
Investigate the Use of Deep Learning in IoT Attack
Detection

Mohamed Saddek Ghozlane, Adlen Kerboua, Smaine Mazouzi, and Lakhdar Laimeche

Abstract—The Internet of Things (IoT) has provided many
benefits to society and introduced new security challenges.
Attackers can target IoT devices to steal sensitive information or
launch large-scale attacks. In this field, deep learning algorithms
have provided encouraging results in the discovery and classifi-
cation of intrusions in IoT devices. This study investigates the
implementation and performance of four deep learning models:
One-Dimensional Convolutional Neural Network (1DCNN), Long
Short-Term Memory (LSTM), a hybrid 1DCNN-LSTM, and Two-
Dimensional Convolutional Neural Network (2DCNN) for detect-
ing and classifying IoT device attacks. Using the BoTNeTIoT-L01-
v2 dataset, which includes normal and attack traffic provided by
various IoT devices, we preprocess the data, extract features,
and train the models, including weighted versions to optimize
feature importance. Our findings highlight that the 2DCNN
and hybrid 1DCNN-LSTM models shows superior performance,
achieving high classification accuracy. This study contributes a
comprehensive comparative analysis of deep learning models for
IoT security, focusing on the effectiveness of weighted features
in improving detection accuracy. The results provide valuable
information for the advancement of real-time IoT attack detection
systems.

Index Terms—Deep learning, IoT, Attack, BotNet.

I. INTRODUCTION

THE Internet of Things has revolutionized communica-
tion and connectivity, particularly in industrial applica-

tions [1], enabling smart spaces, intelligent transportation, and
seamless device interaction. However, the exponential growth
of IoT devices has also expanded the attack surface, allowing
malicious actors to exploit vulnerabilities to gain unauthorized
access, disrupt critical systems, and cause significant financial
and operational damage. These challenges require robust se-
curity measures capable of detecting and mitigating attacks in
real time.

Deep learning techniques have emerged as a powerful tool
for IoT security, using the ability of the neural network to
identify intricate patterns and anomalies in large real-time data

Manuscript received November 6, 2024; revised December 3, 2024. Date
of publication May 23, 2025. Date of current version May 23, 2025. The
associate editor prof. Teodoro Montanaro has been coordinating the review
of this manuscript and approved it for publication

M. S. Ghozlane is with the Department of Petrochemical, University
of Skikda and with Department Computer Science, University of Tebessa,
Algeria.

A. Kerboua is with the Department of Petrochemical and LGMM Labora-
tory, University of Skikda, Algeria (corresponding author: ad.kerboua@univ-
skikda.dz).

S. Mazouzi is with the Department of Computer Science and LICUS
Laboratory, University of Skikda, Algeria.

L. Laimeche is with the Department Computer Science, University of
Tebessa, Algeria

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0101

streams. These methods surpass traditional rule-based systems,
offering adaptability to evolving attack patterns and reducing
false positives, thereby minimizing manual intervention and
operational costs. However, the performance of deep learning
models is dependent on effective feature selection and model
architecture.

Although deep learning has shown significant potential
in IoT security, previous studies have focused primarily on
individual model architecture without a comprehensive com-
parative analysis of different deep learning approaches. This
study looks at four deep learning models—LSTM, 1DCNN,
hybrid 1DCNN-LSTM, and 2DCNN—for detecting IoT at-
tacks, showing what each model does well and where it falls
short. In addition, we introduce a feature weighting mechanism
within these models that optimizes the importance of input
features during training. Unlike prior research, our study not
only compares these models but also examines how the impor-
tance of features affects detection performance. This provides
valuable insights into model selection and optimization for
real-time IoT security applications:

• Investigating the performance of four deep learning
models (LSTM, 1DCNN, hybrid 1DCNN-LSTM, and
2DCNN) in detecting IoT device attacks.

• Proposing weighted versions of these models to enhance
feature selection during the training process.

• Conduct a detailed comparative analysis of the models’
performance, providing insight into their strengths and
limitations.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work, highlighting gaps in IoT attack
detection research. Section III provides an overview of the pro-
posed method, while Section IV details the experimental setup
and results. Section V discusses the findings, and Section VI
concludes with future research directions.

II. RELATED WORK

The Internet of Things (IoT) has rapidly evolved, offering
numerous applications in industrial automation, healthcare,
and smart cities. However, this expansion has also intro-
duced significant security vulnerabilities, making IoT devices
a prime target for various cyberattacks. Deep learning-based
approaches have emerged as powerful solutions for detecting
and mitigating these attacks due to their ability to identify
complex patterns and anomalies in large datasets.

In most of the related literature, the classification of deep
learning-based IoT security techniques is shown in Fig.1.

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025 229

1845-6421/06/2024-0101 © 2025 CCIS



Fig. 1. Taxonomy of the deep learning-based IoT attack detection.

• Supervised: Labeled datasets are used to train deep
learning models to classify and detect security threats to
the IoT. Examples include CNNs, LSTMs, and Support
Vector Machines (SVMs).

• Unsupervised: using unlabeled data to train deep learn-
ing models to identify anomalies in the data that may
indicate security problems. Examples that use autoen-
coders, Generative Adversarial Networks (GANs), and
Self-Organizing Maps (SOMs),

• Hybrid: methods combining both supervised and unsuper-
vised learning techniques to increase the precision and
effectiveness of identifying anomalies and intrusions in
IoT security. Examples include Deep Belief Networks
(DBNs), stacked autoencoders, and hybrid Convolutional
and Recurrent Neural Networks (CRNNs).

Before diving into the heart of the matter, we review
some recent related works that use deep learning to detect
IoT attacks, along with the methods and datasets used, the
advantages, and the limitations.

Several studies have explored the use of deep learning
techniques for IoT security. Ullah and Mahmoud [2] proposed
a stacked autoencoder model to detect anomalies in IoT net-
works, achieving high precision in public datasets. Similarly,
Shone et al. [3] implemented a deep learning framework
combining autoencoders and SoftMax classifiers for intrusion
detection, demonstrating superior performance compared to
traditional machine learning models.

In [4] and [5], they propose a distributed attack detection
scheme integrating big data analytics using deep learning
for IoT networks, showcasing significant improvements in
detection accuracy and scalability for various types of attacks.
The approach is computationally intensive and may not be
practical for real-time detection in resource-constrained IoT
environments.

