
A Distributed Algorithm to Critical Node
Identification in IoT Networks

Ali Lalouci, and Zoubeyr Farah

Abstract—The increasing integration of Internet of Things
(IoT) networks in various sectors has intensified the need for
advanced security mechanisms to mitigate vulnerabilities. Among
these, critical node detection has emerged as a key strategy
to improve network resilience. In this paper, we introduce a
distributed algorithm to address the Component-Cardinality-
Constrained Critical Node Problem (3C-CNP) in IoT networks,
a variant of the widely studied Critical Node Detection Problem
(CNDP). The 3C-CNP involves identifying the minimal subset of
nodes whose removal results in the fragmentation of the network
into connected components, each containing no more than a
specified number of nodes. To the best of our knowledge, this
is the first distributed solution proposed for this variant. We
provide a detailed description of the algorithm and analyze its
computational complexity. Furthermore, we validate its perfor-
mance through extensive simulations using CupCarbon, a widely
recognized tool for designing and simulating IoT networks.

Index Terms—Critical nodes, Network connectivity, IoT net-
works, Distributed computation, CupCarbon IoT simulator.

I. INTRODUCTION

AN IoT network is a collection of nodes, each represent-
ing a distinct device or entity equipped with sensors,

actuators, and computing capabilities. It is used for different
purposes in healthcare, smart homes, smart cities, industrial
automation, and entertainment. The communication link be-
tween nodes is provided by various types of communication
network, including wireless sensor networks, ZigBee, Wi-
Fi, mobile ad hoc networks, etc. However, one of the main
requirements in all kinds of networks is reliable commu-
nication. In a wireless network, losing some special nodes
can significantly degrade the network’s performance, such as
network connectivity. Generally, these nodes, known as critical
nodes, have numerous adverse effects on the network, and
detecting them is a challenging problem.

In graphs or networks, the CNDP seeks to determine a
subset of nodes whose removal allows maximally destroy the
network connectivity regarding certain predefined metric. The
formal definition of the CNDP is usually given as follows:
the problem takes as input a graph G = (V,E) and a

Manuscript received January 20, 2025; revised February 15, 2025. Date of
publication March 10, 2025. Date of current version March 10, 2025. The
associate editor prof. Teodoro Montanaro has been coordinating the review
of this manuscript and approved it for publication.

A. Lalouci is with the Université de Bejaia, Faculté des Sciences
Exactes, Département d’Informatique, 06000, Bejaia, Algeria (e-mail:
ali.lalouci@univ-bejaia.dz, ali.lalouci@centre-univ-mila.dz). Z. Farah is with
the Université de Bejaia, Faculté des Sciences Exactes, Laboratoire LIMED,
06000, Bejaia, Algeria (e-mail: zoubeyr.farah@univbejaia.dz).

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0125

predefined connectivity metric denoted by σ, and returns as
output a set of nodes S ⊆ V whose removal optimizes an
objective function denoted by f(σ). This problem finds its
applications in several fields, including social network analysis
[1], [2], network immunization [3], transportation engineering
[4], [5], telecommunications [6], military strategic planning
[7], IoT networks analysis [8], [57], network security [9],
[10], and many others. In terms of network analysis, the
determination of the critical node has a direct meaning in
network security. Therefore, CNDP has attracted a lot of
attention in recent years, and many connectivity metrics and
variants of this problem have been defined and studied in
the literature. These variants depend on how the network is
disconnected once the nodes have been removed, including:
the Critical Node Problem (CNP) [11], [12], the problem of
Maximizing the Number of connected components(MaxNum)
[13], [14], the problem of Minimizing the Maximal Com-
ponent size(MinMaxC) [15], [16], the β−vertex disruptor
problem [17], [18], the Component-Cardinality-Constrained
Critical Node Problem (3C-CNP) [19], [20], etc. However, it
is well-known that most variants of the CNDP are NP-hard,
even when restricted to particular classes of graphs.

Historically, CNDP originates from the work of Borgatti et
al. [1], where the authors proposed several methods and met-
rics to identify the most important nodes in a network, known
as key players. Building on this foundation, Arulselvan et al.
[2] focused on the pairwise connectivity metric and formally
defined the critical node problem as the task of identifying a set
of nodes whose removal minimizes pairwise connectivity (or
path survivability) in the network. They demonstrated the NP-
completeness of the recognition version of CNDP on general
graphs, developed a linear programming model to solve the
problem effectively, and proposed a greedy algorithm that
outperformed other methods on randomly generated instances.
Subsequently, Di-Summa et al. [12] presented complexity
results and developed algorithms for various versions of the
CNDP on trees, incorporating edge costs and node weights.
They demonstrated that the CNDP on trees remains NP-
complete when general connection costs are specified. How-
ever, for instances with unit connection costs, they proposed a
polynomial-time algorithm based on a dynamic programming
approach. Likewise, Addis et al. [21] demonstrated the NP-
completeness of the CNDP for several classes of graphs,
including split graphs, bipartite graphs, and complement bi-
partite graphs. In contrast, they presented a polynomial-time
algorithm for identifying critical nodes in graphs with a

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025 43

1845-6421/03/2024-0125 © 2025 CCIS

bounded treewidth. The NP-completeness of the critical node
problem was also established for Unit-Disk graphs and Power-
Law graphs by Shen et al. [22]. Additionally, the authors
proposed effective greedy algorithms to identify both critical
nodes and links, with the results being applied to assess
network vulnerability. Guettiche and Kheddouci [5] focused
on the critical nodes and links problem, using the shortest
path metric. They proposed algorithms designed to assess
the reliability of transportation networks, further extending
the applicability of CNDP methodologies in infrastructure
analysis. Shen et al. [14] investigated new variants of the
CNDP based on two distinct metrics: maximizing the number
of connected components and minimizing the size of the
largest component. They proposed polynomial-time algorithms
for solving these variants on series-parallel graphs, k−hole
graphs, and trees. Similarly, Lalou et al. [20] studied the
critical node problem with respect to bounding the size of the
largest connected component and introduced a new variant,
termed the Component-Cardinality-Constrained Critical Node
Problem (3C-CNP). For a comprehensive overview of CNDP
variants and their applications, readers are encouraged to
refer to the survey by Lalou et al. [23]. Recently, several
research works have been published, like Hosteins et al. [24],
which needed that critical nodes set to be connected, whereas
Di-Summa and Faruk [25] has initiate the hybrid problem
of Critical node/edge detection problems, which seeks to
determine a set of nodes and/or edges of given cardinality,
whose removal maximally destroyed the network connectivity
throw connected pairwise minimizing. More recently, another
survey on critical node detection with their applications and
challenges is performed in 2023 [26].

