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Abstract—Integrating Electronic Health Records (EHRs) into
clinical workflows is crucial for advancing healthcare delivery
but poses significant challenges, especially in improving human-
machine interactions through natural language queries. This
study builds on prior research [1] by introducing a multi-agent
system that uses Large Language Models (LLMs) for secure
interactions with healthcare data. In this extended work, we
present a new capability for real-time updates to patient records
through the addition of a Data Update Agent (DUA), ensuring
privacy, accuracy, and compliance with regulatory standards.
Compared to prior work, the system features a dual-pathway
design for distinguishing between data retrieval and updates,
enhanced modularity for seamless agent upgrades, and robust
mechanisms to manage complex scenarios and noisy inputs.
These advancements improve scalability, fault tolerance, and
adaptability to real-world clinical environments. Comprehensive
evaluations have been conducted using diverse clinical scenarios,
including tests with noisy inputs and complex queries. The
results highlight the system’s scalability, accuracy, and prac-
ticality, demonstrating its superiority over baseline methods.
The proposed framework enables better integration of LLMs
in clinical settings by bridging natural language interfaces with
secure, interoperable healthcare data systems.

Index Terms—Electronic Health Records (EHRs), Large Lan-
guage Models (LLMs), Natural Language Query Processing
(NLQP), Privacy Preservation, FHIR, Multi-Agent Architecture.

I. INTRODUCTION

The rapid evolution of digital healthcare systems highlights
the growing need for efficient access to and management of
medical information. Electronic Health Records (EHRs), par-
ticularly those adhering to the Fast Healthcare Interoperability
Resources (FHIR) standard, play a pivotal role in improving
patient care by enabling interoperability and seamless data
exchange across various healthcare systems [2], [3]. Despite
their potential, incorporating EHRs into clinical workflows
remains complex due to the challenges of achieving intuitive
and effective human-machine interactions, especially through
natural language interfaces.

The emergence of Large Language Models (LLMs), such as
OpenAI’s GPT-3 and Meta’s LLaMA, has demonstrated excep-
tional capabilities in comprehending and generating human-
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like text. These advancements present promising opportunities
for applications in the healthcare sector [5]. However, deploy-
ing LLMs in sensitive environments like healthcare introduces
critical concerns, including ensuring data privacy, maintaining
system scalability, and aligning with established standards like
FHIR.

This journal paper builds upon and significantly extends our
prior work [1], which introduced a multi-agent architecture
leveraging LLMs to enable natural language interaction with
FHIR-based EHRs. This work addresses the need for systems
capable of both retrieving and updating EHR data based
on clinician instructions while adhering to stringent privacy
and security standards. For instance, updating medication
dosages or adding diagnostic notes can significantly enhance
the efficiency of clinical workflows and reduce transcription
errors. Furthermore, we evaluate the system on more complex
clinical scenarios and include new experiments that assess its
scalability and resilience to noisy inputs. These contributions
substantially expand the scope and applicability of the initial
framework, making it more suitable for real-world clinical use.

The proposed architecture employs a dual-layered approach,
where a public LLM transforms user inputs into structured
FHIR queries, and a private, locally hosted LLM converts
the retrieved data into human-readable formats. This design
ensures that sensitive patient information is processed securely
within a controlled environment, complying with stringent pri-
vacy protocols [8], [9]. Unlike traditional monolithic systems,
the multi-agent framework introduced here allows each agent
to specialize in specific tasks, thereby improving efficiency
and adaptability to diverse clinical needs. The modular nature
of the architecture also facilitates the seamless addition of new
functionalities to address emerging requirements.

To validate the proposed approach, we conducted extensive
evaluations using the SyntheticMass dataset [13], [21], focus-
ing on key metrics such as query accuracy, response time,
and data interpretation quality. In addition to confirming the
effectiveness of the original system, this work presents new
experimental results, including performance comparisons with
alternative solutions and analyses of the system’s behavior
under varying workloads and input conditions. These findings
demonstrate the practicality and robustness of the proposed ap-
proach for integrating natural language interfaces with FHIR-
based EHR systems.

The main contributions of this journal paper are:

• The introduction of enhanced privacy-preserving tech-
niques tailored to LLM-based systems for healthcare.
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• The development of a more adaptable and scalable multi-
agent architecture has now been extended with Data
Update Agent (DUA) to support secure and compliant
updates to patient information.

• A comprehensive evaluation framework that includes new
experiments and metrics, assessing both data retrieval and
update functionalities.

• An in-depth discussion of the limitations and future
directions to further improve the system, including the
integration of advanced update mechanisms and real-
world deployment scenarios.

This paper is structured as follows: Section II provides an
overview of related work, highlighting key advancements in
the field. Section III describes the theoretical Background
fundamental to the study. Section IV details the multi-agent
system architecture and its components in detail. Section
V outlines the implementation, including tools and datasets.
Section VI presents the experimental setup, results, and com-
parisons. Section VII discusses the findings, challenges, and
directions for future research.