In [6], Roopak et al. introduced a hybrid model that inte-
grates convolutional neural networks (CNNs) with long- and
short-term memory (LSTM) networks to analyze IoT traffic
data. Their approach effectively captured spatial and temporal
dependencies in the data, achieving promising results for real-
time attack detection.

The authors of [7] talk about how deep learning can be

used to improve cybersecurity for IoT networks. For intrusion
detection, they make use of an RNN and a CNN. The
performance of these models is thoroughly analyzed by the
authors, who also draw comparisons between them and more
conventional machine learning models.

A comprehensive overview of deep learning models for
IoT object security is given in the work [8]. It considers
authentication, intrusion detection, privacy preservation, and
malware detection. The article also highlights the challenges
and limitations of these techniques and provides insight into
future research directions.

The work [9] discusses the security issues caused by deep
learning in the IoT. It particularly highlights the overloads
encountered in securing connected objects due to the hetero-
geneity of IoT objects and communication protocols, as well
as the limited computing and storage resources available on
these machines.

A concept for utilizing big data and deep learning to protect
IoT devices is presented in the study [10]. The essay outlines
the inadequacies of conventional security techniques as well
as the security difficulties facing the Internet of Things. The
authors propose the use of these technologies to address
security challenges in the Internet of Things.

An assembly study utilizing deep learning and machine
learning-based intrusion detection systems (IDSs) for the Inter-
net of Things networks is provided in [11]. The authors discuss
deep machine learning techniques used for IDSs, particularly
deep neural networks.

A thorough overview of deep learning-based security be-
havior analysis in IoT networks is given by Yue et al. [12].
The article focuses on using this type of learning to detect
anomalous behavior and improve IoT security.

The authors of [13] suggest using federated deep learning
(FDL) to create a global deep learning model that will guar-
antee the security of connected IoT items without requiring
the transfer of sensitive data to a centralized server.

In [14], the authors offer a thorough analysis of deep
learning techniques for Internet of Things security. The authors
reviewed 33 research articles and categorized them according
to the type of security threats addressed, the datasets, and the
deep learning models that were employed.

A general analysis of deep learning approaches used for the
cybersecurity of connected objects can be found in the paper
by Ahmed and Askar [15]. The study also covers numerous
deep learning methods that have been used to identify different
kinds of cyberattacks in IoT networks. Additionally, the article
has a more in-depth discussion on the main limitations and
drawbacks of these deep learning techniques.

In [16], the authors propose a deep learning algorithm
based on image recognition in IoT applications. The algorithm
uses CNNs. The authors apply this algorithm by conducting
experiments on a dataset of various objects and achieve an
accuracy of 97.5%.

Sarker et al. [17] give a thorough summary of the difficulties
with IoT security. They discuss the limitations.

of traditional security mechanisms that are not effective in
the dynamic and heterogeneous IoT environment. The study
addresses several machine learning methods and their possible

230 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025



uses in IoT security, including supervised, unsupervised, and
reinforcement learning.

An overview of supervised deep learning techniques for pro-
tecting connected things (IoT) is provided by Abdel-Basset et
al. [18]. The authors discuss the possibilities and difficulties of
using these techniques for IoT security. In addition, the paper
offers information and draws attention to the shortcomings of
the deep learning models used today for IoT security.

Finally, the article [19] proposes an IoT security solution
using deep learning mechanisms. The authors propose a
framework consisting of three main components: data acqui-
sition, data pre-processing, and deep learning-based security
mechanisms. The proposed framework is evaluated with a
dataset of different IoT gadgets, and the findings indicate that
the suggested deep learning-based mechanism can accurately
detect attacks on IoT networks.

Despite these advancements, certain limitations persist.
Many existing studies rely heavily on simulated datasets, limit-
ing their practical applicability in real-world IoT environments.
Additionally, while hybrid models have shown improved ac-
curacy, there is a lack of comprehensive comparative analyses
to determine the most effective architectures for specific attack
types. Furthermore, the role of feature weighting in improving
model performance remains underexplored.

A. Research Gap and Problem Statement

Although deep learning has proven to be a powerful tool
for IoT security, significant gaps remain in the current body of
research. First, most existing studies focus on a single type of
attack or dataset, overlooking the diverse nature of IoT traffic
and threats. Second, the effectiveness of feature-weighted
models has not been thoroughly investigated, particularly for
detecting complex attack patterns. Third, there is a lack of
clarity on which deep learning architectures are best suited
for real-time IoT attack detection under varying conditions.

To address these gaps, this study provides a comprehensive
comparative analysis of four deep learning models: LSTM,
1DCNN, hybrid CNN-LSTM, and 2DCNN. Additionally, it
introduces weighted versions of these models to evaluate the
impact of feature weighting on classification performance. We
ensure practical relevance by using the BoTNeTIoT-L01-v2
dataset, which covers various types of attacks and IoT traffic.
This research aims to bridge the gap by identifying robust
models and methods for real-time IoT attack detection and
proposing strategies to improve their effectiveness.

III. OVERVIEW OF THE PROPOSED METHOD

The main purpose of this study is to evaluate the role that
deep learning models play in the classification of IoT security
data. Specifically, the investigation focuses on comparing the
performance of four different models: LSTM, 1DCNN, hybrid
1DCNN-LSTM, and 2DCNN.

Recurrent neural networks (RNNs), which are useful for
processing sequential data such as time series data, include
the LSTM network.

The 1DCNN model, on the other hand, uses convolutional
layers to extract features from a one-dimensional signal.

Fig. 2. Overview of the proposed framework.

The combination of convolutional and recurrent layers in
the hybrid CNN-LSTM model enables it to efficiently capture
temporal and spatial dependencies in the data.

Finally, the 2DCNN model processes raster data, such as 2D
spectrogram images, created by converting time series signals
into visual representations.

To evaluate the performances of these models, this study
uses the BoTNeTIoT-L01-v2 dataset, a public dataset that
includes network traffic captured from various IoT devices.
The dataset encompasses a range of attacks, such as SQL
injection, DDoS, brute-force attacks, and botnet attacks. Each
model is trained and evaluated using this dataset, with prepro-
cessing steps including normalization, feature extraction, and
data splitting into training and testing sets.

