that compute either products or weighted sums of
their inputs. The weights are strictly positive, and the sum
and product nodes adhere to predefined structural constraints.
The main advantages of SPNs over other probabilistic models,
such as Bayesian networks and Markov networks, include fast
and exact inference. With SPNs, inferences such as evidence
computation, marginalization, and likelihood estimation are
exact and tractable with respect to the size of the model.
These properties make SPNs particularly attractive for appli-
cation domains where machine learning is crucial and where
inference must be both tractable and exact [37]. It is also
worth noting that the structure and parameters of SPNs can be
learned effectively from data. This gives them an advantage
over other models, such as neural networks, which require the
manual design of an effective structure for the task at hand.

An SPN over a set of random variables (RVs) X is a
computational network represented by a rooted, weighted, di-
rected acyclic graph (DAG) G = (N,E), where N represents
nodes and E represents edges (see Figure 1). An SPN node
corresponds to a probability function, and these nodes are
categorized into three types: leaf, sum, or product. A sum
node represents a weighted sum of probability distributions (a
mixture model), given by:

p(x) =
∑
k

wkpk(x) (1)

A product node represents the product of probability distribu-
tions (a factorized model), given by:

p(x) =
∏
d

pd(x
d) (2)

The value of the root node is the value of the SPN. Each leaf
node corresponds to a univariate distribution over its variable.
In SPNs, the sum and product nodes exist at both the root and
intermediate levels and are organized into layers. Each layer
contains nodes of a single type (sum or product). A layeri
is typically followed by a layerj, which contains nodes of a
different type than layeri. Each edge emanating from a sum
node to its child has a strictly positive weight. Adavntages of
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SPN Some advantages of Sum-Product Networks (SPNs) over
traditional probabilistic models are:

1) Automatic Structure Design: There is no need to man-
ually design the structure of the network.

2) Tractability: SPNs are tractable probabilistic models,
meaning queries can be answered in polynomial time.

3) Robustness to Missing Features: SPNs are robust against
missing features, making them suitable for real-world
applications where data may be incomplete.

III. STATE OF THE ART

Code smell detection is still an active area of research
today [19], [38]–[42]. Many techniques have been proposed
to detect code smell in software systems [19]. These ap-
proaches are classified into three classes [19]. metrics-based
[18], rule-based [18] and machine learning based approaches
[19]. The metrics-based approach relies on quality metrics
and a threshold value, that is difficult to obtain, for each
metric. In contrast, the rule-based approach, each code smell
is identified on the basis of some rules that are generally
manually designed by domain experts and can be demanding
in terms of effort. Hence Machine Learning (ML) techniques
are the main approaches used to solve the code smell detection
problem [21]. In this context, a classifier (such as Naı̈ve Bayes,
Logistic Regression, Neural Network, etc.) is trained using
historical data from available projects to predict the presence
of smells in a new project. Kreimer [22] proposed a method
based on decision trees to detect design flaws (code smells)
in object-oriented software. In [23], the authors proposed a
solution to the problem of detecting if a part of code exhibits
more than one smell using multi-label classification methods.
The experiment utilized a multi-label dataset constructed from
two code smells. The results demonstrated that the approach
achieved good performance. Reis et al. [2] presented the results
of an empirical study of an approach called the Crowdsmelling
approach. This approach is a supervised machine learning
approach based on the wisdom of the crowd, i.e., software
developers. The crowd created oracles (datasets) that are later
used by six machine learning algorithms. The results showed
that high performance can be obtained using Naı̈ve Bayes
for God Class detection. For Long Method detection, high
performance is achieved by AdaBoostM. Sharma et al. [24]
explored the application of deep learning models in detecting
smells without extensive feature engineering and the use of
transfer learning. They trained their proposed model based on
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) with an autoencoder. In this scenario, the
model was trained on Csharp examples and later evaluated on
Java examples, and vice versa. The study’s results showed that
transfer learning exhibits comparable performance to direct
learning.