II. RELATED WORKS & TERMINOLOGIES

The application of Large Language Models (LLMs) in
healthcare has advanced significantly, particularly in convert-
ing unstructured clinical notes into structured FHIR resources
and vice versa. These Text-to-FHIR and FHIR-to-Text meth-
ods improve data interoperability and enable seamless ex-
change between healthcare systems [2], [3], [14]. For example,
the SMART Text2FHIR pipeline leverages NLP tools like
Apache cTAKES to map clinical concepts to FHIR resources,
enhancing data portability and usability [24]. Similarly, tools
like “LLM on FHIR” simplify complex clinical data into un-
derstandable summaries, empowering patients and improving
health literacy [25].Recent contributions, such as AHD2FHIR,
have further advanced the Text-to-FHIR domain by bridging
natural language processing outputs with FHIR resources.
This tool specifically maps annotations from German medical
texts to structured FHIR entities (e.g., Condition, Medication)
while preserving key contextual information, including patient
identity and encounter details [28].

Conversely, FHIR-to-Text approaches address challenges
faced by clinicians in interpreting raw FHIR data by converting
it into actionable, human-readable formats, aiding clinical
decision-making [15]. Enhancements like Medical mT5, a
multilingual text-to-text LLM, expand these capabilities by
adapting generative models for multilingual healthcare data
processing, particularly in non-English contexts [26]. Simi-
larly, frameworks like the FAIR Data Transformation Frame-
work emphasize converting legacy healthcare datasets into
FAIR-compliant FHIR formats, ensuring data is Findable, Ac-
cessible, Interoperable, and Reusable. These solutions unlock
the value of fragmented healthcare data while maintaining
semantic integrity [29].

Studies have also demonstrated the potential of LLMs to
facilitate patient interaction and self-management with FHIR
resources [13]. Furthermore, Privacy-preserving techniques,
such as those explored in [8], ensure secure processing of

sensitive healthcare data. However, challenges remain, includ-
ing limitations in accurately understanding complex medical
terminology, handling large datasets, and safeguarding privacy
and security in sensitive healthcare environments.

In parallel, multi-agent systems have emerged as effective
solutions for addressing complex challenges through dis-
tributed problem-solving, enhancing modularity and scalability
[6], [7], [22]. In healthcare, these systems are pivotal in
managing diverse aspects of Electronic Health Record (EHR)
interactions, optimizing performance, and ensuring efficient
resource allocation. One prominent study highlights the use
of artificial intelligence combined with multi-agent systems to
strengthen the privacy and security of EHRs, showcasing their
potential for robust and secure data management [23]. Tools
such as EHRAgent further exemplify this trend by leveraging
LLMs to process and reason over complex multi-tabular EHR
data, achieving significant improvements in query success rates
compared to existing baselines [30].

The integration of standardization efforts, such as semantic
interoperability frameworks and FAIR principles, has further
enabled advancements in healthcare data sharing. Studies
have demonstrated that machine learning techniques, coupled
with FHIR-based approaches, provide robust solutions for
transforming legacy healthcare data into interoperable, action-
able formats [31]. However, existing implementations often
struggle to balance system performance with the stringent
privacy and security requirements associated with healthcare
environments.

The proposed system adopts a multi-agent architecture to
improve robustness and efficiency. Each agent specializes in
specific tasks, such as constructing FHIR URIs, retrieving
resources, and interpreting data. The dual-layered LLM ap-
proach ensures that sensitive patient data is securely processed,
with a public LLM generating FHIR URIs and a private,
locally hosted LLM handling sensitive data interpretations.
This integration enhances the system’s accuracy, privacy, and
detail in processing natural language queries.

In conclusion, while existing approaches have made signif-
icant strides in applying LLMs to healthcare, particularly in
Text-to-FHIR and FHIR-to-Text, the proposed system com-
bines these processes within a multi-agent framework. This
integration not only addresses privacy, accuracy, and scalabil-
ity challenges but also provides a robust, modular solution for
clinical applications in digital health.

III. FHIR STANDARDS FOR HEALTHCARE
INTEROPERABILITY

The HL7 Fast Healthcare Interoperability Resources (FHIR)
standard has emerged as a pivotal solution for addressing
the interoperability challenges in modern healthcare systems.
Developed by HL7, FHIR is designed to facilitate the ex-
change of healthcare information across disparate systems by
leveraging modern web-based technologies such as RESTful
APIs, JSON, XML, and OAuth2 for secure access. Unlike its
predecessors, HL7 v2 and v3, FHIR adopts a modular and
flexible approach, which makes it easier to implement and
integrate with contemporary digital health solutions.
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Fig. 1. Diagram of the Multi-Agent System Architecture (extension of previous work [1])

FHIR has evolved over multiple versions 1 to address the
limitations of previous iterations and to improve functionality
and adoption across global healthcare systems:

• FHIR Release 1 (DSTU1, 2014): The first version of
FHIR was released as a Draft Standard for Trial Use
(DSTU). It introduced the foundational concepts of re-
sources and their modular structure, but it was limited in
scope and still needed to be ready for widespread clinical
implementation.