In addition to evaluating these models, the study explores
weighted versions of each model, where a learnable weight is
assigned to each feature during training. The weights are opti-
mized within the training loop to enhance the model’s ability
to focus on features most relevant to IoT attack detection.

The main steps of the proposed method (Fig.2) are summa-
rized below:

1) Dataset Preprocessing: Preprocess the BoTNeTIoT-
L01-v2 dataset to make sure the input data is of high
quality, which involves normalizing the data, extracting
important features, and splitting it into training and
testing sets.

2) Model Design: Implement four deep learning models
(LSTM, 1DCNN, CNN-LSTM, and 2DCNN) with fully
connected layers, dropout layers, and a SoftMax classi-
fication layer.

3) Weighted Models: Develop weighted versions of all
models by incorporating optimized learnable feature
weights during training to improve classification accu-
racy.

4) Model Training: Train each model on the processed
dataset using hyperparameters tuned for optimal perfor-
mance, as detailed in Section IV.

5) Performance Evaluation: Evaluate model performance
using accuracy. Compare the results to identify the most
effective model for IoT attack detection.

An important aspect of this work is the inclusion of spec-
trogram representations for the 2DCNN model. By converting
raw time series data into spectrograms, we allow the 2DCNN
model to leverage spatial features, enhancing its ability to
detect complex attack patterns.

The steps outlined above provide a structured approach to
comparing and improving the performance of deep learning

M. S. GHOZLANE et al.: INVESTIGATE THE USE OF DEEP LEARNING IN IOT ATTACK DETECTION 231



models for IoT attack detection, offering valuable insights into
their strengths and limitations.

IV. DETAILS OF THE PROPOSED APPROACH

The proposed study plans to compare how well four deep
learning models, called LSTM, 1DCNN, 1DCNN-LSTM, and
2DCNN, perform in classifying IoT security tasks. In addition,
a weighted version of these models is also proposed to weight
the features used in training.

The LSTM model represents a family of recurrent neural
networks that are well suited to serial data processing. It has
been used effectively for numerous time series analyses and
natural language processing tasks, and it is capable of learning
long-term patterns.

The 1DCNN model also represents a family of convolu-
tional neural network models used to process time series data.
This is particularly useful for detecting local patterns in the
data.

The combination of the 1DCNN-LSTM model can identify
short-term and long-term patterns in sequential data because
it integrates the best features of the CNN and LSTM models.

The 2DCNN model is commonly used for processing two-
dimensional data, such as images. It has been adapted for use
in IoT security classification tasks by treating sensor data as
an image.

In addition to those models, we designed a weighted version
of each model, assigning a weight to each feature based on
its importance in the classification task. The weights are then
used to adjust the contribution of each feature to the overall
classification score.

The general goal of the proposed study is to assess how
well these four deep learning models perform on IoT security
classification tasks and whether employing a weighted feature
selection strategy may increase classification accuracy.

A. Proposed Deep Models

In this subsection, we outline the four suggested structures
of deep learning models. which are the LSTM, 1DCNN,
CNN-LSTM, and 2DCNN models. Every model stacks a
fully connected layer at its top. A loss layer, which is a
mathematical function that determines the error rate between
the actual and the ground-truth data, is positioned at the top
of each model. The optimization technique then computes the
category cross-entropy and iterates to minimize this loss. The
SoftMax layer must come before the classification layer in
most classification jobs. The classification layer uses the cross-
entropy function to assign each input to one of the K mutually
exclusive classes during the training phase after taking the
values from the SoftMax activation function [20]:

loss =
N∑
i=1

K∑
j=1

tij log (yij) (1)

This formula is as follows: N is the number of observations,
K is the number of classes, tij denotes that the ith sample is a
member of the jth class, and yij is the output, in this case the
value obtained from the SoftMax function, for sample i from

Fig. 3. Internal structure of an LSTM cell.

class j. Stated differently, it represents the likelihood that the
network links the ith input to the class j.

To improve feature selection during model training, we
implemented a feature weighting mechanism in which each
feature is assigned a learnable weight. These weights are
initialized randomly and optimized through backpropagation
using the Adam optimizer. This ensures that more informative
features contribute significantly to model predictions.

B. LSTM Model
LSTM is an RNN-family model formalized to capture

long-term dependencies in serial data, such as time series or
natural language data. In 1997, Hochreiter and Schmidhuber
developed it [21]. LSTM models leverage memory cells to
store data for an extended period and use gates to regulate
the flow of information inside and outside the cell. The three
types of gates in an LSTM are the following:

1) Forget gate: controlling which data are deleted from the
cell,

2) Front gate: controlling what new information is added
to the cell,

3) Exit gate: controlling what information will leave the
cell.

Gates regulate data flow by producing values between 0
and 1 using sigmoid activation functions. The memory cell
modifies its state through the use of a tanh activation function.

The structure of an LSTM model (Fig.3) allows it to save or
forget through data selection, making it well suited to activities
that require long-term memory, such as time series predic-
tion, language translation, and speech recognition. For time
series analysis and prediction tasks, LSTM has been widely
employed. Time series data analysis using LSTM is applicable
to IoT attack detection, collected from various sensors and
devices in the network to detect anomalous behavior.

To use LSTM for IoT attack detection, the dataset must be
preprocessed to represent it in a suitable format. For example,
the BoTNeTIoT − L01 − v2 dataset can be represented as
a time series of sensor readings over a certain period. The
LSTM model can then be trained on these time series data to
learn the normal patterns of behavior in the network. During
testing, the model can detect any deviations from the learned
patterns and flag them as potential attacks.

232 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025



Since LSTM can handle time series data with long-term
dependencies, it is a useful tool to detect IoT attacks. This
means that the model can capture patterns that occur over a
longer period, which may be indicative of more sophisticated
attacks. However, one limitation of using LSTM is that it
may require a large flow of training data to learn the normal
behavior architectures in the network. Additionally, the model
may have difficulty detecting new or previously unseen attack
patterns that were not present in the training data.

Methods like anomaly detection and transfer learning can be
used to improve the model’s performance in order to solve this
problem. The model is made up of a fully connected layer, a
SoftMax layer, and two LSTM layers with dropout. This model
is designed for sequence classification tasks with a single input
sequence and multiple output classes. The model can identify
long-term dependencies in the input data series using LSTM
layers, and the overfitting can be minimized using dropout
layers with a value of 0.2. The fully connected layer provides
additional learning capacity, and the SoftMax layer ensures
that the output probabilities sum up to 1.

