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Abstract—Sustainable green kiwifruit production is related to 

enhanced fruit quality and decreased farming costs. As kiwifruit 

farming becomes more popular and commercialized, precision 

agriculture (PA) practices are adopted towards its digital and 

green transformation. In this work, the application of artificial 

intelligence (AI) in PA of kiwifruit farming is investigated, by 

analyzing existing applications, current research and digital 

innovations. This work aims to identify on a practical level all 

current implementations of AI in kiwifruit farming and provide 

a feasibility analysis for the practical application of the most 

current and promising AI innovations on site. Research findings 

are analyzed towards capturing the broad range of current 

status and perspectives of AI in kiwifruit farming, as well as to 

identify research gaps, so as to guide further beyond the green 

and digital transformation of the kiwifruit industry. 

Index terms—kiwifruit, artificial intelligence, precision 

agriculture, sustainable farming, green transformation, digital 

transformation, harvesting, pollination, agrobots. 

I. INTRODUCTION

Kiwifruit’s global popularity is due to its close relation to 

health and well-being, since it is low-fat, free from sodium 

and cholesterol, high in fiber and potassium, and packed with 

antioxidants. Benefits related to the consumption of kiwifruit 

include prevention of chronic diseases like heart disease and 

cancer, increased immunity and digestive health [1]. 

Due to these benefits, kiwifruit is highly valued in the Food 

and Beverages industry and is used as the main ingredient in 

various products. Note that the kiwifruit global market size is 

estimated at USD 9.45 billion in 2024, expecting a compound 

annual growth rate (CAGR) of 4.60% during the following 5 

years, reaching USD 11.80 billion by 2029 [2], as illustrated 

in Fig.1. As the popularity and demand for kiwifruit increase, 

producers are looking for innovative technological approaches 

towards transforming traditional time-consuming labor- and 

cost-intensive practices into more sustainable and efficient 

ones. 
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PA mainly guides automation in the agricultural domain 

[3], including kiwifruit farming [4]. PA uses sensors and 

algorithms to monitor crop growth and environmental 

conditions, aiming to retrieve real data, extract useful 

information, and provide data-driven insights to help increase 

yield quality and quantity by providing less input resources, 

i.e., optimizing sustainability and productivity [5].

Fig. 1. The global kiwifruit market in USD [2] 

PA and AI are closely related through the integration of 

advanced technologies to enhance farming practices [6]. The 

latter is achieved through highly developed digital sensors, 

drones and Internet of Things (IoT) devices to monitor soil, 

weather conditions, crop health, etc., in real-time. AI 

algorithms such as machine learning models process this data 

toward identifying patterns, aiming to deliver data-driven 

insights regarding crop yield, irrigation, fertilization, pest 

control, and more [7]. In general, AI supports PA through the 

developed decision supporting systems, for predictive 

analytics and automated decision-making. AI is also applied 

in PA through automated machinery and robotics, namely 

agrobots, for planting, spraying, monitoring, etc., resulting in 

enhanced precision of operations, reduced human labor costs, 

optimization of resources, minimum wastes and maximum 

efficiency [8]. AI algorithms are also used to forecast future 

market demand and guide farmers’ decisions, as well as to 

improve the efficiency of the supply chain, from farm to 

shelves [9], [10].  

Recently, PA and AI approaches have been adopted in 

kiwifruit cultivation towards its green and digital 

transformation [11]. However, for the kiwifruit, which is a 

relatively new crop of ever-increasing economic value, the 

integration of digital technologies is still in its early stages. 

Note that AI-based approaches in PA are in line with the
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Sustainable Development Goals (SDGs) provided in the 2030 

Agenda for Sustainable Development [12] adopted by all 

United Nations (UN) Member States, related to SDG 2 (zero 

hunger), SDG3 (good health and well-being), SDG 6 (clean 

water and sanitation), SDG 9 (industry, innovation and 

infrastructure), SDG 11 (sustainable cities and communities), 

SDG 12 (responsible consumption and production), SDG 13 

(climate action), and SDG 17 (partnerships for the goals). 

Therefore, it can be foreseen that by fully integrating AI in 

PA, kiwifruit farming can significantly contribute to these 

SDGs, promoting a sustainable, efficient, and more resilient 

agricultural sector. 

To this end, this work comes as a follow up of a recent 

narrative review [11] focused on PA techniques in kiwifruit 

farming towards unraveling the potential of AI for the digital 

and green transformation of kiwifruit farming. In the current 

work, additional aspects are further considered so as to 

enhance our previous work and make it more complete. The 

contributions of this work can be summarized in the following 

distinct points:  

1. A complete review of the most recent status of AI in PA

kiwifruit farming, including:

i. involved agricultural practices,

ii. specific commercial and research in-field

applications,

iii. kiwifruit image datasets public and private,

iv. identified research gaps.