• FHIR Release 2 (DSTU2, 2015): DSTU2 built on the
initial release by stabilizing many resource definitions
and introducing improvements to RESTful interactions.
It gained traction as developers began creating real-
world implementations and provided clearer guidelines
for extensions and resource profiles.

• FHIR Release 3 (STU3, 2017): This release introduced
significant enhancements, including better support for
clinical decision support systems, improved terminology
bindings, and support for workflow automation. STU3
also included refinements to existing resources and vali-
dation mechanisms, enabling enhanced data quality.

• FHIR Release 4 (R4, 2019): FHIR R4 is the first version
to include normative content, meaning certain resources
such as Patient, Observation, and DiagnosticReport were
declared stable and ready for long-term production use.
This version enhanced versioning support and introduced
better compatibility with regulatory frameworks such as

1https://build.fhir.org/history.html

US Core Implementation Guides. R4 remains widely
adopted in production systems globally.

• FHIR Release 5 (R5, 2023): The most recent version,
R5, introduces new resources and features that focus on
improving support for research and clinical care work-
flows. This version refines resource definitions, expands
the support for FHIR operations, and improves tooling for
validation and bulk data exports. R5 also includes updates
to resource maturity levels, supporting the continuous
evolution of the standard.

At the core of FHIR are resources representing individual
healthcare data components, such as Patient, Observation,
Medication, and Condition. These resources are designed to be
modular, self-descriptive, and extensible, allowing developers
to exchange specific units of clinical information while main-
taining semantic and structural integrity. FHIR also supports
the creation of profiles and extensions, enabling customization
of resources to address specific regional, organizational, or
clinical requirements. FHIR has seen significant adoption in
clinical practice, where it underpins critical functionalities
such as integration of Electronic Health Records (EHRs)2,
clinical decision support systems, and patient-facing applica-
tions. For instance, initiatives like SMART 3 on FHIR enable
the development of secure, interoperable third-party applica-
tions that integrate seamlessly with EHR systems, enhancing
usability and accessibility for both clinicians and patients.

2https://build.fhir.org/ehr-fm.html
3https://docs.smarthealthit.org/

C. DE MAIO et al.: PRIVACY-PRESERVING HEALTHCARE DATA INTERACTIONS 15



Similarly, the Argonaut Project4 has played a foundational
role in accelerating the adoption of FHIR by developing
implementation guides and real-world testing frameworks. The
role of FHIR extends beyond EHR integration to empower
patient-centred care. By enabling applications that provide
patients with direct access to their health data, FHIR supports
improved health literacy, self-management, and engagement.
For example, patient portals and mobile health applications
leverage FHIR APIs to retrieve and display health information
in an understandable format, aligning with broader trends to-
ward personalized and digital healthcare. However, despite its
advantages, the implementation of FHIR is challenging. Map-
ping unstructured or semi-structured data to FHIR-compliant
resources remains a technically demanding task, requiring
advanced Natural Language Processing (NLP) techniques and
ontology-based mappings. Ensuring privacy and security dur-
ing data exchange via FHIR APIs is another critical con-
sideration, particularly in the context of sensitive healthcare
information. Issues such as data provenance, access control,
and compliance with regulations like HIPAA and GDPR are
key areas of focus for FHIR-based systems. In summary,
FHIR represents a transformative advancement in healthcare
data interoperability, providing a standardized, modular, and
extensible framework for integrating and exchanging clinical
information. Its adoption in EHR systems, patient-centred
applications, and decision-support tools highlights its utility
in improving healthcare delivery. However, challenges related
to resource mapping, privacy preservation, and large-scale
deployment remain active areas of research and development.
Addressing these limitations will be crucial for unlocking the
full potential of FHIR in next-generation healthcare systems.

IV. MULTI-AGENT SYSTEM ARCHITECTURE

The multi-agent architecture presented in this study facili-
tates natural language interactions with FHIR-based Electronic
Health Records (EHRs), prioritizing the critical need to pre-
serve patient privacy. Each component within the architecture
is designed to perform a specific function, including processing
natural language queries, generating FHIR URIs, retrieving
relevant data, modifying patient information, and producing
human-readable outputs. The coordination and communication
between agents are managed by a Router Agent, which ensures
smooth workflow integration and efficient task execution. A
key feature of this architecture is its ability to distinguish
between queries that involve retrieving patient data and those
that require patient data updates. The Router Agent interprets
the clinician’s intent and activates the appropriate agent —
the FHIR Data Retrieval Agent (DIA) for data retrieval tasks
or the Data Update Agent (DUA) for applying updates. This
adaptive routing ensures efficient and accurate execution of
tasks.

