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Abstract—Breast cancer remains a formidable health challenge 

requiring advanced computational tools for accurate diagnosis 

and treatment planning. This study hypothesizes that modifica-

tions to the DeepLabV3+ architecture, such as incorporating an 

attention layer and replacing the ResNet50 backbone with Xcep-

tion, can significantly enhance segmentation accuracy and model 

stability for breast cancer histopathological images. To test this hy-

pothesis, we evaluated the performance of the original 

DeepLabV3+ and three modified versions for semantic segmenta-

tion using the “Breast Cancer Semantic Segmentation” (BCSS) da-

taset, which provides pixel-wise annotations of breast cancer tis-

sues. The proposed modifications include integrating an attention 

layer between the encoder and decoder (Model 1), replacing the 

ResNet50 backbone with an Xception backbone up to 'block5' 

(Model 2), and combining the Xception backbone with the atten-

tion layer (CancerSeg-XA). The models were implemented and 

trained in the Kaggle Notebook environment, and their perfor-

mance was assessed based on training and validation accuracy. 

The results show that Model 1 improved the model stability and 

accuracy compared to DeepLabV3+, whereas Model 2 and Can-

cerSeg-XA achieved significant accuracy improvements of 91.47% 

and 91.57%, respectively, over the baseline DeepLabV3+ accuracy 

of 85.7%. CancerSeg-XA demonstrated enhanced training stabil-

ity, making it a promising approach for clinical application in 

breast cancer diagnosis and treatment. 

Index terms—Deep learning, Breast cancer segmentation, His-

topathological images, ResNet50, DeepLabV3+, Xception back-

bone, Attention mechanism, BCSS. 

I. INTRODUCTION

Cancer remains one of the leading causes of mortality world-

wide, with nearly 10 million deaths reported in 2020 [1].  

It involves transforming normal cells into malfunctioning 

cells that rapidly multiply and invade other tissues. In 2022, 
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breast cancer was the most common cancer among women 

globally [2, 3].  

Many types of cancer can be treated successfully and even 

cured if detected early and managed appropriately. However, 

the process of diagnosing cancer is often time-consuming and 

requires pathologists to examine the stained tissue samples un-

der a microscope meticulously. With the advent of digital scan-

ners for whole-slide imaging (WSI), computer vision has 

emerged as a tool to significantly reduce the diagnosis time by 

automating the analysis of WSIs. WSI involves creating digital 

histopathological images through laboratory processes, which 

can be examined either manually under a microscope or digit-

ized at varying magnifications using specialized scanners [4]. 

Histopathology image segmentation is a critical task in com-

puter vision that involves precise delineation of structures and 

regions within WSIs. This process starts with high-resolution 

digital scanning of stained wax tissue slices on a glass slide at 

multiple magnifications, achieving a spatial resolution of 0.25 

μm/pixel at 40X magnification. WSI images are stored in a mul-

tiscale pyramid resolution format, as illustrated in  

Fig. 1 [5]. 

This provides a comprehensive view of the tissue specimen, 

enabling pathologists to meticulously perform the labor-inten-

sive task of pixel-wise labeling of WSIs and annotating individ-

ual pixels corresponding to distinct tissue structures or patho-

logical features [6]. Generating sufficient manually labeled data 

to train convolutional neural network (CNN) models poses a 

significant challenge because of the meticulous annotation re-

quired for gigapixel whole-slide images, a process that is both 

costly and time-consuming. This complexity is further ampli-

fied by the heterogeneity of malignant tumors because tumors 

of the same type can exhibit highly diverse morphological char-

acteristics. 

This intricacy necessitates expertise in clinical backgrounds 

for accurate pixel-level labeling, making it unsuitable for indi-

viduals lacking such qualifications [7]. Additionally, experts 

employ different magnification levels when annotating WSIs 

and adjust their focus to capture fine details and variations in 

the tissue morphology. Consequently, finding ways to alleviate 

the annotation burden remains an open problem, prompting the 

exploration of innovative approaches to reduce the efforts re-

quired for this crucial aspect of histopathological image seg-

mentation [7]. 

The field of deep-learning-based medical diagnostics has un-

dergone substantial advancements, particularly with the rise of 

computer-aided diagnostic (CAD) systems. These deep 
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learning-driven systems play a vital role in supporting practi-

tioners in the detection and differentiation of various abnormal-

ities [8]. The effectiveness of a CAD system depends on the 

precise selection of features and learning capabilities of the 

classifier, making the identification of relevant features crucial 

for training an accurate classification model. 

 

 
 

Fig. 1. Typical WSI image with multiscale pyramid resolution [5]. 

 

Breast cancer, the second most prevalent lethal disease, poses 

a substantial challenge in medical imaging, particularly in the 

classification of mitotic nuclei, which are key indicators of tu-

mor malignancy and cancer progression. To address this chal-

lenge, several CAD systems based on machine learning have 

been devised to automate mitosis classification [9]. However, 

automating mitosis classification is daunting because of the 

high resemblance between mitotic and non-mitotic examples, 

coupled with variations in the appearance of mitotic nuclei [10]. 