In the realm of IoT networks, identifying critical nodes is
a fundamental step for enhancing the reliability and resilience
of communication systems. This recognition serves as the
foundation for various studies addressing the CNDP. For
instance, in [27], the authors examined the CNDP to strengthen
network defense in MANET-IoT networks. They proposed a
method termed Dynamic Critical Node Identification (DCNI)
to identify critical nodes. The complexity of the proposed
DCNI is approximately O(m ∗ n2), where n is the number
of nodes and m represents the number of links in the net-
work. In [28], the authors investigate the CNDP in Industrial
Wireless Sensor and IoT networks. They proposed a two-phase
algorithm: Phase I employs a distributed approach for critical
node detection (Algorithm 1), while Phase II enhances node
resilience through a centralized approach (Algorithm 2). The
proposed algorithms require O(log(n)) time for convergence
and O(δ(logn)) for Critical Node detection, n represents the
number of IoT devices, and δ is the cost required to forward
the message. Recently, Ishfaq et al. [29] have addressed the
CNDP in an IoT network. They developed an efficient and
minimalistic integer linear programming solution, designed
to optimize the cost of an attack on the network. Their
experimental results demonstrate that this approach is both fast
and scalable, suitable for large-scale infrastructure systems.
The solution achieves one of two objectives: maximizing
the damage caused to the network within a fixed budget or
minimizing the cost of an attack that causes a desired amount

of damage. Ugurlu et al. [8] present a survey on critical node
detection methods in IoT along with their applications and
challenges.

Consider the 3C-CNP variant of CNDP. Numerous central-
ized algorithms have been proposed in the literature to address
this variant in both general graphs and specific graph classes
(see, for example, [31], [19], [17], [32] and the references
therein). These approaches encompass integer programming
formulations, branch-and-cut algorithms, approximation meth-
ods, and evolutionary algorithms. Although these approaches
offer reasonable computational complexity, their applicability
to unreliable platforms, such as wireless sensor networks
(WSNs) and IoT networks, remains limited. Moreover, they
are not well-suited for modern distributed systems and sim-
ulation frameworks such as NS-3, Cooja, Tossim, Riverbed,
and CupCarbon. In particular, CupCarbon is recognized as a
highly efficient tool for analyzing IoT networks from a graph-
theoretic perspective [58].

On the other hand, tree structures offer compelling advan-
tages for IoT networks, including enhanced energy efficiency,
scalability, ease of management, fault tolerance, and improved
data handling capabilities. These attributes make tree topolo-
gies a preferred choice for many IoT applications, ensuring
both reliable and efficient network performance.

In this paper, we address the 3C-CNP, a variant of the
CNDP within such networks. We propose a Distributed Al-
gorithm for the Component-Cardinality-Constrained Critical
Node Problem (DA3C-CNP) specifically designed to identify
critical nodes in tree-structured IoT networks. In our pro-
posed approach, execution begins with the leaf nodes, which
broadcast messages to their respective parent nodes. Each
parent node aggregates the received messages and compares
the sum against a predefined upper bound. If the sum exceeds
this threshold, the parent node is marked as a critical node;
otherwise, it forwards the accumulated sum to its parent in
the hierarchy. This process continues iteratively, propagat-
ing the information upward until it reaches the root of the
tree. Our proposed algorithm is designed to function in both
anonymous (identifier-free) and non-anonymous IoT networks.
It guarantees convergence within ∆ − 1 iterations per node
and requires the exchange of only n messages, ensuring high
communication efficiency.

The main contributions of this work are as follows:
1) We propose the first distributed algorithm designed

specifically for solving the 3C-CNP, a variant of the
widely recognized CNDP.

2) We conduct a detailed complexity analysis of the pro-
posed algorithm and compare its performance with other
centralized approaches addressing the same variant of
the problem.

3) To demonstrate the practical applicability of the pro-
posed algorithm, we adapt it to an IoT network context
and evaluate its effectiveness in a representative scenario
using the CupCarbon simulator.

The remainder of the paper is structured as follows. Section
II provides the definition of the 3C-CNP variant and discusses
its related work. In Section III, we present the proposed

44 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025

distributed algorithm, DA3C-CNP, including a detailed de-
scription of the variables and primitive functions used, fol-
lowed by an explanation of the algorithm’s execution process.
Section IV presents the experimental setup and simulation
results, highlighting the performance of the algorithm using
the CupCarbon IoT simulator. Finally, Section V concludes
the paper and outlines potential directions for future research.

II. PROBLEM STATEMENT AND RELATED WORKS

This section provides an overview of the 3C-CNP and
its relevance to IoT networks. We also review the existing
literature on this variant of the CNDP, highlighting various
approaches, algorithms, and their applicability to different
network structures.

A. Problem definition

Let G = (V,E) be an unweighted connected graph rep-
resenting a network, where V is the set of n nodes and
E ⊆ V ∗ V is the set of m edges. Given a subset of nodes
S ⊆ V , let G[S] and G[V − S] denote the subgraphs of G
induced by S and V − S, respectively.

The 3C-CNP seeks to find the minimal subset of nodes
within a graph G, whose deletion results in a set of connected
components, each possessing a cardinality not exceeding a
specified integer bound B. A formal definition of 3C-CNP is
as follows:
Component-Cardinality-Constrained Critical Node Problem
(3C-CNP)

Input: A graph G(V,E) and an integer B.
Output: A minimum set of nodes S ⊆ V , such that |h| ≤ B
for each subset of connected nodes h ∈ G[V − S].

In Figure. 1, we give an example of a graph G = (V,E)
with ten nodes and an integer bound B = 3. The set of critical
nodes S = {1, 4, 5}, and the number of connected components
is 3. In Figure. 1a, the shaded nodes represent a set of critical
nodes. Figure. 2 displays an example of a tree T = (V,E)
with 13 nodes. In Figure. 2a, the shaded nodes represent a set
of critical nodes.