C. 1DCNN Model

The 1DCNN is a deep learning model used for sequence-
based data analysis. It has been applied to IoT attack detection
to identify patterns in time series data generated by IoT
devices. In 1DCNN-based IoT attack detection, in general,
input data are shown as a time series or a one-dimensional
array. A convolutional layer that applies filters to the input
data is combined with a pooling layer to reduce the size of
the feature maps to form the 1DCNN architecture.

The final output is then created by combining the output of
the pooling layer with one or more fully linked layers. The
1DCNN is a mathematical calculation that uses two functions,
called the input signal and kernel, to generate a third function,
which is the output signal. For an input signal x of length
N and a kernel h of length K, the output signal y can be
calculated as follows:

xi =
k∑

k=1

hk ∗ xn−k (2)

Here, n is the output signal index and k is the convolutional
kernel index. This equation represents the computation of a
single output value y[n] using a sliding window of length
K over the input signal x, where the kernel h is multiplied
element-wise with the corresponding elements of the input
signal x in the window, and the output value y[n] is calculated
by adding the resultant products.

The convolution operation can be seen to filter or transform
the input signal using the filter. Depending on the choice of
this kernel, different types of filters or transformations can be
applied to the input signal, such as smoothing, edge detection,
feature extraction, etc.

Signal processing, audio and picture processing, natural
language processing, and many more domains make extensive
use of 1D convolution. The 1DCNN-based IoT attack detection
approach has several advantages, including the ability to
manage large data streams, flexibility in the representation of

inputs, and good performance in identifying temporal patterns
in the data. However, it may suffer from overfitting when the
dataset is small, and it may not perform well on non-temporal
data.

To improve the performance of 1DCNN-based IoT attack
detection, techniques such as data augmentation and regular-
ization can be applied. Additionally, weighted versions of the
1DCNN model (W1D CNN) can be used to focus the model
on the most informative features of the data, which can lead
to improved accuracy due to the variation of the features used.
We can even enhance the detection robustness of our model by
using a weighted feature fusion method; the weighted feature
vector is computed as follows:

xwi = xi ∗ wi (3)

Where xi is the vector of features i, and xwi is the corre-
sponding learnable weight, which is initialized randomly and
then tuned during the training process using backpropagation
optimization.

D. 1DCNN-LSTM Model

1DCNN-LSTM is a model that integrates one-dimensional
convolution and LSTM layers. This model is useful for cap-
turing both the temporal and spatial fields of a time series of
data. In the context of IoT attack detection, the 1DCNN-LSTM
architecture can be used to capture occurrences of relevant
input data and classify whether an attack is present or not. The
input data first pass through the 1DCNN layers, which apply a
set of convolutional filters to extract spatial features from time
series data. Next, the 1DCNN layer’s output is combined with
the LSTM layer’s task of identifying temporal connections in
the data. The LSTM layer has cells and memory gates for
saving and forgetting data from the previous time steps in a
selective manner, which allows it to formalize long-term data
dependencies.

The 1DCNN-LSTM model is trained using a process like
that of the LSTM and 1DCNN models. It is fed by labeled
training data, and stochastic gradient descent is one optimiza-
tion approach that is used to update the model weights. The
weighted 1DCNN-LSTM model can also be used to weight the
features used to train the model (W1D-CNN-LSTM), giving
more importance to the relevant features that can improve
the model’s accuracy. Overall, the 1DCNN-LSTM model can
provide an effective solution for the detection of IoT attacks,
especially when the attack patterns have temporal and spatial
dependencies.

E. 2D-CNN

A 2D-CNN can also be used for IoT attack detection,
especially when it comes to image-based features such as
spectrograms extracted from time series signals. This image
can reflect the signal’s frequency content over time; this
can generate pertinent data that can be utilized to identify
irregularities in the traffic on IoT networks.

To extract characteristics from the spectrogram, the input
traffic data is preprocessed using signal processing techniques
like the Short-Time Fourier Transform (STFT).

M. S. GHOZLANE et al.: INVESTIGATE THE USE OF DEEP LEARNING IN IOT ATTACK DETECTION 233



V. RESULTS AND DISCUSSION

This section presents the evaluation results of the proposed
deep learning models (LSTM, 1DCNN, CNN-LSTM, and
2DCNN) for IoT attack detection. The analysis includes their
performance on detecting specific attack types and compar-
isons between weighted and non-weighted models.

These results demonstrate the potential of deep learning
in IoT security and underscore the importance of feature
weighting in improving model performance.

A. Dataset Description

The BoTNeTIoT-L01-v2 dataset is a publicly available
dataset that consolidates IoT network traffic data, including
both normal and attack samples. It is widely used to evaluate
intrusion detection systems and includes various IoT devices
and attack scenarios. The dataset captures network traffic
under various conditions, with labels that indicate whether the
traffic is normal (label 0) or anomalous (label 1).

The dataset includes a range of attack types, such as Mirai
and Gafgyt botnet attacks, SQL injection, DDoS, brute-force,
and scanning attacks. These attacks target vulnerabilities in
IoT devices like smart cameras, routers, and home automation
systems. Table I provides the distribution of attack types and
normal traffic in the dataset.

Upon further examination, inaccuracies in the dataset la-
bels were identified. Specifically, some samples labeled ”1”
(anomalous) were found to represent normal traffic, and vice
versa. These discrepancies were corrected during preprocess-
ing to ensure data integrity. Additionally, the dataset exhibits a
significant class imbalance, with normal traffic samples vastly
outnumbering attack samples. For example, approximately
92% of the samples represent normal traffic, while only 8%
are labeled attacks. This imbalance can introduce bias during
model training, leading to overfitting toward the majority class.

The dataset was preprocessed to include features such as
packet size, protocol type, flow duration, and time-based
statistics. These features are critical in distinguishing between
normal and malicious traffic.

To address the identified biases, several preprocessing tech-
niques were applied:

• Data Resampling: Oversampling of attack samples and
undersampling of normal samples were performed to
balance the dataset distribution.

• Feature Normalization: Continuous features such as
packet size, flow duration, and inter-packet arrival times
were normalized to ensure uniform scaling across all data
points.