Many existing classification techniques struggle to discern the 

intrinsic features that differentiate these two classes. 
 

In the broader scope of breast cancer diagnostics, the chal-

lenge extends to categorizing cancer levels [11, 12]: 

• Benign tumors are noncancerous growths that typically do 

not invade the surrounding tissues or spread to other parts 

of the body. 

• In situ carcinoma where cancer cells are confined to the site 

of origin without invading neighboring tissues 

• Invasive carcinoma where malignant cells penetrate sur-

rounding tissues and possibly spread to distant parts of the 

body through the bloodstream or lymphatic system. 

 

Discriminating these diverse levels of cancer requires a nu-

anced understanding of the distinctive features of each cancer 

type. Traditional methods often fail to capture these nuances 

[13]. 

 CNNs have gained prominence because of their ability to 

learn robust feature representations and effectively classify im-

age data. The feature-learning capabilities of CNNs hinge on 

both the input representation of images and architectural design 

of the network [14]. Consequently, enhancing the feature space 

improves the learning capacity of CNNs for discriminating fea-

tures, thereby achieving a superior performance in classification 

tasks. This study delves into the application of CNNs, with a 

specific focus on improving the feature space in the context of 

breast cancer segmentation to address the challenges posed by 

mitosis and cancer-level classification [13, 14]. 

This study makes several key contributions to the field of 

medical image segmentation, particularly in the context of 

breast cancer histopathological images. By enhancing the 

DeepLabV3+ architecture and integrating advanced techniques, 

this research aims to improve segmentation accuracy and model 

stability. The following points summarize the main contribu-

tions of this study: 
 

• We propose modifications to the standard DeepLabV3+ ar-

chitecture by integrating an attention layer between the en-

coder and decoder to improve model stability and accuracy. 

• A spatial attention module was developed to significantly 

improve the focus of the model on important features, re-

sulting in enhanced segmentation performance, especially 

in difficult areas of histopathological images. 

• Use of the Xception backbone, as we introduce and evalu-

ate the use of the Xception backbone in two modified mod-

els, demonstrating its superiority over the traditional Res-

Net50 backbone in handling complex feature extraction 

tasks, resulting in higher overall accuracy. Xception signif-

icantly minimizes the number of trainable parameters and 

computations [15]. 

• Comprehensive performance analysis is conducted by 

evaluating the proposed models across various metrics, in-

cluding training and validation loss, learning stability, and 

accuracy, highlighting the improvements over the standard 

DeepLabV3+ model. 

• Application to breast cancer segmentation involves suc-

cessfully applying the proposed model to the BCSS dataset, 

providing a robust solution for segmenting multiple tissue 

types with varying complexities. 

 

The remainder of this paper is organized as follows. Section 

II surveys previous research on breast cancer segmentation and 

detection. Section III discusses the dataset preparation, pro-

posed model, and applied validation measures. Section IV dis-

cusses the results. Section V discusses an analysis of the mod-

el's performance on the dataset, and Section VI concludes the 

paper. 

II. RELATED WORK 

Breast cancer segmentation using histopathological images 

has garnered significant attention because of its crucial role in 

accurate diagnosis and treatment planning. Histopathology in-

volves examining tissues under a microscope to obtain detailed 

information about their cellular morphology and architecture, 

which is essential for identifying cancerous regions. This pro-

cess often requires a representation that quantitatively charac-

terizes tumor cells or tissues, relying on the extraction of rele-

vant features to accurately assess tissue and organ function. 

Histological images require a quantitative representation of 

tumor cell or tissue characteristics [16, 17]. The accurate assess-

ment of tissue and organ function depends on capturing the rel-

evant features that define cellular and tissue structures. Feature 

extraction, which reduces an image to a compressed feature 

vector, is essential for distinguishing and automatically classi-

fying tissues as normal or malignant as well as for grading them 

appropriately [17]. 

Feature extraction can involve handcrafted features, such as 

identifying critical aspects, including shape, color, and texture, 

in breast cancer histopathological images. The most significant 

shape (or morphometric) features of cells include the nuclear 
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area, convex area, and outline. In cancer cells, morphometric 

features, such as darker nucleoli, reduced cytoplasm, disor-

ganized chromosomes, abnormal cell growth, and variations in 

shape and size, are more pronounced. The use of the mean val-

ues of these features for the cell and nuclear outlines has been 

shown to improve the grading process, as demonstrated in [18, 

19, 20]. 