B. Applications

The 3C-CNP has become a significant research focus due
to its wide range of applications across various disciplines,
including social network analysis, biology, communication
networks, and network reliability. In this subsection, we
present the most important applications considered in the
literature, as illustrated in Figure 3.

1) Social network analysis: Analyzing a social network
often involves detecting communities within the network
structure [36], [38]. For instance, if a threshold is
specified for community size, one can identify network
communities accordingly. This is particularly relevant
for terrorist networks, where the sizes of terrorist groups
(or communities) may be known. In such scenarios, crit-
ical nodes are those that connect different communities.

2

35
6

7

8

9
10

4
1

(a) Graph G

2

3
6

7

8

9
10

(b) Graph G[V − S]

Fig. 1. 3C-CNP applied to a general graph

1

2 10

3 6 8 13

4 5 7 9

11 12

(a) Tree T

1

10

3 6 13

4 5 7 9

11 12

(b) Tree T [V − S]

Fig. 2. 3C-CNP applied to a Tree

A. LALOUCI et al.: A DISTRIBUTED ALGORITHM TO CRITICAL NODE IDENTIFICATION IN IOT NETWORKS 45

Fig. 3. Examples of 3C-CNP applications

Thus, solving the 3C-CNP can be used to identify these
terrorist groups.

2) Computational biology: Biological organisms, which
consist of interconnected proteins that interact to form
a protein interaction network, can be represented by a
graph in which the nodes are proteins and the edges rep-
resent the interactions between them. The application of
3C-CNP can be used to identify the minimal number of
proteins whose destruction would neutralize the harmful
organism[39].

3) Immunization: In the event of undesirable occurrences,
such as viruses spreading in networks, epidemics, or
the propagation of malware, 3C-CNP helps identify
individuals (or devices) whose immunization can stop
the spread of the epidemic. Additionally, it helps locate
the source of the diffusion [40], [41]

4) Network reliability: Ensuring the security of network
applications against malicious behavior is a fundamental
design consideration. The application of the 3C-CNP can
contribute to improved network security by providing a
metric for network vulnerability. Specifically, the 3C-
CNP assesses vulnerability based on the principle that
a network requiring the removal of more critical nodes
for partitioning is considered less vulnerable. In contrast,
the fewer nodes that need to be removed, the more easily
the network can be compromised[20], [35].

C. Related Works

In the introduction, we presented a comprehensive overview
of the research related to CNDP in general. In this subsection,
we provide a detailed examination of the studies and method-
ologies that specifically address the 3C-CNP variant.

3C-CNP is a variant of the Cardinality-Constrained Critical
Node Problem (CC-CNP), introduced by Arulselvan et al. in
2011 [30], for identifying critical nodes in telecommunication
networks. Their work focuses on minimizing the number of
vertices whose removal results in disconnected components,
constrained by a predefined cardinality. They also proved that
the CC-CNP is NP-complete on general graphs. Subsequently,
Lalou et al. [20] expanded on this concept by introducing and
analyzing a new variant of the problem, referred to as 3C-
CNP. In this variant, the objective is to identify a minimal
set of nodes whose removal ensures that the order of each
connected component in the resulting graph remains within a
specified bound. they demonstrated the NP-completeness of

the recognition version of the problem for general graphs, and
even when restricted to bounded-degree graphs of maximum
degree ∆ = 4.

Several centralized approaches for solving the 3C-CNP on
general graphs have been proposed in the literature, including
greedy approaches [19], [6], [31], integer programming [19],
[32], evolutionary algorithms [19], [17], [33], and approxima-
tion methods [32], [34]. Considering specific classes of graphs,
the 3C-CNP is NP-complete on split graphs and on trees when
nodes and connections have nonnegative weights and costs,
respectively [20], [35]. The authors of [20] studied the 3C-
CNP problem on proper interval graphs and trees. For proper
interval graphs, they proposed a polynomial-time algorithm
with a time complexity of O(n2). For trees, they presented an
algorithm with a time complexity of O(n) for unweighted trees
and O(n2) for weighted trees. The authors of [36] developed
a dynamic programming algorithm for solving the 3C-CNP in
polynomial time and space on bipartite permutation graphs.
The complexity of their algorithm is O(nB2). Recently, in
[37], the authors presented a polynomial-time algorithm for
solving the 3C-CNP on chordal graphs with a maximum
node degree of ∆ = 3. The proposed algorithm efficiently
computes an exact solution with a time complexity of O(n2).
In this paper, we propose a distributed algorithm with a time
complexity of O(n− l), where l represents the number of leaf
nodes, as detailed in Section III-D.

Table I summarizes the most significant approaches to
solving the 3C-CNP problem.

TABLE I
SUMMARY OF THE ALGORITHMIC SOLUTIONS FOR THE 3C-CNP

Citation/ Topology Complexity Solution Complexity
Year class

[30] (2011) Arbitrary NP-complete Centralized O(n2 + nm)
[20] (2016) Arbitrary NP-complete / /

with ∆ ≤ 4
[20] (2016) Trees Linear Centralized O(n)
[20] (2016) Weighted Polynomial Centralized O(n2)

trees
[20] (2016) Proper Polynomial Centralized O(n2)

interval
[36] (2019) Bipartite Polynomial Centralized O(nB2)

permutation
[35] (2023) Split Polynomial / /
[37] (2024) Chordal Polynomial Centralized O(n2)
Proposed Tree linear Distributed O(n− l)

To the best of our knowledge, there are currently no
distributed algorithms available for solving 3C-CNP in general
or specific graph classes, and no existing studies have applied
the 3C-CNP to IoT networks.

III. A DISTRIBUTED ALGORITHM FOR 3C-CNP

In this section, we present the proposed algorithm DA3C-
CNP (Distributed Algorithm for the Component-Cardinality-
Constrained Critical Node Problem on trees). Before delving
into the details of DA3C-CNP, we introduce the variables
and functions employed within the algorithm. Subsequently, a
detailed description of the algorithm’s operation is provided.
Finally, we present an illustrative example of its operation.

46 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025

A. Variables and Primitive Functions

All the main variables and primitive functions used by our
algorithm are described in Tables II and III, respectively.