Moha et al [25] proposed a method called DECOR and an
instance of it named DETEX. The DÉCOR method defines all
the specification and detection of code and design smells. The
proposition was validated in terms of precision and recall on
XERCES v2.7.0. In [26], the authors proposed an SVMCSD
technique to detect code smells, based on support vector

machine learning. The experiment was conducted on two
open-source projects to evaluate the technique’s performance
in detecting God Class, Feature Envy, Data Class, and Long
Method smells. The results indicated that the accuracy of
SVMCSD outperformed DETEX in terms of precision and
recall metrics. In [27], the authors conducted a large empirical
study that evaluated 16 different machine learning algorithms
for detecting four code smells (Data Class, Large Class,
Feature Envy, Long Method). The study used 74 software
systems. The results showed that all algorithms achieved a
high performance on the cross-validation data set. Moreover,
the study revealed that the J48 and Random Forest performed
the best while support vector machines achieved the lowest
performance. Di Nucci et al. [28] proposed a new dataset that
contains more code smells and replicated the work in [26]. The
authors argued that the code smell detection problem remains
challenging and relevant, and more work needs to be done
to structure datasets appropriately, along with selecting ap-
propriate predictors. In [29], the authors propose the BDTEX
(Bayesian Detection Expert) approach. This approach builds a
Bayesian belief network using a Goal Question Metric (GQM)
derived from the definitions of antipatterns. The approach was
illustrated with the Blob antipattern and validated with Blob,
Functional Decomposition, and Spaghetti code antipatterns.
In [30], Aleksandar et al. presented an evaluation of the
performance of multiple machine learning-based code smell
detection models for detecting God Class and Long Method
code smells against multiple metric-based heuristics. The study
evaluated the performance of classically used code metrics
against code embeddings (code2vec, code2seq, and CuBERT).
Liu et al. [31] proposed a method based on deep learning
models that automatically extract features from source code to
detect code smells. To address the high demand for training
data required by deep learning models, they proposed an
automatic approach to generate such data. Milika et al. [32]
explored the capacity of pretrained neural code embeddings for
code smell detection. The results of the experiments, which are
based on different code representations such as code metrics
and neural code embeddings (CodeT5 and CuBERT), show
that there is no clear difference between them. However, code
embeddings have the potential to adapt and scale in response
to new programming constructs. Liu et al. [33] proposed
an approach that utilizes a Convolutional Neural Network
(CNN) with a representation based on structural metrics and
semantic (textual) information to detect the feature envy smell.
Hadj-kacem and Bouassida [34] also utilized a representation
that combines structural and semantic information extracted
separately using conventional and deep learning methods.
The empirical study conducted on five open-source projects
(JHotDraw, Apache Karaf, Freemind, Apache Nutch, and
JEdit) showed that the proposed approach can be effective
in detecting bad smells. In [45], the authors presented an
unsupervised approach based on a feature engineering process
for code smell detection. The empirical study conducted on
four datasets and compared with supervised approaches for
code smell detection showed that the approach is as effective
as the supervised approaches.
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Fig. 2. The CSDSPN method.

IV. THE PROPOSED APPROACH

Sum-Product Networks (SPNs) [36] are tractable density
estimators that compactly represent a joint probability distribu-
tion. Many machine learning problems, such as classification,
can be formulated as inference problems using a density
estimator like SPNs. This density estimator can either be
manually designed or trained from data. Density estimation
is the unsupervised activity that aims at learning an estimator
(i.e., Model) of an unobservable underlying joint probability
density function (PDF) over a set of random variables (RVs).
The estimation process is based on observed data (random
sample) of this unobservable PDF. With the obtained estimator,
inference can be done to answer queries such as marginal-
ization, likelihood, conditional and so on. The code smell
detection problem is formulated as a classification problem
using SPN as an estimator (i.e., classifier) trained from data.

The proposed method (CSDSPN) that support this idea is
a classifier based on a SPN. The classifier is learned from
the available code smells datasets and subsequently utilized
to predict code smells in new projects. The workflow of the
CSDSPN method is depicted in Figure 2, while the core
process is elaborated upon in the following section. The
CSDSPN method is mainly composed of two activities. The
first activity consists of preprocessing the datasets, while the
second activity consists of learning the classifier from the
processed data.

A. Data Preprocessing

Data preprocessing is a crucial task conducted to address
noisy, missing, and inconsistent data within existing datasets
before proceeding to more advanced activities. The principal
activities of this process include data cleaning, data integration,
data reduction, and data transformations [43]. In the data min-
ing community, it is widely acknowledged that normalization
(i.e., standardization) has the potential to enhance the perfor-
mance of data mining techniques. Normalization techniques
aim to scale attribute data to give all attributes equal weight,

thereby reducing them to a smaller range. Various techniques
can be employed for dataset normalization, including min-
max normalization, z-score normalization, and normalization
by decimal scaling [43]. The proposed method utilizes the
min-max normalization technique.