 

A. Evolution of DeepLab Architectures for Multiscale 

Feature Extraction 

Capturing multiscale features is crucial for the accurate seg-

mentation of histopathological images because of the varying 

sizes and shapes of cellular structures. Through their evolution-

ary path, DeepLab architectures have harnessed the formidable 

capabilities of atrous convolutional layers, thereby playing a 

pivotal role in their advancement. These layers provide explicit 

control over the feature resolution within CNNs, effectively en-

larging the field of view of the filters without increasing the 

number of bloating parameters or computational complexity. 

Their primary objective was to expand the receptive field over 

the input feature maps while preserving the spatial dimensions 

and avoiding an explosion in the network parameters [21]. 

DeepLabV2 [22] introduces multiple parallel atrous convo-

lutional layers with varying dilution rates, collectively forming 

an atrous spatial pyramid pooling (ASPP) model. The ASPP 

model facilitates object segmentation across multiple scales and 

enhances semantic understanding. 

DeepLabV3 [23] builds upon this foundation by incorporat-

ing image-level features, a 1×1 convolution, and three 3×3 

atrous convolutions with distinct dilution rates. 

DeepLabV3+ [24] integrates an encoder-decoder structure 

with the ASPP model. Depth-wise separable convolutions were 

employed in both the ASPP and the decoder modules. The en-

coder systematically reduces the spatial dimensions through re-

peated convolution and pooling layers, whereas the decoder 

progressively restores spatial information through deconvolu-

tion and upsampling layers. To further increase segmentation 

precision, skip connections were introduced between the en-

coder and decoder modules. 

This trajectory of architectural enhancements underscores the 

continuous refinement of DeepLab models, leading to more so-

phisticated and accurate semantic segmentation results [13]. 

 

B. Modifications and Applications of the DeepLab 

Architecture across Diverse Domains 

In various studies, the DeepLab architecture has been modi-

fied and applied to diverse domains, significantly improving the 

segmentation accuracy and efficiency. One study incorporated 

DeepLabV3 into a pipeline for segmenting various histopatho-

logical structures, enhancing the model's ability to adapt to dif-

ferent tissue types and improving the overall segmentation qual-

ity [25]. Another study modified DeepLabV3+ to include an un-

certainty-driven pooling layer, which enhanced the segmenta-

tion accuracy and reliability by better handling ambiguous re-

gions in histological images [26]. 

DeepLabV3+ was employed for liver tumor segmentation 

from computed tomography (CT) images, utilizing deep convo-

lutional neural networks (DCNNs) combined with probabilistic 

graphical models (DenseCRFs) to capture multiscale contextual 

information and refine the target boundaries [27]. In [28], 

DeepLabV3+ provided superior results to traditional methods 

such as VGG16, ResNet18, SqueezeNet, and MobileNetV2 for 

histopathological image segmentation of breast cancer. 

For semantic segmentation of buildings in high-resolution re-

mote sensing images, DeepLabV3, which leverages the ability 

of the model to handle high-resolution inputs and effectively 

capture multiscale features, was utilized in  [29]. In [30], 

DeepLabV3+ was applied to microscopic breast cancer seg-

mentation, demonstrating its effectiveness in accurately seg-

menting and classifying cancerous regions in histopathological 

images. 

In [31] DeepLabV3+ was used to segment smooth muscle fi-

bers in hematoxylin and eosin (H&E)-stained images, achiev-

ing high accuracy and robustness. In [32], DeepLabV3+ seg-

mented cancerous tissues, benefiting from its encoder-decoder 

structure, which facilitated detailed and accurate segmentation. 

In  [33], DeepLabV3+ with an Xception-65 [34] backbone 

was used to recognize pathological T stages and tumor invasion 

in rectal cancer, leveraging atrous spatial pyramid pooling for 

multiscale feature extraction. 

In [35], DeepLabV3+ was incorporated into a framework for 

segmenting cracks on concrete surfaces, highlighting its effec-

tiveness compared to other architectures, such as U-Net and 

fully convolutional networks (FCN). In [36], DeepLabV3+ out-

performed UNet++ [37] in accuracy for oral epithelial dysplasia 

(OED) segmentation. 

Another study by Han et al. [7] utilized DeepLabV3+ to seg-

ment breast cancer via the " Breast Cancer Semantic Segmen-

tation” (BCSS) dataset [38]. They introduced a modified ASPP 

module with varying atrous rates and incorporated a hybrid loss 

function that combined cross-entropy and Dice losses. These 

enhancements facilitated better segmentation results, particu-

larly for small and irregularly shaped regions, with an accuracy 

of 84.83%. 

 

C. Advanced Architectures for Breast Cancer Tissue 

Segmentation on the BCSS Dataset 

Srijay et al. [39] introduced a sophisticated breast cancer tis-

sue-segmentation architecture. The model integrates spatially 

adaptive normalization layers within a ResNet-based frame-

work to increase the segmentation accuracy of histopathologi-

cal images. By preserving fine details through these normaliza-

tion layers, the model addresses the common issue of detail loss 

in deep learning models during segmentation tasks. The archi-

tecture of the model processed image tiles and produced refined 

segmentation maps, achieving an impressive overall accuracy 

of 77%. 