TABLE II
DA3C-CNP VARIABLES DESCRIPTION

Variable Description

d Degree of a node
Critical Boolean variable indicating whether a node is critical
S Cumulative sum of message values received by a node
NR Number of messages received by a node from its neighboring

nodes

TABLE III
DA3C-CNP PRIMITIVE FUNCTIONS

Function Definition

send(m, ∗) Broadcasts the message m
read() waits for receipt of messages. This function is blocking

if there is no received message any more, it remains
blocked in this instruction

read(wt) waits for receipt of messages. If there is no received
message after wt milliseconds then the execution will
continue and go to the next instruction

getNNeig() returns the number of neighbors of a node
stop() stops the algorithm

B. Description of DA3C-CNP

In this subsection, we provide the pseudocode for DA3C-
CNP and explain its execution process in detail. An instance

Algorithm 1: DA3C-CNP
Data: B < n

2
Result: Critical

1 begin
2 Critical← false;
3 S ← 1;
4 NR← 1;
5 d← getNNeig();
6 if (d == 1) then
7 send(1, ∗);
8 stop();
9 else

10 while (true) do
11 M ← read();
12 S ← S +M ;
13 NR← SR+ 1;
14 if (S > B) then
15 Critical← true;
16 send(0, ∗);
17 stop();
18 else
19 if (NR == d) then
20 send(S, ∗);
21 stop();

of DA3C-CNP is executed by each node in the network. It

operates by taking the upper bound value B as input and
producing, for each node, a Boolean output for the variable
Critical. The algorithm’s flowchart is shown in Figure 4.
Initially, the DA3C-CNP sets Critical to false for each node,
initializes the variable S to 1, and the value of NR (number
of received messages) to 1. The degree of the current node
is determined using the function getNNeig(). The execution
begins with leaf nodes, which immediately broadcast a mes-
sage with value 1 and then terminate their execution. Non-
leaf nodes, on the other hand, continue to receive messages
from their neighbors. Each time a message is received, the
node increments the value of NR and adds the received
message values to S. At any point during execution, if the
cumulative sum S at a node exceeds the upper bound B,
that node is marked as part of the critical nodes set, sets its
Critical variable to true, broadcasts a message with value 0,
and halts execution. If S remains less than or equal to B, the
node waits until all messages from its neighbors are received
before proceeding to broadcast its updated S value. This
ensures that nodes accurately process the contributions from
all neighboring nodes before determining their final status.

Start

Critical = false; S = 1; NR = 1

d = getNNeig()

d == 1? send(1,*)

M = read()

S = S + M; NR = NR + 1

S > B? Critical = true; send(0,*)

NR == d? send(S,*)

Stop

yes

no

yes

no
yes

no

Fig. 4. DA3C-CNP FlowChart

C. Illustrated Example

To illustrate the operation of DA3C-CNP, we apply it to
the tree network depicted in Figure 5a. The execution result is

A. LALOUCI et al.: A DISTRIBUTED ALGORITHM TO CRITICAL NODE IDENTIFICATION IN IOT NETWORKS 47

1

2

3

4 5

6

7

89

(a)

1

2

3

4 5

6

7

89
1 1 11

(b)

1

2

3

4 5

6

7

89

3.0

3.0 3.0

3.0

3.03.0

(c)

1

2

3

4 5

6

7

89

0

0

0

0

(d)

1

2

3

4 5

6

7

89

1.0 1.0

(e)

1

2

3

4 5

6

7

89

(f) End

Fig. 5. Illustration of 3C-CNP on a tree IoT network with B = 3

illustrated in Figure 5f. In this example, DA3C-CNP operates
in five steps: Initially, the leaf nodes (4, 5, 8, and 9) broadcast a
message with a value of 0 to their respective parent nodes and
terminate the execution of their programs (as shown in Figure
5b). Subsequently, non-leaf node 3 receives two messages,
each with a value of 1, from nodes 4 and 5. It sums the
received values, yielding S = 3. Since the sum is not greater
than the upper bound (B = 3), node 3 broadcasts a message
with a value of 3 (as illustrated in Figure 5c). Similarly, non-
leaf node 7 receives two messages with a value of 1 from
nodes 8 and 9, respectively, and sums them to S = 3. As
the sum is not greater than 3 (B = 3), node 7 broadcasts
a message with a value of 3 (see Figure 5c). Next, nodes 6
and 2 each receive two messages, both with a value of 3.
They update their internal variable S, and since the updated
values exceed the upper bound B, both nodes 2 and 6 are
marked as critical. They broadcast messages with a value of 0
and terminate the execution of their programs (as depicted in
Figure 5d). Finally, node 1 receives two messages, each with
a value of 0, from nodes 2 and 6. It increments its variable
S and halts the execution of its program (see Figure 5e).In
summary, the execution of DA3C-CNP on the given network
proceeds in five steps, as demonstrated by the progression in
Figures 5a through 5f.

D. Complexity

In this subsection, we analyze the complexity of the
DA3C-CNP algorithm, focusing on two key metrics: the
number of iterations required for execution and the number
of messages exchanged during its operation. We establish
three main propositions and their corresponding proofs.

Proposition 1. The DA3C-CNP algorithm identifies a minimal
set of critical nodes in a tree-structured IoT network after
(∆− 1) iterations per node.

Proof. Consider an IoT network modeled as an undirected
connected graph G = (V,E) representing a tree, where V
is the set of n nodes and E is the set of m edges. Each node
v ∈ V has a degree d(v), satisfying 1 ≤ d(v) ≤ ∆, where ∆
is the maximum degree of the graph.

The execution of the DA3C-CNP algorithm begins with the
leaf nodes, i.e., nodes with degree d(v) = 1. Each leaf node
performs a single iteration, during which it sends a message
of value 1 to its parent node and then terminates. Thus, leaf
nodes require exactly one iteration.

For non-leaf nodes, the execution process is as follows: 1.
1) A non-leaf node waits to receive messages from all

its neighbors except its parent node. Upon receiving
a message, it increments its message count (NR) and
updates its cumulative sum (S) based on the values of
the received messages.

2) If at any point the cumulative sum S exceeds the given
bound B, the node is identified as a critical node. It
broadcasts a message with value 0 and terminates its
execution.