B. Learning an SPN Classifier

Problem solving with an SPN classifier generally requires
identifying an effective structure and parameterization. While
it’s possible to manually design a valid SPN classifier struc-
ture, this process is time-consuming and demands significant
domain knowledge, followed by weight learning [35], [37]. A
more efficient approach, widely adopted in the literature, is
to learn both the structure and the parameter weights of the
SPN directly from the data [44]. This method ensures that
the resulting SPN effectively represents the problem. In our
approach, the SPN classifier for code smell detection is built
using the LearnSPN algorithm [35], [48] from our prepro-
cessed training dataset. LearnSPN is a foundational learning
algorithm, commonly used to construct a valid SPN from data.
The algorithm takes as input a set of N i.i.d. samples, {xi},
where i = 1, . . . , N , over random variables X . These samples
are typically organized as a matrix, with instances as rows
and variables as columns. The goal of the learning process
is to learn an estimator for the joint probability distribution
PX , using these samples. The samples used to obtain PX

consist of the elements in the training dataset. Each sample
represents a collection of metrics extracted from the source
code, along with its class, denoted as (x1, . . . , xN ), where the
variable xN represents the class of the source code (smelly
code or not). The LearnSPN algorithm is composed of two
fundamental operations: the chop operation, which divide
the variables (columns) in the dataset, and the slice-a-slice
operation, which clusters instances (rows). The SPN learning
process is summarized in Algorithm 1 [35].
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Algorithm 1 LearnSPN
Require: A dataset D containing a set of elements S over variable X .
Ensure: An SPN representing a distribution over X learned from D.
1: Begin
2: if |X| = 1 then
3: return univariate distribution estimated from the variable’s values in

S
4: else
5: Divide X into approximately independent subgroups Xj .
6: if success then
7: return

∏
j LearnSPN(S,Xj)

8: else
9: Divide S into subgroups of similar instances Si.

10: return
∑

i
|Si|
|S| · LearnSPN(Si, X)

11: end if
12: end if
13: End

C. Detecting Code Smells

To compute the class of a new source code M, we use the
Most Probable Explanation (MPE) inference method which is
a special case of the maximum a-posteriori (MAP) method
[35], [37].

1) The Most Probable Explanation Inference Method:
Let PV be a distribution over a set of random variables V ,
represented by the obtained SPN from the previous step. Let
F denote the evidence, which is the set of metrics E extracted
from M , where |F | = |V | − 1. Let C be the class of the
source code M . The identification of the class C of the new
source code M consists of computing the posterior probability
P (C | F ). Formally, MPE(C,X) = argmaxC P (C | F ).

V. EMPIRICAL STUDY

This section presents an empirical study on using SPNs
for detecting code smells, specifically focusing on God Class,
Feature Envy, and Long Method code smells. The primary
objective of this experiment is to assess the performance of
CSDSPN method in detecting these code smells. The main
hypothesis of this study is that SPNs are suitable for detecting
code smells in software systems. More specifically, the em-
pirical study aims to answer the following research question:
RQ1: Can a classifier based on a sum product network be
effective in detecting code smells in software systems?
To address RQ1, a classifier based on a SPN is trained on a
training set and evaluated on a test dataset. This process is
conducted using 18 well-known datasets, which are described
in the following section.

A. Performance

Code smell detection is a classification problem, and due
to the imbalanced nature of code smell datasets [2], [43],
we utilize Area Under the receiver operating characteristic
Curve (AUC), Accuracy, and F-measure (F1) to assess the
performance of the CSDSPN model. These metrics are widely
adopted by the code smell detection community [2]. Higher
values of these measures indicate better performance. The
AUC [2], [43] metric is widely recommended by researchers
for evaluating the performance of predictors, as it has the
power to reveal their real potential [2], [43]. Unlike other met-
rics, AUC is not sensitive to changes in data distributions [2],

[43]. A value close to 1 indicates better classifier performance,
while a value close to 0.5 suggests performance similar to
random guessing. A value close to 0 indicates performance
worse than random guessing [43].

These metrics are calculated based on the following quan-
tities: true positives (TP), false negatives (FN), false positives
(FP), and true negatives (TN), where:

• TP: Instances that are actually positive and classified by
the classifier as positive.

• FN: Instances that are actually positive but classified by
the classifier as negative.

• FP: Instances that are actually negative but classified by
the classifier as positive.

• TN: Instances that are actually negative and classified by
the classifier as negative.