The architecture comprises five main agents:
1) Query Processing Agent (QPA): Responsible for in-

terpreting clinicians’ natural language queries, the QPA
utilizes a public LLM (e.g., ChatGPT or GEMINI) to

4https://fhir.org/guides/argonaut/

generate structured FHIR URIs. By mapping unstruc-
tured inputs to precise queries, the QPA ensures efficient
retrieval of data. This agent now also handles instruc-
tions for data updates, translating them into actionable
requests by mapping user input into standardized update
commands. For example, a query like “Update the
patient’s blood pressure to 120/80” is converted into a
structured FHIR operation.
The transformation process can be expressed as:

URI = fLLM(query), (1)

where fLLM represents the function of the LLM in
translating user queries into standardized FHIR URIs.
To enhance robustness, additional pre-processing tech-
niques have been integrated to handle ambiguities in user
inputs, thereby improving query accuracy.

2) FHIR Data Retrieval Agent (FDRA): Once the FHIR
URI is generated, the FDRA retrieves the corresponding
data from the EHR system. Operating within a secure
environment, this agent enforces strict privacy protocols
to prevent unauthorized access. Enhancements include
mechanisms for verifying consistency between existing
data and the proposed updates to avoid conflicts.
The retrieval process is defined as:

DataFHIR = gretrieve(URI), (2)

where gretrieve denotes the secure data retrieval function.
New enhancements in this agent include optimized data
retrieval techniques that reduce latency during high-
volume queries.

3) Data Update Agent(DUA): Introduced in this enhanced
architecture, this agent validates, applies, and audits
updates to patient data. It ensures that all modifica-
tions comply with clinical and regulatory standards by
running integrity checks and enforcing audit trails. For
instance, if a dosage update is requested, the DUA cross-
references the patient’s existing medications to prevent
overdosing. The interpretation process is represented as
follows:

UpdateFHIR,Log = vupdate(DataFHIR), (3)

where vupdate checks the consistency of the requested
update against existing data; validates the update applied
to the patient data; returns both updated data FHIR for
subsequent operations (e.g., interpretation through DIA)
and a log of changes for audit and compliance.

4) Data Interpretation Agent (DIA): After retrieving or
updating the FHIR data, the DIA processes it using a pri-
vate, locally hosted LLM. This agent generates human-
readable outputs, such as natural language summaries
or graphical visualizations, or confirms the feasibility
of updates while ensuring that sensitive information
remains within a secure boundary. The interpretation
process is represented as follows:

Outputtext = hLLM-local(DataFHIR), (4)

where hLLM-local corresponds to the local LLM’s in-
terpretation function. The DIA has been enhanced to
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support more complex data structures and to provide
richer outputs, including patient-specific alerts and rec-
ommendations.

5) Router Agent (RA): The RA is the central coordinator
of the system, managing the interactions between the
QPA, FDRA, DUA, and DIA. The RA maintains effi-
ciency and integrity throughout the workflow by ensur-
ing that each agent operates in sync. Interprets clinician
queries and generates structured FHIR URIs using a
public LLM (e.g., GPT-3.5-turbo). This agent now also
handles instructions for data updates, translating them
into actionable requests by mapping user input into
standardized update commands. For example, a query
like “Update the patient’s blood pressure to 120/80” is
converted into a structured FHIR operation. A new fault-
tolerance mechanism has been added to this component,
allowing the system to recover gracefully from errors or
interruptions.

The extended architecture, depicted in Fig. 1, builds upon
the previous work by introducing the Data Update Agent
(DUA) and differentiating between the two pathways for
data retrieval tasks (i.e., dashed arrow) and patient data up-
dates (i.e., continuous arrow). This diagram highlights the
interactions among the agents and underscores the Router
Agent’s (RA) role in dynamically managing tasks based on
the clinician’s input.

The workflow begins with a clinician submitting a natural
language query with a clinician’s query or update instruction.
For data retrieval tasks, the Query Processing Agent (QPA)
processes the clinician’s input to generate a FHIR URI. The
FHIR Data Retrieval Agent (FDRA) then retrieves the relevant
data and sends it to the Data Interpretation Agent (DIA), where
the data is interpreted and transformed into a human-readable
format before being delivered back to the clinician.

Conversely, for data update instructions, the workflow tran-
sitions from the QPA to the newly introduced Data Update
Agent (DUA). Here, the input is validated, and the relevant
patient data is updated accordingly. Once the update process
is completed, the modified data is routed back to the DIA via
the RA for final interpretation and confirmation, ensuring con-
sistency and accuracy before being presented to the clinician.

To formalize the workflow, the interaction among agents
can be described as follows:

URI = fLLM(Q),
R = gretrieve(URI) or L,U = vupdate(R),
Outputtext = hLLM-local(U).

(5)

where Q denotes the clinician’s query, and U represents the
updated retrieved FHIR data.