3) If S ≤ B, the node waits until it has received messages
from all its neighbors (excluding the parent). Once all
messages are received, it sends its cumulative sum S to
its parent node and terminates.

In the worst case, each non-leaf node waits for messages from
all its child nodes in the tree. Since a node can have at most
∆ − 1 child nodes (excluding the parent node in the tree
structure), the maximum number of iterations required for a
non-leaf node to complete its execution is ∆− 1.

Given the hierarchical nature of tree structures, the exe-
cution propagates level by level from leaf nodes to the root
node. Thus, the total number of iterations required for the
DA3C-CNP algorithm to identify all critical nodes in the tree
is bounded by ∆− 1, ∆ is the maximum degree of any node
in the tree.

Proposition 2. In an IoT network, the DA3C-CNP algorithm
finds a minimal set of critical nodes using a total of n
messages.

Proof. Let the IoT network be represented as a connected tree
graph G = (V,E), where V is the set of n nodes and E is the
set of edges. Each node v ∈ V can send at most one message
during its execution in the DA3C-CNP algorithm. The proof
proceeds as follows:

The tree structure ensures that there are exactly l non-leaf
nodes (including the root), and n− l leaf nodes. 1.

48 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025

1) Leaf nodes, by definition, have a degree of 1. During the
execution of the DA3C-CNP algorithm, each leaf node
broadcasts a single message to its parent node in the
tree structure before terminating execution. Therefore,
the total number of messages sent by the leaf nodes is
l, where l denotes the number of leaf nodes.

2) Non-leaf nodes wait to receive messages from all their
child nodes before taking action. Each non-leaf node
then aggregates the received information into a single
message, which it forwards to its parent node in the
tree. This ensures that each non-leaf node sends exactly
one message during its execution. Therefore, the total
number of messages sent by the no-leaf nodes is n− l.

Since the algorithm involves a single upward communication
flow from the leaf nodes toward the root, and every node sends
at most one message, the total number of messages exchanged
in the network equals the total number of nodes, n. This
includes both leaf nodes and non-leaf nodes, as each node
participates exactly once in message propagation.

Proposition 3. The DA3C-CNP algorithm determines a min-
imal set of critical nodes in a tree-structured IoT network in
fewer than n− l iterations

Proof. Let the IoT network be represented as a connected tree
graph G = (V,E), where V is the set of n nodes and E is the
set of edges. Each node v ∈ V can send at most one message
during its execution in the DA3C-CNP algorithm. The proof
proceeds as follows:

Each leaf node executes its program independently and in
parallel. Upon execution, it sends a single message (value 1)
to its parent node and then terminates. This process requires a
single iteration for all leaf nodes. However, non-leaf nodes
receive messages from all their child nodes. Each time a
message is received, the non-leaf node updates its cumulative
sum (S) and increments its count of received messages (NR).

The algorithm operates in a level-by-level manner, with
execution propagating from the leaf nodes to the root. The total
number of iterations is determined by the number of levels in
the tree. In the worst case, each level involves the execution of
all non-leaf nodes at that level. Given that there are n− l non-
leaf nodes in the tree, the total number of iterations required
to identify the minimal set of critical nodes is strictly less than
n− l.

The DA3C-CNP algorithm offers significant advantages in
terms of time complexity compared to existing solutions for
the 3C-CNP problem. While the authors of [20] achieved
a time complexity of O(n2) for proper interval graphs and
for weighted trees, our algorithm achieves a linear time
complexity of O(n − l) , making it more efficient for large-
scale environments. Similarly, for unweighted trees, although
[20] also achieved O(n), our distributed approach provides
a scalable and parallelizable solution, which is particularly
advantageous in distributed environments. Furthermore, com-
pared to the dynamic programming algorithm proposed in [36]
for bipartite permutation graphs, which has a complexity of
O(nB2) , our algorithm eliminates the dependency on the
parameter B, resulting in a more consistent and predictable

performance. Lastly, while the recent work in [37] focuses
on chordal graphs with a maximum node degree of ∆ = 3
, our algorithm’s O(n − l) complexity is not restricted by
degree of nodes, making it applicable to a broader range
of scenarios. Overall, the DA3C-CNP algorithm demonstrates
superior efficiency and scalability, addressing the limitations
of existing approaches.

IV. VALIDATION AND SIMULATION RESULTS

This section presents the simulation results of the proposed
DA3C-CNP algorithm. We implemented the algorithm using
the CupCarbon IoT simulator. The primary objective of these
experiments is to assess the algorithm’s ability to efficiently
identify critical nodes within IoT networks while adhering to
the specified cardinality constraints.

A. Simulation Tool

To evaluate and validate our algorithm, we employed the
widely recognized IoT network simulator, CupCarbon [42].
This simulator, accessible at [43], is highly regarded by
researchers, developers, and academics [44], [45]. Its primary
objective is to facilitate the design, visualization, debugging,
and validation of distributed algorithms, particularly for tasks
like monitoring, environmental data collection, and the cre-
ation of complex environmental scenarios [45]. It allows for
the design and prototyping of networks through an intu-
itive, user-friendly interface that leverages the OpenStreetMap
(OSM) framework to deploy IoT nodes directly onto the
map. Each IoT node can be individually configured via a
command-line interface using a language specifically designed
for CupCarbon, known as SenScript. For more details on
the SenScript language, the reader is referred to [45]. The
initial version of CupCarbon was introduced by Mehdi et
al [46]. Due to its robust capabilities, CupCarbon simulator
has gained significant popularity and is widely employed in
various research studies. Notable examples of its application
can be found in the works of [46], [47], [48].

In the context of graph parameters, the CupCarbon simulator
is widely utilized for modeling and analyzing various graph-
theoretical constructs. Example parameters include the span-
ning tree [49], [50], [51], which is fundamental for ensuring
efficient network connectivity, and connected components,
which identify and classify isolated sub-networks. The sim-
ulator also supports the computation of the polygon hull [52],
[53], a crucial element in geometric network analysis, as well
as leader election [49], [50], [51], [54], an essential problem in
distributed systems. Additionally, it facilitates the study of the
dominating set [55], [51], which optimizes resource allocation,
and the secure dominating set, which introduces robustness
and security considerations in network design [56].