These metrics are calculated using formulas 1 to 4.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 (F-measure) is the harmonic mean of precision and
recall:

F-measure =
2× Recall × Precision

Recall + Precision
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

B. Baseline Methods

The performance of our CSDSPN is evaluated relative to
the effectiveness of other code smell detectors. We com-
pare it against seven baseline classifiers commonly used in
evaluating the effectiveness of code smell detectors. These
detectors include AdaBoost(AB), J48, Random Forest (RF),
SMO (Sequential Minimal Optimization algorithm), Multi-
layer Perceptron (MLP), Convolutional neural network (CNN)
[1] and Naı̈ve Bayes (NB) [2], [43].

C. Setup

To address RQ1, The study used a stratified 10-fold cross-
validation approach to assess the performance of CSDSPN and
compare it with many advanced machine learning models. In
this approach, the dataset is divided into 10 folds of equal size,
ensuring a balanced distribution of code smells. The validation
process consists of 10 iterations, where in each iteration, 9
folds are used as the training set, and the remaining fold is
used as the test set.

1) Hyperparameter Tuning: The performance of CSDSPN
is highly dependent on hyperparameters. It is well-known that
finding the best hyperparameter values for a model is a chal-
lenging problem, often referred to as hyperparameter tuning.
Many approaches have been proposed to address this issue,
ranging from grid search to more advanced metaheuristic-
based methods [16]. In this study, the CSDSPN approach was
evaluated using a grid-based tuning strategy. In this strategy,
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the hyperparameter Minimum number of rows required to split
was varied across the values 5, 10, 15, 20, 25, 30, 40 to identify
the optimal value.

The SPN classifier parameters were configured as follows:
all features were considered Gaussian variables, except for the
class label and binary metrics, which were set to Bernoulli
variables. Leaf distributions are learned using Maximum Like-
lihood Estimation (MLE) [43]. The K-Means algorithm [35],
[43] is employed for splitting rows (data points), while the
Randomized Dependency Coefficient (RDC) [35] is utilized
for splitting columns (features, variables). The minimum num-
ber of rows required to continue the split is adjusted until a
satisfactory result is achieved. Table I presents a summary
of the CSDSPN and baseline models’ hyperparameter values
used in the experiment. The implementation of the CSDSPN
method utilized the DeeProb-kit, a Python library publicly
available on GitHub (https://github.com/deeprob-org/deeprob-
kit). All experiments were conducted in Python on the Colab
platform.

D. Datasets

The empirical study utilized 18 well-known datasets [2] to
evaluate the proposed method. The main reason for choosing
these datasets is that they are more realistic than the proposed
datasets in the literature as indicated by [2], [22]. These
datasets were created and validated by numerous developers
over three years of work. The main principle of the construc-
tion process is to use different tools to identify code smells
from various software projects. Then, a fragment flagged by
the tools as ”smelly” is reviewed by multiple developers before
being included in the final dataset. Table II presents the
characteristics of the datasets used to evaluate the proposed
approach. The first column gives the name of the dataset,
the second indicates the code smell to which the dataset
refers, the third presents the total number of cases, the fourth
presents the number of true instances, the fifth presents the
percentage of true instances, the sixth presents the number
of false instances, and the seventh presents the percentage
of false instances. The identifier of each dataset corresponds
to the year or years of its constitution. For example, the
identifier ’2018’ represents the dataset from the year 2018,
while ’2018+2019+2020’ represents the dataset produced by
combining datasets from the years 2018, 2019, and 2020.
According to José et al. [2], the datasets are not normalized in
size to balance the two classes, as done by other researchers
[22]. This deliberate decision aims to make the detection more
challenging, mirroring real-world scenarios [2].

The datasets used in this study are accessible from
https://github.com/dataset-cs-surveys/Crowdsmelling.

E. Experiment Results

This section presents the results of the empirical study
conducted to answer the proposed question RQ1.
We evaluate the performance of our method in detecting three
code smells: Long method, Feature envy, and God class, across
18 datasets. The obtained results are compared with the per-
formance of the baseline approaches. Since multiple metrics

(accuracy, F-measure, AUC) can be used for comparison, and
the best model can vary depending on the chosen metric, we
decided to first analyze the performance according to the AUC
metric. Subsequently, we assess accuracy and F-measure.