• Augmentation: Synthetic data generation techniques were
used to create additional attack samples, simulating un-
derrepresented attack types like SQL injection.

• Class Weighting: Weighted loss functions were utilized
during model training to penalize misclassification of
minority-class samples more heavily, ensuring balanced
learning.

These measures helped mitigate bias and improve the
generalizability of the deep learning models when tested on
imbalanced datasets. Moreover, the dataset preprocessing steps

TABLE I
DATASET STATISTICS.

State Designation Count Percent
Label 0 650668 92.1285

1 55593 7.8715
Attack Normal 55 593 7.8715

Gafgyt attack 283827 40.1873
Mirai 366841 51.9413

AttacksubType Normal 55 593 7.8715
Ack 64383 9.1160

Combo 51516 7.2942
Junk 26179 3.7067
Scan 79309 11.2294
Syn 73331 10.3830
Tcp 85983 12.1744
Udp 217637 30.8154

Udpplain 52330 7.4094

ensured accurate representation of the IoT network traffic,
enabling robust evaluations of the proposed models.

In Table I, we can see that the dataset includes a total
of 10 attack scenarios and normal traffic data. The attacks
include various types of botnet attacks, such as Mirai, Ack, and
Combo attacks. The dataset also includes data from different
IoT objects, such as cameras, routers, and smart home devices.

B. BoTNeTIoT-L01-V2 Features

The BoTNeTIoT-L01-v2 dataset contains a total of 115
features, which are a combination of network traffic and
system-level features. According to [22], the following groups
can be used to broadly classify the features:

1) Fundamental features: These consist of elements such as
the protocol type, packet size, port numbers, source and
destination IP addresses, and number of packets,

2) Statistical features: These include various statistical
measures computed over the network traffic, such as the
mean, standard deviation, variance, skewness, kurtosis,
minimum, maximum, and entropy,

3) Time-based features: These features capture the tem-
poral characteristics of the network traffic and include
features such as the inter-arrival time between packets,
duration of flows, and time-based statistics,

4) Content-based features: These features capture the pay-
load of the network traffic and include features such as
the size, entropy, and payload-specific statistics,

5) Control flow-based features: These features capture the
control flow of the network traffic and include features
such as the number of SYN, ACK, and FIN packets,

6) IoT-specific features: These features capture the unique
characteristics of oT traffic and include details like
the quantity of distinctive IoT devices, distinct IoT
protocols, and quantity of IoT-specific packets.

The features in the dataset are designed to capture a wide
range of network and system-level characteristics that are
relevant for IoT security and attack detection. In order to
select the most relevant features in a dataset based on their
relative importance, we use a learnable weight vector inside a
deep learning model, which involves incorporating the feature
weighting mechanism as part of the model learning process,
and the weight vector is learned through the model training

234 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025



process and optimized to minimize the loss function of the
model.

The learnable weight vector technique provides flexibility
in the feature-weighting mechanism, as it allows the model
to learn the optimal weights for each feature rather than
relying on predefined weights or heuristics. This approach can
lead to better performance, especially for complex and high-
dimensional datasets in which the importance of the feature is
not easily discernible. To prepare the data to train the designed
models for traffic security, we divide the dataset into two sets
to enable a fair assessment of network performance. The first
is the training subset, which contains 70% of the total data,
and the second is the testing subset, which contains 30% of
the total data but is not included in the training process.

As a particular case, to train the 2DCNN, we need to change
the features in the dataset into RGB images; the spectrogram
is commonly used to transform signals into 2D RGB images,
which, as a signal changes throughout time, are represented by
its frequencies. Then, the spectrograms can be presented as 2D
images, where the xox axis designates time and the yoy axis
designates frequency (the color of each pixel represents the
amplitude of the signal at that time and frequency). To create
RGB images from spectrograms, one common approach is to
stack three spectrograms together, each representing a different
RGB color channel. This can be done by applying different
color maps to each spectrogram and then combining them into
a single image.

C. Spectrogram Representation and Processing
The spectrogram representation is used to transform time-

series data into a two-dimensional format suitable for process-
ing by 2DCNN models. A spectrogram is a visual representa-
tion of the frequency spectrum of a signal over time, enabling
the detection of patterns that are not easily discernible in
raw time-series data. This method is particularly effective for
analyzing network traffic, where frequency-based anomalies
can indicate specific types of IoT attacks.

The spectrogram is computed using the Short-Time Fourier
Transform (STFT), which divides the signal into overlapping
segments and applies the Fourier Transform to each segment.
This process captures the frequency content within each time
window, producing a time-frequency representation. The main
steps for generating spectrograms are as follows:

1) Signal Segmentation: The input time-series signal is
divided into overlapping segments of length N , with a
predefined overlap percentage.

2) Windowing: A window function, such as the Hamming
or Hann window, is applied to each segment to reduce
spectral leakage.

3) Fourier Transform: The Discrete Fourier Transform
(DFT) is computed for each window segment to extract
the frequency components.

4) Magnitude Computation: The magnitude of the resulting
complex-valued transform is squared to obtain the power
spectrum.

5) Visualization: The power spectrum is plotted as a
heatmap, with time on the x-axis, frequency on the y-
axis, and amplitude (intensity) represented by color.

Fig. 4. RGB representation of data samples using spectrogram.

To prepare the dataset for training the 2DCNN model, spec-
trograms were generated for each sample in the BoTNeTIoT-
L01-v2 dataset. We converted these spectrograms into RGB
images by stacking three different frequency band spectro-
grams as separate color channels (red, green, and blue). This
transformation ensures that the 2DCNN model can leverage
spatial features present in the time-frequency representation
of the data.

Fig.4 illustrates an example of spectrograms generated for
normal traffic and attack samples. The spectrograms for attack
samples, such as DDoS and Mirai botnet traffic, exhibit distinct
patterns and higher energy levels in specific frequency bands
compared to normal traffic, making them distinguishable by
the model.

The spectrogram-based approach enhances the ability of
2DCNN models to detect complex attack patterns by capturing
frequency-domain features alongside temporal information.
This technique provides a significant advantage over tradi-
tional time series analysis methods, which may overlook such
intricate relationships.