Huang et al. [40] introduced a two-stage weakly supervised 

semantic segmentation model emphasizing the relationships be-

tween different tissue types in histopathological images. The 

model employs a graph-parsing attention mechanism to refine 

the pseudo-labels, which are subsequently used to guide the 

segmentation process. The authors also introduced a cyclic 

pseudo-mask strategy and multi-resolution supervision, which 

further enhanced the segmentation accuracy of the model. This 

approach allows for a more precise segmentation by leveraging 

weak supervision to achieve a superior accuracy of 85.94%. 
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Mauricio et al. [41] introduced an advanced iteration of the 

traditional U-Net architecture tailored for multiclass breast can-

cer tissue segmentation. The model features densely connected 

blocks and residual connections, which enhance the extraction 

and representation of features from the histopathological im-

ages. These architectural improvements enable the model to 

handle the complexity and diversity of breast cancer tissues ef-

fectively, resulting in more accurate segmentation. The model 

achieved an impressive accuracy of 81%, demonstrating its ef-

fectiveness in precise tissue segmentation. 

In conclusion, DeepLabV3+ has shown promising results in 

various domains, including biomedical imaging, histopathol-

ogy, magnetic resonance imaging (MRI) analysis, and remote 

sensing, and can be effectively utilized in histopathological im-

age segmentation of breast cancer. 

III. MATERIALS AND METHODS

This section discusses dataset preparation, evaluation met-

rics, and design of the proposed system. 

A. Dataset Preparation

For the dataset preparation phase, the models were trained 

using the BCSS dataset [38]. This dataset comprises 155 H&E 

images, each accompanied by 20000 semantic segmentation an-

notations for tissue regions across 22 classes. To create a fo-

cused subset for training, we extracted 57000 sub-images rep-

resenting cancer regions of interest (ROIs) from the original 

155 images. Data augmentation techniques were applied to the 

sub-images to enhance the model generalization. Additionally, 

subimages containing classes representing less than 1% of the 

dataset were removed to avoid class imbalance and reduce noise 

during the training stage. These subimages, each with a size of 

256×256 pixels, were sampled with a 50% overlap for the can-

cer portions, as shown in Fig. 2. The red and green boxes repre-

sent the first and second subimages, respectively, with an over-

lap of 128 pixels. The resulting dataset was partitioned ran-

domly into 42800 for training, 10700 for validation, and 3500 

for testing. 

The dataset distribution revealed the classes with the most 

balanced combination, with the tumor and stroma being the 

dominant classes  as illustrated in Fig. 3 tumors accounted for 

42.64%, stroma accounted for 37.78%, lymphocytic infiltration 

accounted for 10.49%, necrosis or debris accounted for 4.49%, 

and other types accounted for 4.60%. This imbalance is largely 

due to the higher prevalence of tumor and stroma images in the 

dataset. Consequently, even with data augmentation, the ratio 

of tumor and stroma classes remains high, highlighting the in-

herent challenge of achieving a perfectly balanced dataset for 

breast cancer histopathology. 

B. Evaluation Metric

The evaluation metrics for the segmentation performance of 

the proposed detector utilized four widely recognized metrics. 

These key metrics are based on the counts of true positives 

(TPs), false positives (FPs), false negatives (FNs), and true neg-

atives (TNs) across all images in the dataset. True positive (TP) 

instances were identified as the intersections between the seg-

mented cell membrane and its ground truth, whereas those not 

meeting this criterion were categorized as false positives (FPs). 

False negatives (FNs) are determined by the missed portions of 

the ground truth, whereas true negatives (TNs) encompass the 

image regions beyond the union of the segmentation and ground 

truth. 

Fig. 2. Process of the moving window with 50% overlap 

Fig. 3. Dataset class distribution 

B.1 Network Accuracy Metric

It is a performance measure that quantifies the overall accu-

racy of the predictions made by a CNN. It is a comprehensive 

metric that considers both true-positive and true-negative pre-

dictions relative to the total number of instances in the dataset 

[42]. The network accuracy can be determined using 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (1) 

In the context of CNNs, accuracy is a fundamental metric that 

assesses the ability of a model to correctly classify instances 

across all the classes. This approach provides a general over-

view of the model's effectiveness but may not be suitable for 

highly imbalanced datasets. In such cases, additional metrics 

such as precision, recall, and F1 score are often considered to 

provide a more nuanced evaluation of the model's performance. 