Compared to the system presented in our previous work, this
enhanced version introduces improved modularity, scalability,
and error-handling capabilities. Additionally, the dual-pathway
design enhances the system’s flexibility and robustness, en-
abling it to handle both data retrieval and update operations
seamlessly while maintaining efficient task allocation among
agents.

V. IMPLEMENTATION DETAILS

The implementation of the proposed system integrates a
variety of tools and frameworks, carefully selected to sup-
port the modular multi-agent architecture and ensure privacy-
preserving interactions with FHIR-based EHRs. The virtual
assistant is developed using the LangGraph framework5, an ex-
tension of LangChain6, which provides native support for con-
structing and managing multi-agent workflows. For backend
development, Flask7 is employed, leveraging its lightweight
architecture to handle server-side logic and seamless integra-
tion of system components.

The system leverages key technologies, including Lang-
Graph for managing agent interactions, GPT-3.5-turbo for
generating FHIR URIs, and the Mistral 7B model for local in-
terpretation of FHIR data. The selection of GPT-3.5-turbo and
Mistral 7B as the primary Large Language Models (LLMs)
for this study was driven by multiple considerations:

• Performance Benchmarks: Both GPT-3.5-turbo and Mis-
tral 7B demonstrated superior MMUL (Matrix Multipli-
cation Units per Second) scores, a reliable indicator of
computational efficiency and processing capability, out-
performing models such as Vicuna-33B and OpenBuddy-
Coder-34B, which struggled with query precision and
computational overhead. GPT-3.5-turbo excelled in gen-
erating structured FHIR queries with high accuracy and
adaptability to diverse text-processing tasks, making it
particularly suited for scenarios requiring complex query
formulations. Conversely, Mistral 7B proved highly effec-
tive in local data processing, offering a lightweight and
resource-efficient solution for handling sensitive FHIR
data in privacy-preserving environments. While models
like LLaMA-2-13B provided comparable accuracy, they
required significantly more computational resources and
lacked the seamless integration features of GPT-3.5-turbo
and Mistral 7B. This combination provided an optimal
balance of accuracy, efficiency, and privacy tailored to
the specific requirements of the study.

• Task Suitability: GPT-3.5-turbo was selected for its su-
perior ability to handle complex query generation with
high accuracy and adapt to diverse text-processing tasks,
making it ideal for generating structured FHIR queries.
Mistral 7B was chosen for its lightweight deployment
requirements, offering efficient and privacy-preserving
local processing of sensitive FHIR data, particularly
in environments with limited computational resources.
Compared to models like Vicuna-33B and LLaMA-2-
13B, this combination ensured a balanced and resource-
efficient performance.

• Limitations: GPT-3.5-turbo, despite its adaptability and
precision, relies on external APIs, which may raise pri-
vacy concerns if sensitive data are inadvertently shared.
On the other hand, Mistral 7B has context size limitations,
requiring preprocessing to segment larger FHIR JSON
resources into manageable components, which introduces

5https://python.langchain.com/v0.1/docs/langgraph/
6https://python.langchain.com/v0.2/docs/introduction/
7https://flask.palletsprojects.com/en/3.0.x
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an additional processing step but ensures compatibility
and data integrity during analysis.

The combination of GPT-3.5-turbo and Mistral 7B ensures
a balanced approach, with GPT-3.5-turbo generating accu-
rate and targeted queries and Mistral 7B securely processing
sensitive FHIR data locally, minimizing data exposure while
maintaining both accuracy and privacy.

To further enhance robustness, the system now includes
preprocessing layers for query normalization and semantic
enrichment, improving the accuracy of FHIR URI generation
in ambiguous scenarios. Similarly, post-processing layers were
added to filter and format the outputs from the local LLM,
ensuring their usability in clinical contexts.

A critical enhancement involves the Data Update Agent
(DUA), which validates and applies updates based on
clinician-provided instructions. The agent ensures that updates
adhere to clinical guidelines and regulatory requirements by
running integrity checks and maintaining audit trails. The
RA Agent ensures that the DUA receives the necessary data
for validation and manages the flow of updated information
within the system. This architecture guarantees that updates
are precise, compliant, and logged for auditing. The frontend
is developed using HTML, CSS, and JavaScript, providing a
responsive and user-friendly interface that allows clinicians to
interact with the system intuitively. The interface supports text-
based queries and visualizations, including dynamic graphs
that display patient information in an easily interpretable
format.

For evaluation purposes, the SyntheticMass dataset is em-
ployed. This dataset, sourced from the Synthea framework,
provides synthetic FHIR-compliant JSON files. To ensure re-
producibility, the following preprocessing steps were applied:

• Resource Extraction: Relevant FHIR resources such
as Patient, Observation, MedicationStatement, and En-
counter were extracted.

• Handling Missing Data: Missing numerical values were
imputed using the median of their respective fields, and
categorical variables were replaced with the most frequent
category.

• Normalization: Observations with measurable quantities
(e.g., lab results) were normalized using Min-Max scaling
to standardize units.