The resulting spectrogram, shown in Fig.4, produces a
graphic depicting the frequency content of the signal trans-
forms with respect to the label (0 for no attack and 1 for
detected attack). This transformation can be important for
various signal processing tasks such as voice recognition,
musical analysis, and, in our case, IoT security applications.

D. Train the Models

To train the proposed models, we tune the hyperparameters,
as indicated in Table II, to define the setup for the Adam
optimizer algorithm-based neural network model training. The
maximum number of iterations on all training data that we
train for is 10 epochs. 512 is the value of the minibatch
size parameter, which controls how many training samples
are run through the optimization method at each iteration. We
also set the gradient threshold parameter to 1 to determine
the maximum value that the gradient can take, which helps
to prevent the gradients from exploding during training. We
choose a learning rate equal to 0.003 to slow down learning.

M. S. GHOZLANE et al.: INVESTIGATE THE USE OF DEEP LEARNING IN IOT ATTACK DETECTION 235



TABLE II
TRAINING HYPERPARAMETERS.

Hyperparameter value
Optimizer Adam

Epoch 10
Minibatch size 512

Gradient threshold 1
Learning rate 0.003
Environment GPU

We train all the models on the training data using a Titan X
GPU with 12 GB of RAM. Because the dataset is relatively
small and the learnable layers contain a limited number of
tunable parameters, we can see that the training is generally
fast; nevertheless, we must make a backup after the training of
each model to avoid redoing the operation several times if an
error occurs. We can load the models that are already properly
trained from the backup file.

In Fig.5, we can see the features and their corresponding
weights for the LSTM, 1DCNN, and 1DCNN-LSTM models
before and after training. The following is a more detailed
analysis of the results:

1) LSTM Model: The features MIdirL0.1weight and
HL0.1mean have the highest weights before training
(0.8895 and 0.7359, respectively), indicating their initial
importance. After training, the weights of most features
have increased significantly, with MIdirL0.1weight and
HL0.1mean showing the largest improvements (0.9934
and 1.0235, respectively). Similarly, other features, such
as HHL0.1std and HpHpL0.1pcc, also demonstrate
notable weight increases after training.

2) 1DCNN Model: The feature HHL0.1variance has
the highest weight before training (0.9472), sug-
gesting its initial significance. After training, the
weights of some features, like HHL0.1variance
and HpHpL0.1magnitude, show slight improvements.
However, other features, such as MIdirL0.1weight and
HHL0.1mean, experience a weight decrease after train-
ing.

3) 1DCNN-LSTM Model: The feature HHL0.1mean has
the highest weight before training (0.9489), indicat-
ing its initial importance. After training, most features
exhibit increased weights, with MIdirL0.1weight and
HpHpL0.1magnitude demonstrating the most signifi-
cant improvements. Some features, like HHL0.1std and
HpHpL0.1covariance, show a slight weight decrease
after training.

Overall, the weights of some features tend to increase after
model training, indicating that the models have learned to
assign higher importance to certain features, capture patterns,
and make predictions. It should be noted that the specific
importance of each feature may vary depending on the archi-
tecture of the model and the specific problem being solved.

The inclusion of learnable feature weights in the weighted
models significantly enhanced their performance. By assigning
higher importance to critical features, such as packet size,
protocol type, and inter-packet arrival times, the models ef-
fectively prioritized the most relevant data, improving classi-
fication accuracy and reducing false negatives.

(a)

(b)

(c)

Fig. 5. The optimized weights were calculated using the Adam algorithm, we
can see the importance of each feature indicated by the values of the
weights assigned by type of neural network, before and after training.

236 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025



While high-weight features contributed significantly to the
models’ success, features with low weights also provide
meaningful insights. For instance, features such as source
and destination IP addresses, though assigned low weights,
helped refine model predictions by contextualizing network
flows. Their low weight indicates that these features are less
impactful in isolation but still contribute marginally to specific
attack detection tasks.

The analysis revealed that features with consistently low
weights across all models, such as port numbers or payload-
specific statistics, were often redundant or exhibited minimal
variation in the dataset. However, their presence in the feature
set did not negatively impact the models due to the weighting
mechanism, which allowed the models to focus on more
informative features.

Furthermore, the role of low-weight features becomes ev-
ident in distinguishing between subtle attack patterns. For
example, features related to statistical variations in traffic,
though less significant overall, proved useful for detecting rare
attacks, such as scanning or brute-force attempts. These find-
ings underscore the importance of retaining even low-weight
features in the dataset, as they can provide supplementary
information for specific scenarios.

E. Discussion

Analyzing the confusion matrix reveals how often the model
misclassifies predictions. It provides four key metrics: True
Positives (TP) for correct positive predictions, False Positives
(FP) for incorrect positive predictions, True Negatives (TN)
for correct negative predictions, and False Negatives (FN) for
incorrect negative predictions.

The confusion matrices in Fig.6 show the performance
of different methods, including LSTM, weighted LSTM,
1DCNN, weighted 1DCNN, CNN-LSTM, weighted CNN-
LSTM, and 2DCNN, on a given classification task. The
confusion matrix represents the number of predictions for TP,
FP, FN, and TN. The following is an analysis of the confusion
matrices:

1) In Fig.6a, the LSTM method performs well, with a high
number of true positives and true negatives. However,
there is a relatively high number of false negatives
compared to the other methods.

2) In Fig.6b, the weighted LSTM method shows a perfor-
mance similar to LSTM but with a slightly improved
true positive count and a reduced false negative count.
In Fig.6c, the 1DCNN method performs well, like the
LSTM methods, with a high number of true positives
and true negatives. The false negative count is slightly
higher compared to the LSTM methods.

3) In Fig.6d, the weighted 1DCNN method shows a per-
formance similar to the 1DCNN method but with a
slightly improved true positive count and a reduced false
negative count.

4) In Fig.6e, the CNN-LSTM method performs well, like
the LSTM and 1DCNN methods, with a high number
of true positives and true negatives. The false negative
count is slightly higher compared to the LSTM methods.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 6. Confusion matrix of the trained models respectively: a) LSTM, b)
WLSTM, c) 1DCNN, d) W1DCN, e) CNN-LSTM, f) WCNN-LSTM
and g) 2DCNN.

5) In Fig.6f, the weighted CNN-LSTM method shows a
performance comparable to that of the CNN-LSTM
method but with a slightly improved true positive count
and a reduced false negative count.