1) AUC: Figure 3 shows the box plot of the AUC for the
CSDSPN approach and the baseline models on the feature
envy datasets. Figure 4 shows the box plot of the AUC for
the CSDSPN approach and the baseline models on the god
class datasets. Figure 5 shows the box plot of the AUC
for the CSDSPN approach and the baseline models on the
long method datasets. These box plots illustrate the range
of AUC values. On each box, the median is indicated by
a red central mark, while the 25th and 75th percentiles are
represented by the edges. Outliers are depicted as small circles.
The main observation that can be drawn from these figures
is that no model outperformed all others in terms of AUC
across every dataset. From Figure 3, it can be observed that
the AUC for CSDSPN on the Feature Envy dataset ranged
between 0.50 and 0.60 (see Table III). The table also shows
that CSDSPN achieved the best median average AUC on the
2019, 2019+2018, and 2020+2019 Feature Envy datasets, with
average AUC values of 0.55, 0.60, and 0.54, respectively. The
figure indicates that CSDSPN outperformed both the MLP and
CNN models in terms of average AUC on the 2019, 2020,
2019+2018, and 2020+2019 datasets. On the 2020 dataset, the
best AUC was 0.50, achieved by AB, SMO, RF, CNN, and
J48. On the 2020+2019+2018 dataset, the best AUC of 0.53
was achieved by MLP.

From Figure 4, it can be observed that the average AUC
for CSDSPN ranged between 0.68 and 0.86 (see Table III).
CSDSPN achieved the best median average AUC on the 2018,
2019, and 2019+2018 God Class datasets, with average AUC
values of 0.68, 0.76, and 0.76, respectively. The figure shows
that CSDSPN outperformed both MLP and CNN models
on the 2018, 2019, and 2019+2018 God Class datasets. It
also performed better than MLP on the 2020+2019+2018
dataset, where it matched the performance of CNN. On the
2020 dataset, NB, RF, and SMO were found to be effective,
achieving a score of 0.86, with RF and SMO being the top
performers with an AUC score of 0.81. On the 2020+2019
dataset, RF and SMO were again the best performers in
terms of AUC, with a score of 0.81. On the 2020+2019+2018
dataset, NB was the best performer in terms of AUC, followed
by SPN, which was the second-best performer along with RF
and AB.

From Figure 5, it can be observed that the AUC for
CSDSPN ranged between 0.54 and 0.82 (see Table III).
The figure shows that CSDSPN achieved the best median
average AUC compared to NB on all long method datasets.
Additionally, CSDSPN achieved the best median average AUC
compared to MLP on the 2019+2018 long method datasets.
In general, on the long method datasets, CSDSPN achieved
competitive average scores compared to the other models.
More specifically, AB achieved the best average on the 2018,
2019, 2018+2019, and 2020+2019 datasets, with values of
0.54, 0.66, 0.66, and 0.78, respectively. On the 2020 dataset,
the best average AUC was achieved by CNN with a score of
0.82, while on the 2020+2019+2018 dataset, the best average
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TABLE I
SUMMARY OF CSDSPN AND BASELINE MODELS’ HYPERPARAMETER VALUES USED IN THE EXPERIMENT.

Model Parameter Value
SPN Learn leaf Mle

Split rows (Minimum number of rows required to split) Kmeans
Split cols RDC
min rows slice Varied between: 10-50

AB max depth 2
n estimator 100
learning rate 0.1

NB - -

J48 criterion Entropy
max depth 10
min samples split 10
min samples leaf 5

RF n estimators 100
criterion Entropy
max depth 20
min samples split 10
min samples leaf 5

MLP First hidden layer size 100
Second hidden layer size 50
solver Adam
alpha 0.0001
Max iteration 100

SMO Kernel Rbf
C 1.0
gamma Scale

CNN First Conv1D Layer kernel Filters, size, and activation 3, 64, and ReLu
First MaxPooling1D Layer pool size 2
Second Conv1D Layer kernel Filters, size, and activation 32, 3, and ReLu
Second MaxPooling1D Layer pool size 2
Fully Connected Layer Units, activation 50, ReLu
Dropout rate 0.5

TABLE II
STATISTICS OF THE DATASETS.

Dataset Code smell No of Cases True % True False % False
2018 Feature Envy 10 3 30% 7 70%
2019 Feature Envy 197 110 56% 87 44%

2019+2018 Feature Envy 207 113 55% 94 45%
2020 Feature Envy 123 79 64% 44 36%

2020+2019 Feature Envy 320 189 59% 131 41%
2020+2019+2018 Feature Envy 330 192 58% 138 42%

2018 God class 22 8 36% 14 64%
2019 God class 129 74 57% 55 43%

2019+2018 God class 151 82 54% 69 46%
2020 God class 136 84 62% 52 38%

2020+2019 God class 265 158 60% 107 40%
2020+2019+2018 God class 287 166 58% 121 42%