B. Experiment

The aim of this subsection is to demonstrate the scalability
of the DA3C-CNP distributed algorithm. To achieve this,
we utilize the same example presented earlier (see Figure
2). The experiment is conducted in two phases. In the first

A. LALOUCI et al.: A DISTRIBUTED ALGORITHM TO CRITICAL NODE IDENTIFICATION IN IOT NETWORKS 49

phase, the IoT network is designed with a tree topology
(see Figure 6) using CupCarbon’s intuitive graphical inter-
face, which integrates OpenStreetMap (OSM) for accurate
geospatial representation, enabling precise placement of IoT
nodes. In IoT networks, critical nodes often serve as essential
gateways or aggregation points that bridge multiple devices
or network segments. Consider a smart manufacturing facility
where hundreds of sensors monitor equipment performance,
temperature, and production metrics. Some nodes act as data
aggregators that collect information from multiple assembly
lines before transmitting it to the central management system.

In the second phase, each node is configured using Sen-
Script, a domain-specific scripting language developed for
CupCarbon. SenScript facilitates the detailed modeling of
sensor node behavior, including sensing, communication pro-
tocols, and energy management. It enables fine control over
node actions such as message handling, routing decisions, and
power consumption, making it particularly effective for simu-
lating distributed algorithms in large-scale IoT environments.
Critical nodes, identified through the DA3C-CNP algorithm,
are highlighted in yellow, as depicted in Figure 7.

V. CONCLUSION

In this paper, we proposed and validated a distributed
algorithm, DA3C-CNP, designed to solve the Component-
Cardinality-Constrained Critical Node Problem (3C-CNP) in
IoT networks. The algorithm identifies critical nodes in tree-
structured IoT networks and operates efficiently through lo-
cal computations and message passing between nodes. A
complexity analysis demonstrated that DA3C-CNP converges
within ∆ − 1 iterations per node, where ∆ represents the
maximum node degree. Moreover, the algorithm requires the
exchange of only n messages, which is optimal for distributed
IoT networks. Simulation results, conducted using the Cup-
Carbon simulator, illustrate the effectiveness of the algorithm
in a representative IoT network scenario. The algorithm’s
capability to function in both anonymous and non-anonymous
networks underscores its versatility and adaptability, making it
suitable for a wide range of IoT applications where reliability
and network resilience are critical.

Future work may explore the application of distributed algo-
rithms for the 3C-CNP on other classes of graphs or network
topologies, particularly those for which it is tractable. Further-
more, extending the approach to handle large and dynamic
networks and integrating it into real-world IoT deployments
will be valuable for enhancing communication reliability in
critical infrastructure.

REFERENCES

[1] S. P. Borgatti, ”Identifying sets of key players in a social network”,
Mathematical Organization Theory, Vol. 12, pp. 2134, 2006.

[2] A. Arulselvan, C. W. Commander, L. Elefteriadou and P. M. Pardalos,
”Detecting critical nodes in sparse graphs,” Computers and Operations
Research, Vol. 36(7), pp. 2193–2200, 2009.

[3] C .J. Kuhlman, V. A. Kumar, M. V. Marathe, S. Ravi and D. J.
Rosenkrantz, ”Finding critical nodes for inhibiting diffusion of complex
contagions in social networks,” Machine Learning and Knowledge Dis-
covery in Databases, 2010.

[4] D. M. Scott, D. C. Novak, L. Aultman-Hall and F. Guo, ”Network robust-
ness index: A new method for identifying critical links and evaluating the
performance of transportation networks,” Journal of Transport Geography,
Vol. 14(3), pp. 215–227, 2006.

[5] M. Guettiche and H. Kheddouci, ”Critical links detection in stochastic
networks: application to the transport networks,” International Journal of
Intelligent Computing and Cybernetics, Vol. 12(1), pp. 42–69, 2019.

[6] A. Arulselvan, C. W. Commander, P. M. Pardalos, O. Shylo, ”Manag-
ing network risk via critical node identification,” Risk management in
telecommunication networks, pp. 79–92, 2007.

[7] A. Arulselvan, ”Network Model for Disaster Management”, Ph.D. thesis,
University of Florida, 2009.

[8] O. Ugurlu, N. Akram and V. K. Akram, ”Critical nodes detection in IoT-
based cyber-physical systems: Applications, methods, and challenges”.
In Emerging trends in IoT and integration with data science, cloud
computing, and big data analytics. pp. 226-239, 2022.

[9] Z. Y. Jiang, Y. Zeng, Z. H. Liu and J. F. Ma, ”Identifying critical nodes’
group in complex networks,” Physica A: Statistical Mechanics and its
Applications, Vol. 514, pp. 121-132, 2019.

[10] S. M. Senderov and S. V. Vorobev, ”Approaches to the identification of
critical facilities and critical combinations of facilities in the gas industry
in terms of its operability,” Reliability Engineering and System Safety,
Vol. 203, pp. 107046, 2020.

[11] B. Addis, M. Di Summa and A. Grosso, ”Identifying critical nodes in
undirected graphs: complexity results and polynomial algorithms for the
case of bounded treewidth, ”. Discrete Appl. Math, Vol. 161(16), pp.
2349–2360, 2013.

[12] M. Di Summa, A. Grosso and M. Locatelli, ”Complexity of the critical
node problem over trees,” Comput.Oper. Res, Vol 38(12), pp. 1766–1774,
2011.

[13] A. Berger, A. Grigoriev and R. Zwaan, ”Complexity and approximability
of the k-way vertex cut,” Networks, Vol. 63(2), pp. 170–178, 2014.

[14] S. Shen, J.C. Smith and R. Goli, ”Exact interdiction models and algo-
rithms for disconnecting networks via node deletions,” Discrete Optim,
Vol. 9(3), pp. 172–188, 2012.

[15] S. Shen, J.C. Smith, ”Polynomial-time algorithms for solving a class
of critical node problems on trees and series-parallel graphs,” Networks,
Vol. 60(2), pp. 103–119, 2012.

[16] D.T. Guyen, Y. Shen and M.T. Thai, ”Detecting critical nodes in
interdependent power networks for vulnerability assessment,” IEEE Trans.
Smart Grid, Vol. 4(1), pp. 151–159, 2013.