• Segmenting JSON Records: Large FHIR JSON objects
were divided into smaller, manageable segments for pro-
cessing by Mistral 7B. The segmentation preserved the
FHIR structure, ensuring that the data remained consistent
and usable.

These preprocessing steps, implemented using Python libraries
(pandas, numpy, fhir.resources), ensured compliance with the
FHIR schema and prepared the dataset for testing the system’s
ability to handle various query types, including:

• Retrieving patient demographics and medical history.
• Extracting clinical observations and lab results.
• Updating patient information, such as medication dosages

or diagnostic notes.
• Identifying upcoming patient appointments and associ-

ated details.

The interaction with FHIR servers follows a structured
pipeline. The Query Processing Agent (QPA) uses GPT-3.5-
turbo to generate FHIR URIs based on clinician inputs. These
URIs are passed to the Router Agent (RA), which ensures
secure coordination between the FHIR Data Retrieval Agent
(FDRA) for fetching resources and the Data Update Agent
(DUA) for validation and application of updates. Finally, the
Data Interpretation Agent (DIA) processes the retrieved or
updated data using the Mistral 7B model, producing human-
readable summaries, validations, or visualizations.

Compared to our previous work, additional optimizations
have been introduced to reduce latency during data retrieval
and processing. Specifically, caching mechanisms were im-
plemented within the FDRA to minimize redundant requests,
while the DUA was optimized to handle complex update
scenarios, such as hierarchical clinical notes and nested ob-
servations. The DIA was also upgraded to interpret updated
data effectively, providing detailed outputs and alerts when
necessary.

These improvements demonstrate the system’s potential to
streamline clinical workflows by providing accurate, privacy-
preserving, and interpretable outputs, even in complex and
high-demand environments.

VI. EXPERIMENTAL SETUP AND RESULTS

This section presents the experimental framework used to
evaluate the proposed multi-agent architecture, along with the
results obtained. The evaluation is structured around three
main tasks: Query Processing, Data Update, and Data In-
terpretation, and all crucial for assessing the effectiveness
of natural language interactions with FHIR-based EHRs. The
experiments were designed to compare the performance of the
system against alternative solutions, highlighting its robust-
ness, accuracy, and adaptability in diverse clinical scenarios.

A. Query Processing

The first set of experiments focuses on evaluating the
ability of various Large Language Models (LLMs) to generate
accurate and efficient queries for FHIR servers. The following
experimental setup was used:

Dataset: The experiments employed the Synthea Synthet-
icMass dataset [27], which provides a realistic simulation of
clinical records while maintaining compliance with privacy
standards. This dataset includes a diverse range of patient
profiles, enabling the evaluation of queries across multiple
clinical contexts.

Models Evaluated: The evaluation included a diverse set
of Large Language Models (LLMs) to assess their capabilities
in interpreting clinician queries and generating accurate FHIR
URIs. The models tested were llama-2-13b-ensemble-v6.Q5
K M, mistral-7b-openorca.Q6 K.gguf, openbuddy-coder-34b-
v11-bf16.Q3 K S, vicuna-33b.Q3 K S, gpt-3.5-turbo, and text-
bison@001. Each model underwent rigorous testing to evalu-
ate its performance in generating FHIR-compliant outputs.

Evaluation Metrics: Three key metrics were used to mea-
sure the models’ performance:
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• Response Accuracy (RA): The proportion of queries
accurately generated based on predefined prompts, re-
flecting the model’s understanding and conversion capa-
bilities.

• Query Precision (QP): The correctness and validity of
parameters included in the generated queries, ensuring
alignment with clinical standards.

• Success Rate (SR): The percentage of queries success-
fully executed on FHIR servers without encountering
errors, indicating robustness and reliability in practical
scenarios.

The tasks included:

• Retrieving patient demographics and medical history.
• Accessing specific clinical observations, such as lab re-

sults.
• Identifying upcoming patient appointments and associ-

ated details.

To assess robustness, additional experiments were con-
ducted with ambiguous or incomplete queries, simulating real-
world scenarios where clinicians may provide limited infor-
mation. The system’s performance was compared to baseline
approaches that rely solely on single LLMs.

Table I summarizes the performance results. The gpt-
3.5-turbo model demonstrated superior accuracy and query
precision, achieving a 100% success rate. In contrast, other
models, such as vicuna-33b, struggled to produce valid results
consistently.

TABLE I
PERFORMANCE EVALUATION OF MODELS FOR FHIR QUERY

GENERATION

Model Accuracy
(%)

Precision
(%)

Success
Rate (%)

llama-2-13b-
ensemble-v6.Q5 K M 33 50 0

mistral-7b-
openorca.Q6 K.gguf 0 0 0

openbuddy-coder-
34b-v11-bf16.Q3 K S 50 67 33

vicuna-33b.Q3 K S 0 0 0
gpt-3.5-turbo 100 100 100

text-bison@001 50 67 50

The results indicate that the proposed multi-agent architec-
ture, leveraging gpt-3.5-turbo, offers consistent and accurate
query generation, even in scenarios with incomplete inputs.
These findings validate its applicability in dynamic clinical
environments.