B.2 F1 Score Metric

This is a measure of a model's accuracy that balances both 

precision and recall [43]. It provides a single numerical value 

that considers both false positives and false negatives, thereby 

offering a comprehensive evaluation of the performance of a 

model. The F1 score can be determined using 
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F1 score =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

where 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

and 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

B.3 Mean Intersection over Union (MIoU)

Mean intersection over union (MIoU) is a common evalua-

tion metric used for segmentation tasks in computer vision 

[44]. It measures the overlap between the predicted segmenta-

tion and the ground truth, providing an overall performance 

score. The MIoU can be determined using 

MIoU = 
1

𝐶
∑

𝑃𝑖∩𝐺𝑖

𝑃𝑖∪𝐺𝑖

𝐶
𝑖=1  (3) 

where 𝑃𝑖 is the predicted set of pixels for class 𝑖, 𝐺𝑖 is the ground 

truth set of pixels for class 𝑖 and C is the total number of classes. 

The intersection represents the common pixels between the pre-

diction and ground truth, whereas the union represents the total 

number of pixels present in either the prediction or the ground 

truth. MIoU is the average IoU value for all classes. 

B.4 Frequency weighted intersection over union (FwIoU)

The frequency-weighted intersection over union (FwIoU) is

a variant of the IoU metric, which considers the frequency of 

each class in the dataset [44]. This metric gives more im-

portance to classes that appear more frequently in datasets. The 

FwIoU can be determined using 

FwIoU = ∑
𝑛𝑖

𝑁
.

𝑃𝑖∩𝐺𝑖

𝑃𝑖∪𝐺𝑖

𝐶
𝑖=1  (4) 

where 𝑛𝑖 is the number of pixels belonging to class i and where 

N is the total number of pixels across all classes. This metric 

weighs the IoU of each class by its proportion in the dataset, 

thereby providing a balanced evaluation that considers the class 

imbalance. 

C. The Proposed Model

We introduced CancerSeg-XA, a semantic segmentation 

model specifically tailored to breast cancer histopathology im-

ages. We used the advanced DeepLabV3+ architecture and 

three modified versions to enhance segmentation performance. 

The first version, Model 1, integrates an attention layer between 

the encoder and decoder of the DeepLabV3+. The second ver-

sion, Model 2, employs the Xception backbone up to "block5" 

instead of the original ResNet50. In the final version, Can-

cerSeg-XA, we combined the Xception backbone with an atten-

tion layer between the encoder and the decoder. The model ar-

chitectures are shown in  

Fig. 4. Semantic segmentation of the histopathological im-

ages of breast cancer is essential for accurate diagnosis and 

treatment planning. 

Our models aimed to precisely segment various tissue struc-

tures and cell types associated with breast cancer by leveraging 

multiscale contextual information, spatial details, and attention 

mechanisms. Building on the robust framework of 

DeepLabV3+, our approach addresses the unique challenges of 

breast cancer segmentation to achieve a superior performance. 

In the subsequent sections, we provide a detailed description of 

the model architectures, highlighting key components such as 

the encoder, ASPP, decoder, skip connections, and the inte-

grated attention layer. 

C.1 Encoder

The encoder layer in the models receives an input subimage

with dimensions of 256×256×3 for feature extraction. In Model 

1, we utilized the encoder of the original DeepLabV3+ archi-

tecture, which employed the ResNet50 [45] backbone. This ar-

chitecture uses four residual unit blocks (Res1–Res4) to extract 

low-level features, outputting 64 channels used as inputs to the 

next layer. 

For Model 2 and CancerSeg-XA, we replace the ResNet50 

backbone with the Xception architecture, which extends up to 

"block5." This modification leveraged the depth-wise separable 

convolutions of Xception to capture more intricate spatial de-

tails. Using different backbones, we aimed to explore the im-

pact of feature extraction capabilities on segmentation perfor-

mance. 

These diverse encoder configurations allowed us to investi-

gate the effectiveness of different architectures in extracting 

low-level features that are crucial for precise segmentation in 

breast cancer histopathological images. 

C.2 Atrous spatial pyramid pooling (ASPP)

Four parallel atrous separable convolutions (ASC) with di-

verse dilation rates are employed on the output from the encoder 

backbone, enabling the analysis of extracted features across 

various scales. Atrous separable convolution (ASC) comprises 

depthwise convolution with atrous convolutions, followed by 

pointwise convolution. This architecture facilitates the exami-

nation of feature details for multiple receptive field sizes. In ad-

dition,, an average pooling layer is incorporated to further refine 

the feature representations. Consequently, the ASPP module 

produces an output of 1280 channels, providing comprehensive 

feature representations suitable for the subsequent process. 

DeepLabV3+ uses the ResNet50 backbone to maintain ro-

bust feature-extraction capabilities. However, Xception archi-

tecture, with its depth-wise separable convolutions, signifi-

cantly enhances the model's ability to capture intricate spatial 

details while maintaining efficiency. This modification results 

in improved feature extraction, allowing the ASPP module to 

generate richer and more detailed feature maps. This combina-

tion ensures that our model can effectively handle the complex 

and varied structures found in histopathological images of 

breast cancer, thereby delivering robust feature representations 

for precise segmentation. 