[17] R. Aringhieri, A. Grosso, P. Hosteins and R. Scatamacchia, ”A general
evolutionary framework for different classes of critical node problems,”
Eng. Appl. Artif. Intell, Vol. 55, pp. 128–145, 2016.

[18] T.N. Dinh and M.T. Thai, ”Network under joint node and link attacks:
vulnerability assessment methods and analysis,” IEEE/ACM Trans. Netw,
Vol. 23(3), pp. 1001–1011, 2015.

[19] A. Arulselvan, C.W. Commander, O. Shylo and P.M. Pardalos,
”Cardinality- constrained critical node detection problem,” In: In:
G¨ulpınar, N., Harrison, P., R¨ustem, B. (eds.) Performance Models and
Risk Management in Communications Systems,, pp. 79–91, 2011.

[20] M. Lalou, M.A. Tahraoui and H. Kheddouci, ”Component-cardinality-
constrained critical node problem in graphs,” Discrete Appl. Math, Vol.
210(3), pp. 150–163, 2016.

[21] B. Addis, M. Di Summa and A.s. Grosso, ”Identifying critical nodes in
undirected graphs: Complexity results and polynomial algorithms for the
case of bounded treewidth,” Discrete Applied Matehmatics, Vol. 161, pp.
2349–2360, 2013.

[22] Y. Shen, N.P. Nguyen, Y. Xuan and M.T. Thai, ”On the discovery of crit-
ical links and nodes for assessing network vulnerability,” in IEEE/ACM
Transactions on Networking, Vol. 21(3), pp. 963–973, 2013.

[23] M. Lalou, M.A. Tahraoui and H. Kheddouci, ”The critical node detection
problem in networks: A survey,” Computer Science Review, Vol. 28, pp.
92–117, 2018. doi:org/10.1016/j.cosrev.2018.02.002.

[24] P. Hosteins, R. Rosario Scatamacchia, A. Grosso and R. Aringhieri,
”The connected critical node problem,” Theor. Comput. Sci, Vol. 923,
pp. 235–255, 2022.

[25] M. Di Summa and S.M.O. Faruk, ”Critical node/edge detection problems
on trees,”Q J Oper Res, Vol. 40, 2022.

[26] A.Megzari, P.V.P. Raj, W. Osamy and A.M. Khedr, ”Applications,
challenges, and solutions to single and multi-objective critical node
detection problems: a survey,” Supercomput, Vol. 79, pp. 19770–19808,
2023.

[27] Z. Niu, Q. Li, C. Ma, H. Li, H. Shan and F. Yang, ”Identification of
critical nodes for enhanced network defense in MANET-IoT networks,”
IEEE Access, Vol. 8, pp. 183571-183582, 2020.

50 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025

Fig. 6. Design of an IoT Network with 13 Nodes Using the CupCarbon Simulator

Fig. 7. Example of 2 critical nodes over 13 nodes using CupCarbon IoT simulator.

[28] S. Shukla, ”Angle based critical nodes detection (abcnd) for reliable
industrial wireless sensor networks,” Wireless Personal Communications,
Vol 130(2), pp. 757–775, 2023.

[29] I. Ahmad, A. Clark, M. Ali, H. Lei, D. Ferris, A. Aved, ”Determining
critical nodes in optimal cost attacks on networked infrastructures,”
Discover Internet of Things, Vol. 4(1), pp. 2, 2024.

[30] A. Arulselvan, C. W. Commander, O. Shylo and P.M. Pardalos, ”Cardi-
nality constrained critical node detection problem,” Performance models
and risk management in communications systems, pp. 79–91, 2011.
https://doi.org/10.1007/ 978-1-4419-0534-5 4.

[31] W. Pullan, ”Heuristic identification of critical nodes in sparse real-world
graphs,” J.Heuristics, Vol. 21(5), pp. 577–598, 2015.

[32] E. Balas and C.C. Souza, ”The vertex separator problem: a polyhedral
investigation,” Math. Program, Vol. 103(3), pp. 583–608, 2005.

[33] C. Liu, S. Ge and Y. Zhang, ”Identifying the cardinality-constrained crit-
ical nodes with a hybrid evolutionary algorithm,” Information Sciences,
Vol. 642, pp. 119140, 2023. https://doi.org/10.1016/j.ins.2023.119140.

[34] M. Ventresca and D. Aleman, ”A randomized algorithm with local
search for containment of pandemic disease spread,” Comput. Oper. Res,
Vol. 48(3), pp. 11–19, 2014.

[35] M. Lalou and H. Kheddouci, ”Network vulnerability assessment using
critical nodes identification,”, In: 2023 International Symposium on
Networks, Computers and Communications (ISNCC), IEEE, pp. 1–6,
2023.

A. LALOUCI et al.: A DISTRIBUTED ALGORITHM TO CRITICAL NODE IDENTIFICATION IN IOT NETWORKS 51

[36] M. Lalou and H. Kheddouci, ”A polynomial-time algorithm for finding
critical nodes in bipartite permutation graphs,” Optimization Letters, Vol
13, pp. 1345–1364, 2019. https://doi.org/10.1007/s11590-018-1371-6.

[37] M. Lalou and H. Kheddouci, ”Finding important nodes in chordal
graphs,” In: 2024 10th International Conference on Control, Decision
and Information Technologies (CoDIT), IEEE, pp. 1448–1452, 2024.
https://doi.org/10.1109/CoDIT62066.2024. 10708414 .

[38] S. Fortunato, ”Community detection in graphs,” Phys. Rep, Vol. 486(3),
pp. 75–174, 2010.

[39] V. Tomaino, A. Arulselvan, P. Veltri and P.M. Pardalos, ”Studying
connectivity properties in human protein–protein interaction network in
cancer pathway,” Data Mining for Biomarker Discovery, pp. 187–197,
2012.

[40] M. Lalou and H. Kheddouci, ”Least squares method for diffusion
source localization in complex networks,” In: International Workshop on
Complex Networks and Their Applications, pp. 473–485. Springer, 2016.

[41] M. Lalou, H. Kheddouci and S. Hariri, ”Identifying the cyber attack ori-
gin with partial observation: a linear regression based approach,” In: 2017
IEEE 2nd Inter- national Workshops on Foundations and Applications of
Self* Systems (FAS* W), pp. 329–333, IEEE, 2017.