2. A complete guide for the current trends of AI in kiwifruit

farming including multiple technologies such as drones,

IoT devices, blockchain and robotics, which have already

begun to appear and implemented in practice, and

3. The foreseen future of AI regarding technologies that

have been recently introduced but have not yet been

incorporated into the cultivation of kiwifruit, providing a

feasibility study towards their future integration.

Therefore, this work aims to cover the past, the presence, 

and the future of all related aspects regarding the involvement 

of AI in kiwifruit farming. It should be noted that related 

works on the subject are not available in the academic 

literature, as far as the authors’ knowledge, apart from our 

previous work [11], which is an introductory work to the 

extensive and enriched present work. Therefore, this work is 

an original contribution and there are no prior reviews of 

direct relevant studies for comparison. The novelty of this 

work is to establish a review baseline on the subject and set 

the foundations of future works, aiming to serve as a starting 

point for new researchers, to uncover research gaps and 

overlooked areas, and inspire innovative thinking.     

The rest of the paper is structured as follows. Materials and 

methods are included in Section II. Research results are 

presented in Section III and are discussed in Section IV, 

covering past and current trends. Section V unravels the 

potential of AI in kiwifruit farming, while Section VI 

concludes the paper.  

II. MATERIALS AND METHODS

The main objective of this work is to reveal the potential of 

AI novel trends in kiwifruit farming and conduct a feasibility 

study towards its full adaptation. Therefore, a narrative review 

is conducted [13]. Narrative reviews aim to provide 

comprehensive, qualitative synthesis of previous research on 

specific topics, without using predefined criteria, research 

questions, specific research strategies or statistical methods to 

evaluate and summarize studies. Narrative reviews offer a 

more flexible and interpretive approach towards identifying 

key themes, insights, and perspectives that could guide future 

research. Key features of a narrative review include their 

broader scope, covering a wide range of studies, their thematic 

organization and subjective analysis based on the authors’ 

expertise and perspective to interpret research findings and 

draw conclusions, and their contextual insights aiming to 

provide a deeper understanding of the general context of the 

research theme. 

To this end, research for relevant articles in academic 

literature has been conducted in Scopus and Google Scholar 

databases by using terms such as “artificial intelligence” and 

“kiwifruit farming”. The goal is to synthesize and describe 

information from the available literature on the topic and 

provide valuable conclusions, interpretations and critiques 

from the gathered evidence, so as for the reader to gain a 

holistic understanding of this specific research field. 

Therefore, the steps to conduct our narrative review were as 

follows: the purpose of the paper was first clearly stated, and 

after selecting a context of relevant articles to overview, the 

findings were synthesized to interpret the literature, define 

gaps and set the stage of future research.  

III. RESULTS

In this section, the current status of AI-powered systems in 

kiwifruit farming is stated. This is the first step, followed by 

discussion on the identified AI trends, and concluding on the 

foreseen potentials of AI and its overall adoption in kiwifruit 

farming industry.  

All related works regarding AI applications in kiwifruit 

cultivation are included in Table I. The selected taxonomy for 

the presentation of the results of Table I is based on the 

intended application. More specifically, eight applications 

have been identified, including Crop management analysis, 

Defects detection, Disease detection, Image analysis, 

Kiwifruit detection, Flower detection, Quality control, and 

Yield estimation. For each application, the specific type of 

application, the corresponding results, its scope, and its use, 

i.e., whether it is commercial or research work, as well as

whether it is integrated into a robotic system, and other useful

information are summarized in Table I.

Regarding crop management analysis, identified works 

focus on theoretical research aspects, including data analysis 

towards optimal fertilize and irrigation management, 

classification of kiwifruit based on their origin, and prediction 

of properties of fruits under different load and storage 

conditions.  
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TABLE I 
GENERAL INFORMATION OF AI-POWERED APPLICATIONS IN KIWIFRUIT CULTIVATION 

 

Crop Management Analysis 

Ref. Type Scope Use Robotics  

[14] Data analysis Fertilize and irrigation management Research - 

[15] Data classification Distinguishing the Kiwifruit geographical origin Research - 

[16] Data regression Prediction of physical properties of kiwifruit during different loadings and storage Research - 

Defects Detection 

Ref. Type Defect type Results Use Robotics 

[17] Object detection External surface defects 95.00% R2 Research - 

[18] Classification External surface defects 99.60% acc. Research - 

[19] Object detection CPPU treated kiwifruits 90.00% acc. Research - 

[20] Classification Invisible damages 98.27% acc. Research - 

Disease Detection 

Ref. Type Disease Plant part Results Use Robotics  

[21] Classification Black spot Fruit 86.71% prec. Research - 

[22] Classification Powdery mildew Fruit 95.91% acc. Research - 

[23] Classification Bacterial canker Leaves 71.00% acc. Research - 

[24] Classification 
Brown spot, Bleeding Canker, 

Anthracnose, Mosaic 
Leaves 83.34% acc. 