The transition from ResNet50 to Xception not only retains 

the high performance of the original architecture but also pro-

vides additional benefits in terms of computational efficiency 

and feature richness, as demonstrated in various studies on im-

age segmentation tasks. This adaptation is crucial for achieving 

a superior segmentation performance in the challenging domain 

of breast cancer histopathological images. 
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C.3 Attention Layer

An attention layer block was introduced between the encoder 

and decoder layers to augment channel priority. This layer sig-

nificantly enhances the network's ability to focus on the most 
relevant features by employing a spatial attention module 

(SAM). 

SAM takes an input tensor with dimensions of 16×16×256 and 

performs a convolution operation that outputs a 16×16×1 ten-

sor. 

Fig. 4. The proposed system modifications based on DeepLabV3+

This spatial attention map highlights the crucial spatial fea-

tures by applying a sigmoid activation function. The resultant 

attention map was then multiplied element-wise by the original 

input tensor, resulting in an output tensor with dimensions of 

16×16×256. This process helps emphasize the important spatial 

regions of the input tensor while suppressing the less relevant 

regions. 

By incorporating these attention mechanisms, the model can 

dynamically adjust the importance of features, thereby enhanc-

ing the segmentation accuracy and robustness, particularly in 

the context of breast cancer histopathological images. 

C.4 Decoder

In the decoder stage, two inputs are processed: the first input

is feature maps of size 64×64×48 and the second input is from 

the Res2 block, which has dimensions of 16×16×256. The sec-

ond input was upsampled to 64×64×256 pixels. These two in-

puts were concatenated and subjected to a 3×3 convolution to 

reduce the output to 256 channels. The output was then upsam-

pled by a factor of four, and a final 1×1 convolution was applied 

to produce a pixel-wise segmentation mask that represents the 

segmentation prediction for each pixel in the input image. 

The output of the upsampling operation is restored to the 

original input image size of 256×256×22, representing the 

weights for the 22 classes. The ArgMax function was then ap-

plied to obtain a final mask of size 256×256, representing the 

segmentation prediction for each pixel in the input image. 

IV. RESULTS ANALYSIS

This section specifies the hyperparameters used during train-

ing, the performance of DeepLabV3+ and the three modified 

models, and finally the impact of architectural modifications on 

model performance. 

A. Training Setup

CancerSeg-XA was implemented in Python 3.7 via the Keras 

library as an interface for TensorFlow. The training was per-

formed in the Kaggle environment, which provides a P100 GPU 

with 16 GB of RAM and powerful cloud-computing resources. 

The model used the Adam optimizer and sparse categorical 

cross-entropy loss function.  

A reduced learning rate function was used to adjust the learn-

ing rate, with a reduction factor of 0.2 and a patience parameter 

set to five epochs. The CNN models trained by tuning hyperpa-

rameters are shown in Table I. 

TABLE I 

MODEL TRAINING HYPERPARAMETER VALUES 

Hyperpa-
rameter 

DeepLabV3+ Model 1 Model 2 CancerSeg-XA 

Initial learn 

rate 
1e-3 

End learn 
rate 

1e-4 1e-3 1e-5 

No. of 

epochs 
25 45 

Batch size 24 

Image size 256 x 256 

Trainable 

params 
10611830 

106131

11 

803719

8 
8038479 

Nontraina-
ble params 

32224 32224 13456 13456 
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B. Training Progress 

In this section, we evaluate the performance of DeepLabV3+ 

and the three modified models along with their training perfor-

mance. Fig. 5 shows the training validation loss, generalization 

ability, and overfitting resistance of the models. For 

DeepLabV3+, the first five epochs showed that the model strug-

gled with a learning rate (LR) of 1e-3, but the stability improved 

once the LR was decreased by a factor of 0.2 to 2e-4. In Model 

1, the attention layer overcomes early instability, resulting in 

greater learning stability and improvement by the end of 25 

epochs. Model 2 and CancerSeg-XA, which utilized the Xcep-

tion backbone, displayed a stable start with loss values of less 

than 1. Model 2 required a reduction in LR to 2e-4 at epoch 12 

and further to 1e-5 at epoch 31. CancerSeg-XA, enhanced by 

the attention layer, demonstrated improved learning stability, 

requiring an LR decrease only at epochs 27 to 2e-4. 

 

 

Fig. 5. Result analysis for model training validation loss 

The accuracy of the training validation is shown in Fig. 6. The 

training validation accuracy results showed that Model 1 

achieved higher accuracy than DeepLabV3+. This improve-

ment is due to the added attention mechanism. However, Model 

2 and CancerSeg-XA, which incorporated the Xception back-

bone, outperformed DeepLabV3+ and Model 1 in terms of ac-

curacy. The superior feature extraction capabilities of the Xcep-

tion backbone contributed significantly to this performance in-

crease. While the attention layer in Model 1 and Model 4 

slightly improved the final result, its primary benefit was en-

hanced training stability. 