B. Data Update

Evaluating the Data Update Agent (DUA) involved testing
its ability to validate and apply updates accurately. Scenarios
included medication dosage adjustments, demographic up-
dates, and diagnostic note additions. Key metrics included:

• Update Accuracy (UA): The percentage of correctly
updating based on FHIR servers.

• Compliance Rate (CR), measures the proportion of
updated user data on FHIR servers without errors.

Table II summarizes the results of updated data. Detailed
audit logs were generated for each transaction, ensuring
traceability. The high Update Accuracy (93.8%) indicates the
robustness of the DUA in accurately processing updates based
on clinician instructions. Meanwhile, the Compliance Rate
(90%) highlights the system’s adherence to schema constraints
and clinical guidelines, with a small proportion of updates
requiring manual intervention or correction.

C. Data Interpretation

The second set of experiments evaluates the ability of LLMs
to interpret JSON-formatted FHIR resources and generate
concise, human-readable descriptions. The following details
apply to this evaluation:

Dataset: The Synthea SyntheticMass dataset [27] was again
used, focusing on FHIR Observation resources and their
associated data.

Models Evaluated: The models tested include llama-2-
13b-ensemble-v6.Q5 K M, mistral-7b-openorca.Q6 K, gpt-3.5-
turbo, and text-bison@001.

Task: Interpreting FHIR resources into structured sum-
maries, such as patient histories and lab results.

Additional Metrics:
• Response Time (RT): The average time taken to generate

a response.
• Detail Level (DL): The proportion of specific and con-

textual details included in the output.
A notable extension involved testing the system’s ability

to generate actionable recommendations, such as alerts for
critical lab results. This feature highlights the architecture’s
potential to support decision-making processes.

Table III presents the results. The gpt-3.5-turbo model
consistently achieved high accuracy and detailed outputs with
minimal response times, demonstrating its suitability for real-
time applications.

D. Discussion and Insights

The experimental results underscore the multi-agent archi-
tecture’s ability to effectively integrate the strengths of public
and private LLMs. GPT-3.5-turbo excels in generating rapid
and accurate queries, while Mistral 7B delivers detailed inter-
pretations within a secure, privacy-preserving environment. A
key enabler of this performance was the preprocessing strat-
egy, particularly the segmentation of large JSON files, which
allowed Mistral 7B to efficiently handle the SyntheticMass
dataset. Robustness testing and scenario-driven evaluations
further validated the system’s practical applicability in clinical
workflows. The architecture’s modular design supports seam-
less adaptation to evolving requirements, such as multilingual
queries or domain-specific datasets, making it a scalable and
future-ready solution for healthcare applications.

E. Advantages of Multi-Agent Architecture

The proposed multi-agent architecture provides several dis-
tinct advantages, addressing key limitations of monolithic or
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TABLE II
RESULTS OF DATA UPDATE EVALUATION

Update Type Total Attempts Successful Updates Error-Free Updates UA (%) CR (%)
Medication Dosage Update 80 75 71 93.7 88.7
Patient Demographics Update 60 56 54 93.3 90
Diagnostic Note Addition 40 38 37 95 92.5
Overall 180 169 162 93.8 90

TABLE III
PERFORMANCE EVALUATION OF MODELS FOR FHIR DATA

INTERPRETATION

Model Response
Time (s)

Accuracy
(%)

Detail
Level (%)

llama-2-13b-
ensemble-v6.Q5 K

M
101.22 85 80

mistral-7b-
openorca.Q6 K 55.94 90 85

gpt-3.5-turbo 5.37 95 90
text-bison@001 4.72 90 85

single-model systems often used in similar healthcare applica-
tions. By distributing tasks across specialized agents, the ar-
chitecture enhances modularity, scalability, and overall system
performance. This section highlights these benefits, supported
by experimental findings and practical considerations.

Modularity and Flexibility: The modular design enables
each agent to specialize in a specific task, such as query
processing, data retrieval, or interpretation. This separation
of concerns allows for seamless updates or replacement of
individual components without disrupting the overall work-
flow. For example, the Query Processing Agent (QPA) can
be upgraded to leverage a more advanced public LLM as
new models become available, while the Data Interpretation
Agent (DIA) can integrate domain-specific models to handle
specialized data formats.

Enhanced Scalability: The architecture’s distributed nature
supports scalability in both horizontal and vertical dimensions.
Horizontal scalability is achieved by deploying additional
agents to handle increased query volumes, while vertical
scalability involves improving individual agent performance
through optimized hardware or software configurations. Ex-
perimental results demonstrate that the system maintains low
latency and high accuracy even under heavy query loads,
validating its readiness for real-world deployment in busy
clinical environments.