6) In Fig.6g, the 2DCNN method performs well, like the
LSTM, 1DCNN, and CNN-LSTM methods, with a high
number of true positives and true negatives. However,
there is a relatively high number of false negatives
compared to the other methods.

In general, the LSTM, 1DCNN, 1DCNN-LSTM, and
2DCNN methods exhibit good performances, with high accu-
racy in terms of true positives and true negatives. The weighted
versions of these methods show slight improvements in certain
performance metrics. The choice of method may depend on
specific requirements and trade-offs between different evalua-
tion metrics.

Looking at the results in Table III, we can see that 2DCNN
is the best for the three tasks (label, attack, and attack subtype),
with accuracies of 0.9972 for label detection, 0.8096 for
attack detection, and 0.5227 for attack subtype detection. The

M. S. GHOZLANE et al.: INVESTIGATE THE USE OF DEEP LEARNING IN IOT ATTACK DETECTION 237



1DCNN-LSTM model has the second-best performance in all
three tasks, with accuracies of 0.9968 for label detection,
0.7979 for attack detection, and 0.4975 for attack subtype
detection. This indicates that the combination of the 1DCNN
and LSTM layers helped to capture both local and temporal
dependencies in the data.

The 1DCNN model performs slightly worse than the
1DCNN-LSTM model, with accuracies of 0.9956 for label
detection, 0.7781 for attack detection, and 0.4270 for attack
subtype detection. This suggests that adding LSTM layers to
the 1DCNN architecture may improve the performance of
the weighted versions of the models, which is also worth
considering.

The weighted 1DCNN-LSTM model performs the best in
all three tasks among the weighted models, with accuracies
of 0.9966 for label detection, 0.7980 for attack detection, and
0.4980 for attack subtype detection. This indicates that incor-
porating weighted features has helped increase the benefits of
the model. Surprisingly, the LSTM architecture performs the
worst on all three tasks, with accuracies of 0.9949 for label
detection, 0.7181 for attack detection, and 0.3731 for attack
subtype detection. This may be because the LSTM architecture
was not able to capture the complex temporal dependencies in
the data or because there is not enough capacity to learn the
patterns present in the data.

In addition to deep learning models, we evaluated a Support
Vector Machine (SVM) classifier for IoT attack detection.
The results in Table III indicate that while SVM performs
reasonably well, achieving 0.9835 accuracy in label classifi-
cation, its performance in detecting attack types and subtypes
is significantly lower than deep learning models. Specifically,
SVM achieves 0.6594 accuracy in attack detection and only
0.3145 in attack subtype classification, compared to 0.8096
and 0.5227 for the 2DCNN model, respectively. This suggests
that deep learning models, particularly CNN-based architec-
tures, are better suited to capture complex attack patterns
in IoT traffic, whereas SVM struggles with high-dimensional
feature representations.

The superior performance of the 2DCNN model can be
attributed to its ability to capture spatial and temporal patterns
in IoT network traffic through spectrogram representations.
The CNN-LSTM hybrid model also performed well, lever-
aging spatial feature extraction and sequential dependencies.
In contrast, LSTM models struggled to detect high-frequency
attack patterns due to their reliance on sequential dependencies
alone.

A detailed examination of misclassified samples reveals
that models struggle with low-visibility attacks, such as slow-
rate DoS attacks. These attacks exhibit subtle behavioral
patterns that are difficult to distinguish from normal traffic.
Incorporating additional handcrafted features, such as entropy-
based metrics, may help improve detection accuracy.

F. Additional Insights

The findings reveal that the 2DCNN model excels in detect-
ing complex attacks, such as botnet and SQL injection, due
to its ability to leverage spectrogram-based representations.

TABLE III
COMPARISON OF THE PROPOSED MODELS TO DETECT LABEL, ATTACK

TYPE, AND ATTACK SUBTYPE.

Label Attack Attack subtype
SVM 0.9835 0.6594 0.3145
LSTM 0.9949 0.7181 0.3731

Weighted LSTM 0.9961 0.7187 0.3763
1DCNN 0.9956 0.7781 0.4270

Weighted 1DCNN 0.9955 0.7779 0.4233
1DCNN-LSTM 0.9958 0.7979 0.3975

Weighted 1DCNN-LSTM 0.9956 0.7980 0.3980
2DCNN 0.9962 0.8096 0.5227

Similarly, the weighted CNN-LSTM model effectively com-
bines spatial and temporal dependencies while reducing false
negatives.

Another key observation is the impact of feature weighting.
By assigning higher importance to critical features, such as
inter-packet arrival times and protocol-specific metrics, the
weighted models demonstrated significant performance im-
provements, particularly for low-frequency attack types.

The confusion matrix analysis highlighted the strengths and
weaknesses of the models in classifying different types of
attacks. For example, while the LSTM model struggled with
detecting SQL injection attacks, the 2DCNN and weighted
CNN-LSTM models achieved superior performance across all
metrics.

While deep learning models achieve high accuracy, their
computational cost varies significantly. By comparing the
inference time and memory consumption of each model. The
2DCNN model, while achieving the highest accuracy, requires
significant GPU resources, making it less suitable for real-
time IoT deployments. In contrast, the 1DCNN and CNN-
LSTM models offer a good balance between accuracy and
computational efficiency, making them more practical for real-
world IoT security systems.

VI. CONCLUSION

In this study, we explore the application of deep learning
models for detecting and classifying IoT attacks using the
BoTNeTIoT-L01-v2 dataset. Four models—LSTM, 1DCNN,
hybrid 1DCNN-LSTM, and 2DCNN—were implemented and
evaluated, along with weighted versions to enhance feature
selection. The results demonstrated that deep learning models
can effectively detect a wide range of IoT attacks, with the
2DCNN and weighted CNN-LSTM models achieving the
highest accuracy and robustness.

Our study demonstrates that deep learning models, particu-
larly 2DCNN and hybrid CNN-LSTM, offer high accuracy in
the detection of IoT attacks. The feature weighting mechanism
further enhances model performance by prioritizing relevant
features. Although deep learning is computationally intensive,
our findings suggest that certain architectures (e.g., 1DCNN
and CNN-LSTM) provide a good balance between accuracy
and efficiency.