2018 Long Method 59 24 41% 35 59%
2019 Long Method 414 180 43% 234 57%

2019+2018 Long Method 473 204 43% 269 57%
2020 Long Method 853 350 41% 503 59%

2020+2019 Long Method 1267 530 42% 737 58%
2020+2019+2018 Long Method 1326 554 42% 772 58%

AUC scores were 0.77, achieved by Adaboost, J48, and RF. A statistical test in terms of AUC was conducted to identify
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Fig. 3. Box plot of AUC for the CSDSPN approach and baseline methods on Feature Envy datasets.

whether there are significant differences between the CSDSPN
and baseline model results. Due to the non-normal distribution
of the data, the Mann-Whitney U Test [15] was chosen for
this analysis. Table IV presents the p-values for CSDSPN and
baseline models in terms of AUC scores. Table V presents the
mean AUC of CSDSPN and baseline models on all datasets.
Table IV shows that all the obtained p-values are greater
than 0.05, indicating that, on average, there are no significant
differences between CSDSPN and the baseline models, which
means that CSDSPN is as effective as any of these models.

2) Accuracy and F-measure: Table III presents the obtained
accuracy and F-measure values of CSDSPN and the seven
baseline techniques on the 18 datasets for the three code
smells: God Class, Feature Envy, and Long Method. From
this table, it can be observed also that no single method
outperforms all others in every case in terms of accuracy
and F1-score. This table shows that on the 2018 God Class
dataset, CSDSPN achieved the best F1 and accuracy scores,
with values of 0.78 and 0.67, respectively. On the 2019 dataset,
the best scores were achieved by MLP, with an F1 value of
0.81 and an accuracy value of 0.78. NB performed best in
terms of F1 and accuracy on the 2019+2018 dataset, with
values of 0.81 and 0.78, respectively. On the 2020 dataset,
NB and RF performed best in terms of F1 and accuracy,
with scores of 0.92 and 0.89, respectively. On the 2020+2019
dataset, SPN, AB, J48, RF, MLP, and CNN were the best
performers in terms of F1, with a score of 0.86. NB, RF,
and SMO performed better in terms of accuracy, with a score
of 0.83. On the 2020+2019+2018 dataset, NB was the best
performer in terms of AUC, F1, and accuracy, while SPN
was the second-best performer, along with RF and AB. On
the same dataset, the best F1 score (0.74) was achieved by

AB, and the best accuracy score (0.59) was achieved by J48
and MLP. In the case of the Long Method datasets, the best
F1 and accuracy scores were achieved by AB on the 2018,
2019, 2018+2019, 2020+2019, and 2020+2019+2018 datasets.
On the 2020 dataset, the best F1 and accuracy scores were
achieved by AB, CNN, and SMO, with an F1 score of 0.78
and an accuracy score of 0.81.

3) Discussion: From these figures and tables, we can
observe that the AUC for SPN in the case of the long method
smell was between 0.54 and 0.82. The AUC for the GC case
ranged between 0.68 and 0.86. These values indicate that
the CSDSN approach is effective in detecting long method
and God class smells, as they show that the CSDSPN model
performs better than random guessing. However, in the case of
feature envy, the CSDSPN AUC for the feature envy dataset
ranged between 0.50 and 0.60, except for the 2018 dataset,
where all models failed due to the small dataset size (only
10 instances). The baseline models’ performance in terms of
AUC was also between 0.5 and 0.6. These values suggest that
all models struggle to detect the feature envy code smell, and
the results indicate that the models are essentially providing
random guesses. The main reason for this is that feature envy
is a type of smell where the method is more dependent on
information existing in other classes than the its own class. A
representation based on metrics alone is insufficient to reveal
such semantic relationships, so more advanced representations
need to be devised to detect this type of smell.

4) Effect of Model Parameters: This section explores how
the minimum number of rows required to continue the split
(MRS) affects the performance of the model. Figure 6 presents
the effect of the parameter MRS on the AUC for Feature Envy
in the case of the 2019 dataset, the effect of the parameter
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Fig. 4. Box plot of AUC for the CSDSPN approach and baseline methods on God Class datasets.

Fig. 5. Box plot of AUC for the CSDSPN approach and baseline methods on Long Method datasets.

MRS on the AUC for Long Method in the case of the 2020
dataset and the effect of the parameter MRS on the AUC for
God class in the case of the 2018 dataset. From this figure, we
conclude that the AUC values of the method are sensitive to
the MRS values, especially in the case of the Feature Envy and
Long Method datasets. In contrast, for the God class dataset,
the variation in AUC values was found to be low. This figure

demonstrates that it is difficult to determine the best value in
advance. Therefore, it is crucial to explore approaches that aid
in identifying the optimal value.