 

C. Results 

To the best of our knowledge, only a limited number of stud-

ies have utilized DeepLabV3+ for the segmentation of histo-

pathological images of cancer. Therefore, to validate Can-

cerSeg-XA and assess its performance, we selected 

DeepLabV3+ as a baseline model benchmark for CancerSeg-

XA. After a detailed examination and performance evaluation, 

CancerSeg-XA demonstrated substantial improvements over 

the baseline model accuracy by 5.86%, recall by 10.03%, F1-

score by 10.48%, MIou by 8.48%, and FwIou by 10.88%, as 

shown in Table II.  

 

     

 

Fig. 6. Result analysis for model training validation accuracy 

TABLE II 

PROPOSED MODEL RESULTS 

Model Accuracy Recall 
F1- 

score 
MIou FwIou 

Han et al. [7] 0.84832 - - 0.6892 0.7374 

Srijay et al. [39] 0.77 - - - - 

Huang et al. [40] 0.8594 - - 0.6989 - 

Mauricio et al. 

[41] 
0.81 - - - - 

DeepLabV3+ 0.8570 0.7926 0.7834 0.5166 0.7312 

Model 1 (Res-

net50 backbone + 

Attention layer) 

0.8694 0.801 0.7928 0.51 0.7374 

Model 2 (Xcep-

tion backbone) 
0.9147 0.8901 0.8867 0.593 0.8361 

CancerSeg-XA 
(Xception back-

bone + Attention 

layer) 

0.9157 0.8929 0.8883 0.6014 0.84 

 

The CancerSeg-XA was evaluated against popular methods, 

including those by Han et al. [7] and Srijay et al. [39], Huang et 

al. [40], and Mauricio et al. [41]. CancerSeg-XA showed nota-

ble improvements in most metrics. Specifically, it achieved a 

14.75% greater accuracy than Srijay et al. [39], a 10.57%  

greater accuracy than Mauricio et al. [41], a 6.54% greater 

accuracy than Han et al. [7], a 5.63% greater accuracy than did 

Huang et al. [40], and a 10.26% greater FwIoU than did Han et 

al. [7]. 

Huang et al. [40] demonstrated a modest improvement over 

the CancerSeg-XA in terms of the MIoU metric, with a 9.75% 

higher score. This superior performance is likely attributed to 

the use of a multiresolution supervision strategy, which effec-

tively narrows the gap between the image-level and pixel-level 

labels. Notably, their model achieved an MIoU of 0.8335 before 

implementing this strategy. The multiresolution supervision ap-

proach appears to be particularly advantageous for preserving 

the intersection over the union across multiple classes, espe-

cially in scenarios involving more complex and overlapping 

structures. 

D. Impact of Architectural Modifications on Model 

Performance 

The performance evaluation of the proposed changes is sum-

marized in Table III, highlighting the impact of replacing the 

ResNet50 backbone with the Xception backbone (up to Block5) 
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and the integration of an attention layer. As shown, the transi-

tion to the Xception backbone led to a significant reduction in 

model complexity by reducing the number of layers from 147 

(DeepLabV3+) to 52 (CancerSeg-XA). This architectural 

change also led to a significant reduction in model size by 

24.2%, from 40.48 MB to 30.66 MB. 

The integration of the attention layer, while adding only two 

layers and 1281 trainable parameters (less than 0.01% of the 

total parameters), demonstrated an excellent balance between 

minimal overhead and performance gains. These modifications 

collectively improve the segmentation accuracy and model sta-

bility, reinforcing the effectiveness of the proposed design 

while maintaining computational efficiency. 

TABLE III 

COMPARISON OF THE MODEL'S PERFORMANCE AND ARCHITECTURAL 

CHARACTERISTICS 

Model 
Time 

cost /Step 

No. of 

layers 

No. of 
trainable 

param 

Size 

DeepLabV3+ 391 ms 147 10611830 40.48 MB 

Model 1 (Resnet50 

backbone + Atten-

tion layer) 

378 ms 149 10613111 40.49 MB 

Model 2 (Xception 

backbone) 
367 ms 50 8037198 30.66 MB 

CancerSeg-XA 
(Xception backbone 

+ Attention layer) 

369 ms 52 8038479 30.66 MB 

 

These optimizations enhance the computational efficiency 

and scalability of the model, making it more suitable for real-

world deployment scenarios, including environments with lim-

ited resources. 

V. DISCUSSION 

In this section, we discuss the performance of DeepLabV3+ 

and our modified version, particularly when analyzing the mod-

els' performance on images belonging to a single class, as 

shown in Fig. 7, Models 2 and CancerSeg-XA demonstrated 

equal or superior accuracy compared with DeepLabV3+ and 

Model 1. This performance enhancement can be attributed to 

the architectural improvements and efficient feature extraction 

capabilities provided by the Xception backbone in Model 2 and 

CancerSeg-XA. 