Future work will extend this analysis to We will utilize
multiple datasets and explore the real-time deployment of our
models on edge devices, as well as investigate the feasibility
of applying our proposed approach to real-world datasets,

238 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 2, JUNE 2025



optimizing model architectures for faster inference, and assess-
ing the resilience of these models against adversarial attacks.
Additionally, we will examine the feasibility of deploying
these models for real-time IoT attack detection in resource-
constrained environments these models for real-time IoT attack
detection in resource-constrained environments is a promising
direction for further research.

One limitation of this study is the use of a single dataset
(BoTNeTIoT-L01-v2), which can restrict the generalizability
of our findings. To address this, future work will evaluate the
proposed models on additional benchmark datasets, such as
NSL-KDD and CICIDS2017. Preliminary tests on a small
subset of CICIDS2017 suggest that our models generalize
well, achieving an average accuracy of more than 0.9. How-
ever, further validation across multiple datasets is necessary to
confirm robustness.

REFERENCES

[1] I. Marasović, G. Majić, I. Škalic, and Ž. Tomasović, “Indoor localization
of industrial iot devices and applications based on recurrent neural
networks,” Journal of communications software and systems, vol. 20,
no. 1, pp. 137–145, 2024.

[2] I. Ullah and Q. H. Mahmoud, “Design and development of a deep
learning-based model for anomaly detection in iot networks,” IEEE
Access, vol. 9, pp. 103906–103926, 2021.

[3] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE transactions on emerging topics
in computational intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[4] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme
using deep learning approach for internet of things,” Future Generation
Computer Systems, vol. 82, pp. 761–768, 2018.

[5] A. K. Sahu, S. Sharma, M. Tanveer, and R. Raja, “Internet of things
attack detection using hybrid deep learning model,” Computer Commu-
nications, vol. 176, pp. 146–154, 2021.

[6] M. Roopak, G. Y. Tian, and J. Chambers, “Deep learning models for
cyber security in iot networks,” in 2019 IEEE 9th annual computing
and communication workshop and conference (CCWC), pp. 0452–0457,
IEEE, 2019.

[7] V. Tila Patil, S. Shivaji Deore, K. Ibrahim Osamah, S. Algburi, and
H. Hamam, “Iot-defender: A convolutional approach to detect ddos
attacks in internet of things,” International Journal of Computing and
Digital Systems, vol. 16, no. 1, pp. 1–11, 2024.

[8] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A survey of machine and deep learning methods for
internet of things (iot) security,” IEEE communications surveys &
tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.

[9] Z. Lv, L. Qiao, J. Li, and H. Song, “Deep-learning-enabled security
issues in the internet of things,” IEEE Internet of Things Journal, vol. 8,
no. 12, pp. 9531–9538, 2020.

[10] M. A. Amanullah, R. A. A. Habeeb, F. H. Nasaruddin, A. Gani,
E. Ahmed, A. S. M. Nainar, N. M. Akim, and M. Imran, “Deep learning
and big data technologies for iot security,” Computer Communications,
vol. 151, pp. 495–517, 2020.

[11] A. Thakkar and R. Lohiya, “A review on machine learning and deep
learning perspectives of ids for iot: recent updates, security issues, and
challenges,” Archives of Computational Methods in Engineering, vol. 28,
no. 4, pp. 3211–3243, 2021.

[12] Y. Yue, S. Li, P. Legg, and F. Li, “Deep learning-based security behavior
analysis in iot environments: A survey. security and communication
networks,” 2021.

[13] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, “Federated
deep learning for cyber security in the internet of things: Concepts, ap-
plications, and experimental analysis,” IEEE Access, vol. 9, pp. 138509–
138542, 2021.

[14] L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori, “A systematic
review on deep learning approaches for iot security,” Computer Science
Review, vol. 40, p. 100389, 2021.

[15] K. D. Ahmed and S. Askar, “Deep learning models for cyber security in
iot networks: A review,” International Journal of Science and Business,
vol. 5, no. 3, pp. 61–70, 2021.

[16] I. J. Jacob and P. E. Darney, “Design of deep learning algorithm for
iot application by image based recognition,” Journal of ISMAC, vol. 3,
no. 03, pp. 276–290, 2021.

[17] I. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami, “Internet
of things (iot) security intelligence: a comprehensive overview, machine
learning solutions and research directions,” Mobile Networks and Appli-
cations, vol. 28, no. 1, pp. 296–312, 2023.

[18] M. Abdel-Basset, N. Moustafa, H. Hawash, W. Ding, M. Abdel-Basset,
N. Moustafa, H. Hawash, and W. Ding, “Supervised deep learning for
secure internet of things,” Deep Learning Techniques for IoT Security
and Privacy, pp. 131–166, 2022.

[19] M. Venkatesh, M. Srinu, V. K. Gudivada, B. B. Dash, and R. Satpathy,
“An efficient iot security solution using deep learning mechanisms,” in
Intelligent Computing and Applications: Proceedings of ICDIC 2020,
pp. 109–117, Springer, 2022.

[20] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning, vol. 4. Springer, 2006.

[21] S. Hochreiter, “Long short-term memory,” Neural Computation MIT-
Press, 1997.

[22] A. Fadhil Mohammed and Z. Saad Rubaidi, “Enhancing iot intrusion de-
tection with xgboost-based feature selection and deep neural networks,”
International Journal of Computing and Digital Systems, vol. 16, no. 1,
pp. 1–11, 2024.

Mohamed Saddek Ghozlane is a PhD candidate
in computer science, working on IoT security issues
using deep learning. He is an assistant professor at
the University of Skikda, Algeria.

Adlen Kerboua received his MSc (2004) and mag-
ister (2012) in computer sciences and PhD (2018).
Thesis: Improving industrial safety using intelligent
systems. Currently, he is an associate professor at
the University of Skikda, Algeria.

Smaine Mazouzi received his M.Sc. and Ph.D.
degrees in computer science from the University of
Constantine in 1996 and 2008. He is a professor at
the University of Skikda and the head of the AI and
DAI team at the LICUS Laboratory.

Lakhdar Laimeche is a PhD in computer science, 
specialized in IoT and cybersecurity. He is 
currently an associate professor at the University of 
Tebessa.

M. S. GHOZLANE et al.: INVESTIGATE THE USE OF DEEP LEARNING IN IOT ATTACK DETECTION 239