5) Summary of RQ1 Results: From Figures 3 4 5 and
Table III, it is clear that our approach can effectively detect
code smells such as God class and Long Method. However,
detecting the Feature Envy code smell remains a challenging

M. ABDELKADER: AN APPROACH BASED ON SUM PRODUCT NETWORKS FOR CODE SMELLS DETECTION 197



TABLE III
THE AVERAGE F1, ACCURACY (ACC) AND AUC RESULTS OF ALL METHODS FOR THE THREE CODE SMELLS ON ALL DATASETS.

Datasets Model FE God Class Long Method
F1 Acc. AUC F1 Acc. AUC F1 Acc. AUC

2018 AB 0.00 0.70 0.00 0.30 0.62 0.45 0.46 0.62 0.54
CNN 0.00 0.40 0.00 0.13 0.53 0.38 0.05 0.50 0.41
J48 0.00 0.70 0.00 0.33 0.52 0.40 0.44 0.64 0.51

MLP 0.00 0.70 0.00 0.22 0.60 0.40 0.33 0.54 0.47
NB 0.00 0.30 0.00 0.17 0.47 0.40 0.39 0.59 0.50
RF 0.00 0.70 0.00 0.00 0.63 0.40 0.39 0.60 0.50

SMO 0.00 0.70 0.00 0.00 0.63 0.40 0.34 0.59 0.52
SPN 0.00 0.70 0.00 0.67 0.78 0.68 0.44 0.55 0.47

2019 AB 0.66 0.53 0.48 0.71 0.71 0.70 0.63 0.65 0.66
CNN 0.62 0.54 0.53 0.76 0.73 0.71 0.48 0.57 0.57
J48 0.62 0.56 0.54 0.76 0.73 0.71 0.55 0.63 0.62

MLP 0.62 0.56 0.55 0.81 0.78 0.76 0.59 0.64 0.63
NB 0.17 0.47 0.51 0.80 0.75 0.73 0.53 0.60 0.59
RF 0.62 0.54 0.52 0.77 0.74 0.72 0.56 0.63 0.62

SMO 0.62 0.53 0.51 0.67 0.74 0.77 0.53 0.61 0.61
SPN 0.52 0.54 0.55 0.66 0.72 0.75 0.54 0.60 0.60

2019+2018 AB 0.64 0.53 0.50 0.69 0.69 0.70 0.65 0.65 0.66
CNN 0.63 0.54 0.53 0.56 0.62 0.62 0.48 0.60 0.58
J48 0.62 0.58 0.58 0.68 0.68 0.68 0.55 0.62 0.61

MLP 0.62 0.58 0.58 0.75 0.68 0.67 0.57 0.63 0.63
NB 0.22 0.50 0.53 0.79 0.76 0.75 0.35 0.53 0.50
RF 0.64 0.58 0.58 0.72 0.70 0.69 0.59 0.64 0.64

SMO 0.62 0.55 0.54 0.71 0.57 0.53 0.60 0.65 0.65
SPN 0.60 0.60 0.60 0.69 0.74 0.76 0.51 0.59 0.58

2020 AB 0.78 0.64 0.50 0.90 0.87 0.85 0.78 0.81 0.81
CNN 0.78 0.64 0.50 0.78 0.80 0.79 0.78 0.81 0.82
J48 0.78 0.64 0.50 0.90 0.87 0.85 0.75 0.79 0.79

MLP 0.78 0.63 0.49 0.85 0.83 0.83 0.75 0.80 0.80
NB 0.06 0.37 0.50 0.92 0.89 0.86 0.60 0.72 0.69
RF 0.78 0.64 0.50 0.92 0.89 0.86 0.76 0.80 0.79

SMO 0.78 0.64 0.50 0.91 0.88 0.86 0.78 0.81 0.81
SPN 0.78 0.63 0.49 0.71 0.74 0.78 0.73 0.79 0.78

2020+2019 AB 0.74 0.59 0.51 0.86 0.82 0.80 0.75 0.78 0.78
CNN 0.73 0.58 0.49 0.86 0.82 0.80 0.73 0.75 0.76
J48 0.73 0.59 0.52 0.86 0.82 0.80 0.73 0.77 0.77

MLP 0.74 0.60 0.52 0.80 0.79 0.79 0.73 0.76 0.77
NB 0.13 0.43 0.51 0.86 0.83 0.80 0.54 0.67 0.64
RF 0.74 0.60 0.52 0.86 0.83 0.81 0.73 0.77 0.77