For images belonging to multiple classes, the Xception-

backed models achieved significantly better accuracy, as illus-

trated in Fig 8. This improvement is likely due to the superior 

ability of Xception to extract local features, which is critical for 

distinguishing between different tissue types and structures in 

complex histopathologic images. The improved feature extrac-

tion capabilities of Xception enable better segmentation and 

classification, leading to more accurate predictions in multiclass 

scenarios. DeepLabV3+ achieves the best accuracy when image 

classes are restricted to tumors and stroma, and has lower accu-

racy on images containing other classes. This highlights the im-

portance of the attention layer in Models 1 and CancerSeg-XA, 

where the segmentation accuracy improves significantly com-

pared with DeepLabV3+ and Model 2, respectively. 

 

 

 

Fig. 7. Model performance for a single class 

 
Fig. 8. Performance for multiclass images 

 

 Training and segmentation performance are significantly in-

fluenced by dataset imbalance, particularly when examining 

class distributions within the BCSS dataset. As "tumor" and 

"stroma" are the dominant classes, their segmentation perfor-

mance remained largely unaffected by class imbalance, as the 

model was able to learn sufficient discriminative features. How-

ever, minority classes such as "lymphocytic infiltration" and 

"necrosis or debris" posed greater challenges due to their lim-

ited representation. Despite this, CancerSeg-XA successfully 

identified these underrepresented classes with acceptable accu-

racy, demonstrating the model's robustness in learning mean-

ingful features even from sparse data as shown in Fig. 7 and Fig 

8. A more critical issue arises when an image contains a major-

ity of the "Other" class, which typically accounts for only 5% 

of the overall dataset but can dominate certain images. Since 

this class lacks distinct structural patterns, it significantly af-

fects segmentation performance, making it difficult for the 

model to differentiate clinically relevant regions from ambigu-

ous background information. 
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TABLE IV  

COMPARISON OF SEGMENTATION APPROACHES ON THE BCSS DATASET  

Model Approach Accuracy MIou 

Sun et al. [46] Semi-supervised learning 0.8398 0.71 

MSF-WSI [47] Semi-supervised Learning 0.9136 0.647 

DETisSeg [48] Vision transformers 0.7986 0.6491 

Bi-VLGM [49] Vision transformers 0.9359 0.703 

 

To further explore the effectiveness of CancerSeg-XA, which 

leverages fine-tuning of pre-trained models, we compare its re-

sults with other state-of-the-art approaches, as shown in Table 

IV. The comparison includes semi-supervised learning methods 

such as Sun et al. [46] and MSF-WSI [47], and vision trans-

former-based architectures like DETisSeg [48] and Bi-VLGM 

[49]. While vision transformers may achieve slightly higher ac-

curacy, they come with a significant trade-off in terms of com-

putational complexity and training time. DETisSeg [48] re-

quires 320000 iterations, while Bi-VLGM [49] takes 40000 it-

erations, making them computationally expensive. Similarly, 

semi-supervised learning methods demand 300 epochs for 

training, adding to the overall resource burden. In contrast, Can-

cerSeg-XA achieves competitive performance with only 45 

epochs, demonstrating a more balanced trade-off between ac-

curacy and efficiency. This highlights the advantage of fine-

tuning pre-trained models, allowing for high segmentation per-

formance while maintaining significantly lower computational 

costs, making it more practical for real-world medical applica-

tions. 

VI. CONCLUSION 

Breast cancer remains a major global health problem that re-

quires reliable computational tools for its diagnosis and treat-

ment. This study demonstrates the potential of the DeepLabV3+ 

model and its modified versions for semantic segmentation of 

histopathologic images of breast cancer. Our results show that 

the inclusion of an attention layer increases the training stabil-

ity, whereas replacing the ResNet50 backbone with the Xcep-

tion backbone significantly improves segmentation accuracy. 

Among the models tested, CancerSeg-XA achieved the highest 

accuracy of 91.57%, an improvement of 5.86% over the base-

line DeepLabV3+ model. In addition, CancerSeg-XA has a 

lower complexity, size, and number of layers than 

DeepLabV3+, as it utilizes the Xception backbone to focus on 

local features that are critical for distinguishing between differ-

ent tissue types and structures in complex histopathology im-

ages. These results highlight the importance of advanced archi-

tectures and attention mechanisms to improve segmentation 

performance and pave the way for more accurate, efficient, and 

robust models for clinical applications. 

Future work will focus on building on the promising results 

of the CancerSeg-XA model, which combines high perfor-

mance with a simplified complexity. This includes exploring 

more advanced attention mechanisms to further improve seg-

mentation accuracy and robustness. In addition, the adaptability 

of the model can be tested on datasets such as PanNuke to ex-

tend its application to different cancer types and to demonstrate 

its potential for wider use in medical image analysis. 
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