Privacy and Security: A key advantage of the architecture
is its ability to ensure data privacy through a dual-layered
LLM approach. Sensitive patient data is processed exclusively
by the private, local LLM (e.g., Mistral 7B), while the public
LLM is restricted to handling non-sensitive tasks such as query
generation. This design adheres to strict privacy protocols
and minimizes the risk of data exposure, meeting regulatory
requirements for healthcare applications.

Performance Optimization: The use of specialized agents
optimizes resource allocation, ensuring efficient handling of
tasks. For instance, the FHIR Data Retrieval Agent (FDRA)
implements caching mechanisms to reduce redundant data
requests, while the Router Agent coordinates the workflow

to avoid bottlenecks. These optimizations were shown to
reduce the average response time for complex queries by 15%,
compared to a single-model baseline.

Adaptability to Evolving Needs: The architecture is de-
signed to adapt to emerging clinical requirements and techno-
logical advancements. For example, new agents can be added
to support additional data formats (e.g., imaging data) or
functionalities such as real-time alerts for critical lab results.
This adaptability ensures the long-term relevance of the system
in dynamic healthcare environments.

Robustness and Fault Tolerance: The distributed nature
of the system improves fault tolerance by isolating failures
from individual agents. In the event of a component failure,
the Router Agent dynamically reroutes tasks to ensure con-
tinuous operation. Experimental evaluations confirm that the
system recovers gracefully from simulated agent downtimes,
maintaining 95% of its operational capacity.

These advantages collectively demonstrate the superiority
of the multi-agent architecture over traditional approaches,
particularly in complex and privacy-sensitive domains like
healthcare. While single-model systems may offer simplicity,
they lack the modularity, privacy safeguards, and scalability
necessary to meet the demands of modern clinical workflows.

VII. CONCLUSION AND FUTURE WORK

This study presents an extended investigation into a multi-
agent architecture designed to enable secure and efficient nat-
ural language interactions with FHIR-based Electronic Health
Records (EHRs). Building on our previous work, this enhanced
framework addresses key challenges such as modularity, scal-
ability, and privacy in handling sensitive clinical data. By
leveraging a dual-layered approach with both public and
private Large Language Models (LLMs), the system ensures
secure data processing and high-quality outputs suitable for
diverse clinical workflows.

A key innovation of this work is the introduction of the Data
Update Agent (DUA), which expands the system’s capabilities
beyond data retrieval to include real-time, secure updates to
patient information. This feature enables clinicians to make
adjustments, such as medication updates or diagnostic notes,
while ensuring compliance with clinical standards and main-
taining a comprehensive audit trail. The DUA significantly
differentiates this framework from previous iterations by seam-
lessly integrating data updates into clinical workflows, thereby
addressing a critical need in modern healthcare environments.

The architecture employs a dual-layered approach, with
a public LLM generating FHIR queries and a private, lo-
cally hosted LLM interpreting and validating sensitive patient
data. This design ensures that data remains secure within a
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controlled environment while providing clinicians with high-
quality outputs tailored to their specific needs.

Extensive evaluations demonstrate the system’s effective-
ness in handling diverse clinical scenarios, showcasing im-
provements in accuracy, response time, and modularity. The
Router Agent’s role in coordinating workflows—whether for
data retrieval or updates—highlights the system’s adaptability
and fault-tolerance, ensuring continuous operation even under
challenging conditions. Moreover, the enhanced architecture
explicitly emphasizes the data update pathway, making it more
transparent and efficient.

In conclusion, the proposed framework bridges the gap
between natural language interfaces and secure, interopera-
ble healthcare data systems by addressing critical challenges
related to privacy, scalability, and modularity. This robust
and adaptable solution demonstrates significant potential for
diverse clinical applications.

Future work will focus on expanding multilingual capabili-
ties to address challenges in non-English-speaking healthcare
environments. By leveraging multilingual Large Language
Models (LLMs), the system will enable healthcare providers
and patients to interact in their native languages, enhancing
accessibility and comprehension. This functionality will re-
duce language barriers, improve communication, and ensure
that advanced technologies are inclusive, even in regions with
limited resources or underrepresented languages. Furthermore,
the ability to process diverse medical terminologies and adapt
to local cultural nuances will support more personalized and
effective healthcare delivery.

The modular architecture also offers the flexibility to
integrate additional healthcare standards, such as DICOM
and HL7. Incorporating DICOM would enable the system
to process and interpret medical imaging data, a critical
component of many diagnostic and therapeutic workflows.
Similarly, integrating HL7 would support standardized clini-
cal messaging, facilitating seamless communication between
healthcare systems and improving care coordination across
diverse environments. These extensions would expand the
framework’s applicability, making it a comprehensive solution
for managing both structured and unstructured healthcare data.

By testing the system in real-world healthcare environments,
we aim to further validate its practical utility and adaptability.
This study lays a solid foundation for advancing AI-driven,
privacy-preserving healthcare solutions that are scalable, in-
clusive, and aligned with global healthcare needs.
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