SMO 0.74 0.60 0.51 0.86 0.83 0.81 0.74 0.77 0.77
SPN 0.61 0.56 0.54 0.86 0.82 0.80 0.64 0.63 0.65

2020+2019+2018 AB 0.74 0.59 0.51 0.84 0.81 0.79 0.75 0.77 0.77
CNN 0.73 0.58 0.50 0.84 0.79 0.77 0.71 0.75 0.75
J48 0.73 0.59 0.52 0.83 0.79 0.77 0.74 0.76 0.77

MLP 0.72 0.59 0.53 0.78 0.70 0.65 0.73 0.76 0.76
NB 0.16 0.45 0.52 0.85 0.82 0.80 0.49 0.66 0.62
RF 0.73 0.58 0.51 0.85 0.81 0.79 0.73 0.76 0.77

SMO 0.73 0.58 0.51 0.74 0.59 0.52 0.71 0.75 0.75
SPN 0.68 0.55 0.50 0.84 0.80 0.79 0.56 0.66 0.66

task. The statistical test in terms of AUC demonstrated that
CSDSPN is at least as effective as the baseline models. In
conclusion, the CSDSPN method shows promise in detecting
code smells.

VI. THREATS TO VALIDITY

A. Internal Validity

the proposed method was implemented using the Deepro
library, a Python Library for Deep Probabilistic Modeling. The
parameters utilized in the empirical study include Maximum
Likelihood Estimation (MLE) for leaf distribution learning,
K-Means for row splitting, and randomized dependency coef-
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TABLE IV
P-VALUES FOR AUC SCORES COMPARING CSDSPN AND BASELINE

MODELS.

Model p-value
AB 0.89
CNN 0.61
J48 0.97
MLP 0.89
NB 0.55
RF 0.91
SMO 0.63

TABLE V
MEAN AUC SCORES OF CSDSPN AND BASELINE MODELS.

Model Average AUC
AB 0.61
CNN 0.58
J48 0.61
MLP 0.60
NB 0.58
RF 0.61
SMO 0.59
SPN 0.61

Fig. 6. Effect of MRS value on the AUC for Feature Envy, God Class and
Long Method datasets

ficient (RDC) for variable splitting. The minimum number of
rows required to continue the split was varied until a satis-
factory result was achieved. However, due to this variability,
there is a potential threat to internal validity. This problem
is commonly known as hyperparameter tuning as decribed in
the previous sections and involves finding the best parameters
for models. It is well-studied in the literature, and many
approaches have been proposed to solve it. Therefore, it is
advisable to design controlled experiments for hyperparameter
tuning based on these proposed approaches to mitigate this
threat.

B. External Validity

External validity concerns the generalizability of the study
results. This study aims to assess the effectiveness of the
proposed method in detecting God Class, Long Method, and
Feature Envy code smells across 18 datasets. As such, the ob-
tained results can only be generalized to these specific datasets
and tasks mentioned earlier. Additionally, These datasets were

created and validated by numerous developers over several
years of work. However, it is important to note that the dataset
may still contain inconsistencies, as the decision to label
a code fragment as ”smelly” remains subjective. Therefore,
conducting additional studies on different datasets and tasks
is essential to obtain a more accurate understanding of the
method’s real-world performance.

VII. CONCLUSION

This paper proposed a novel method for code smell de-
tection based on Sum Product Networks. The approach for-
mulates the code smell detection problem as a classification
task using an SPN learned from historical data. The proposed
method, CSDSPN, which supports this idea, first preprocesses
the dataset, then an SPN classifier is learned from the data us-
ing the LearnSPN algorithm. The class (smelly or not smelly)
of a new code source is determined using the Most Probable
Explanation inference method by feeding its representation
into the learned SPN. The evaluation of the proposed approach
on eighteen well-known datasets and against seven standard
and advanced machine learning models demonstrates its poten-
tial in detecting code smells. Additionally, a statistical test con-
ducted to determine whether there were significant differences
between the results of the CSDSPN and the baseline model
highlighted the need for further studies on larger datasets to
better assess the true potential of the proposed approach. In our
future work, we will explore the performance of our approach
on various types of smells. Additionally, we plan to investigate
the impact of different SPN learning methods, as well as the
effect of hyperparameters on the performance of the CSDSPN
approach. Another important direction will involve studying
potential enhancements to further improve the effectiveness
of the proposed method.
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