[42] A. Bounceur, ” Cupcarbon: a new platform for designing and simulating
smart-city and IoT wireless sensor networks (sci-wsn),” In: Proceedings
of the International Conference on Internet of Things and Cloud Comput-
ing(ICC’2016), pp. 1–1, 2016. https://doi.org/10.1145/2896387.2900336

[43] CupCarbon network simulator. Available at: https://cupcarbon.com/.
[44] E. Ojie and E. Pereira, ”Simulation tools in internet of things:

a review,” In: Proceedings of the 1st International Conference
on Internet of Things and Machine Learning, pp. 1–7, 2017.
https://doi.org/10.1145/3109761.3158400

[45] CupCarbon User Guide. Available at:https://freenwork.com/cupcarbon/
cupcarbon user guide.pdf

[46] K. Mehdi, M. Lounis, A. Bounceur and T. Kechadi, ”Cupcar-
bon: A multi-agent and discrete event wireless sensor network de-
sign and simulation tool,” In: Proceedings of the 7th Interna-
tional ICST Conference on Simulation Tools and Techniques, pp.
126–131. Institute for Computer Science, Social Informatics and
Telecommunications Engineering (ICST), Lisbon, Portugal , 2014.
https: //doi.org/10.4108/icst.simutools.2014.254811 Security, vol. 421, pp.
75–83. Springer, Singapore, 2022. https://doi.org/10.1007/978-981-19-
1142-2 6

[47] D.d.F. Medeiros, C.P.d. Souza, F.B.S.d. Carvalho and W.T.A. Lopes,
”Energy- saving routing protocols for smart cities,” Energies, Vol. 15(19),
pp. 7382, 2022. https: //doi.org/10.3390/en15197382

[48] A. Mukherjee,N. Dey and D. De, ”Edgedrone: Qos aware mqtt
middleware for mobile edge computing in opportunistic internet of
drone things,” Computer Communications, Vol. 152, pp. 93–108,2 020.
https://doi.org/10.1016/j.comcom.2020.01. 039

[49] A.Bounceur, M. Bezoui, R. Euler, N. Kadjouh and F. Lalem, ”Brogo: a
new low energy consumption algorithm for leader election in wsns,” In:
2017 10Th International Conference on Developments in Esystems Engi-
neering (deSE), pp. 218–223, 2017. https://doi.org/10.1109/DeSE.2017.11

[50] A. Bounceur, M. Bezoui, M. Lounis, R. Euler and C. Teodorov,
”A new dominating tree routing algorithm for efficient leader elec-
tion in IoT networks,” In: 15th IEEE Annual Consumer Communi-
cations and Networking Conference. CCNC 2018 - 2018, pp. 1–2.
Institute of Electrical and Electronics Engineers Inc., United States ,2018.
https://doi.org/10.1109/CCNC.2018.8319292

[51] N. Kadjouh, A. Bounceur, M. Bezoui, M.E. Khanouche, R. Euler, M.
Hammoudeh, L. Lagadec, S. Jabbar and F. Al-Turjman, ”A dominating
tree based leader election algorithm for smart cities IoT infrastruc-
ture,” Mobile Networks and Applications, Vol 28, pp. 1–14, 2023.
https://doi.org/10.1007/s11036-020-01599-z

[52] A. Bounceur, M. Bezoui, M. Hammoudeh, L. Lagadec and R. Euler,
”Finding the polygon hull of a network without conditions on the starting
vertex,” Transactions on emerging telecommunications technologies, Vol.
33(3), pp. 3696, 2022.

[53] F. Lalem, A. Bounceur, M. Bezoui, M. Saoudi, R. Euler, T. Kechadi,
and M. Sevaux, ”Lpcn: Least polar-angle connected node algorithm to
find a polygon hull in a connected euclidean graph,” Journal of Network
and Computer Applications, Vol. 93, pp. 38–50, 2017.

[54] A. Bounceur, M. Bezoui, R. Euler, F. Lalem, ”A wait-before-starting
algorithm for fast, fault-tolerant and low energy leader election in wsns
dedicated to smart- cities and iot,” In: 2017 IEEE SENSORS, pp. 1–3,
IEEE, 2017.

[55] M. Bezoui, A. Bounceur, R. Euler, F. Lalem, L. Abdelkader, ”A new
algorithm for finding a dominating set in wireless sensor and IoT networks

based on the wait-before-starting concept,” In: 2017 IEEE SENSORS, pp.
1–3 ,2017. https: //doi.org/10.1109/ICSENS.2017.8233992 . IEEE

[56] A. Lalouci and F. Zoubeyr, ”A distributed algorithm for secure domi-
nating set problem in IoT networks,” Studies in Engineering and Exact
Sciences, Vol. 5(2), pp. 01–25, 2024. https://doi.org/10.54021/seesv5n2-
350

[57] T. Jeyaprakash and R. Mukesh, ”An Optimized Node Selection Routing
Protocol for Vehicular Ad-hoc Networks – A Hybrid Model,” in Journal
of Communications Software and Systems, vol. 11, no. 2, pp. 80-85, June
2015, doi: 10.24138/jcomss.v11i2.106

[58] R. Almutairi, G. Bergami, and G. Morgan, ”Advancements and Chal-
lenges in IoT Simulators: A Comprehensive Review,” Sensors, Vol. 24(5),
p. 1511, 2024.

Ali Lalouci received his engineering degree in 2009
and his magister’s degree in computer science in
2012. He is currently an assistant professor in the
Department of Computer Science at Mila University
Center, Algeria. He is also a Ph.D. candidate in the
Department of Computer Science at the University
of Béjaia, Algeria. His research focuses on leverag-
ing distributed computing to enhance the protection
of IoT networks.

Zoubeyr Farah received his Ph.D. in Computer
Science from the University of Bejaia in 2015. He
is currently a faculty member at the University of
Bejaia. He is actively involved in research at both the
LIMED Laboratory at the University of Bejaia and
the LITAN Laboratory at the Higher School of Com-
puter Science and Digital Technologies (ESTIN).
His research interests include : Service Composi-
tion, Internet of Things (IoT), Cybersecurity, Formal
Methods, Artificial Intelligence and its Applications.

52 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025