Research 
- 

[25] Classification Bacterial canker Fruit/Leaves 85.00% acc. Research - 

[26] Classification Brown spot, Anthracnose, Mosaic Leaves 98.54% acc. Research - 

[27] Classification 

Armillaria root, Bacterial blight, Bleeding 

canker, Botrytis fruit rot, Phytophthora 

root, Water staining, Juice blotch, Sooty 
mold, Collar rot, Crown rot 

Leaves 85.64% acc. 

Research 

- 

[28] Classification 
Lower rot, Ephemeral nightshade moth, 
Anthrax, Gray mold, Brown spot, Ulcer 

Leaves 94.43% acc. 
Research 

- 

[29] Classification 
Brown spot, Anthracnose, Mosaic, Black 

spot, Yellow leaf, Ulcer 
Trunk/Leaves 98.78% acc. 

Research 
- 

Image Analysis 

Ref. Type Scope Use Robotics 

[30] Generative AI Image generation to reconstruct the incomplete surface of kiwifruit Research - 

Kiwifruit Detection 

Ref. Type Objective Results Use Robotics 

[31] Object detection Kiwifruit detection 93.10% prec. Research ✓ 

[32] Segmentation Cluster separation 86.40% acc. Research - 

[33] Segmentation Kiwifruit detection 0.19% ME Research ✓ 

[34] Object detection Kiwifruit detection 98.00% prec. Research ✓ 

[35] Object detection Image fusion for kiwifruit detection 90.50% prec. Research ✓ 

[36] Segmentation Smartphone images for kiwifruit detection 98.48% prec. Research - 

[37] Object detection Kiwifruit detection in challenging lightings 97.00% acc. Research - 

[38] Object detection Kiwifruit detection 87.61% prec. Research - 

[39] Object detection Kiwifruit detection 92.30% acc. Research - 

[40] Object detection Kiwifruit picking platform 82.60% prec. Research ✓ 

[41] Object detection Kiwifruit detection 96.70% acc. Research - 

[42] Object detection Kiwifruit feature point coordinates extraction - Research ✓ 

[43] Segmentation Development of a robotic harvester  89.60% acc. Research ✓ 

[44] Object detection Development of a robotic harvester  90.07% acc. Research ✓ 

[45] Segmentation Kiwifruit detection 88.30% acc. Research - 

Flower Detection 

Ref. Type Objective Results Use Robotics 

[46] Classification Flower detection for robotic pollinator 89.10% prec. Research ✓ 

[4] Object detection Flower detection for robotic pollinator 91.00% prec. Research ✓ 

[47] Classification Selection of suitable flower for pollination 91.60% prec. Research - 

[48] Object detection Simultaneous detection of flower and bud 97.60% prec. Research ✓ 

[49] Object detection Green flower detection for robotic pollination 97.00% prec. Research ✓ 

 
 

 

122 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



TABLE I 
CONT. 

 

Quality Control 

Ref. Type Objective Results Use Robotics 

[50] Regression Hardness estimation 97.00% acc. Research - 

[51] Classification Variety classification 97.79% acc. Research - 

[52] Remote sensing Phenology observations for an e-learning interactive platform - Kiwi Platform - 

[53] Regression Sugar content prediction 100% acc. Research - 

[54] Classification Solid content prediction 37.00% R2 Research - 

[55] Regression Soluble solids content (SSC) prediction 41.00% R2 Research - 

[56] Classification Quality grading 98.30% acc. Research - 

[57] Classification Quality grading 97.50% acc. Research - 

Yield Estimation 

Ref. Type Objective Results Use Robotics 

[58] Segmentation Robot for yield prediction 96.00% R2 Research ✓ 

[59] Segmentation Yield estimation using Android phone 76.40% prec. Jingold - 

[60] Segmentation 
Fruit counting and yield prediction prototype mounted on a 

microtractor 
20.00% av. error Research - 

 
 

TABLE II 

INFORMATION OF THE USED DATASETS  
 

Crop Management Analysis 

Ref. App. 
Data 

type 

Dataset 

access 

Synthetic 

data 

Augmented 

data 

Num. of 

data 

Num. of 

objects 
Targets Sensor type 

[14] Aerial Tabular  Private - - - 11 Features 1 Value (soil quality) - 

[15] Indoor Tabular Private - - 100 10 Features 
3 Classes (Geographic 

Regions) 
- 

[16] Indoor Tabular Private - - 150 11 Features 
3 Values (Weight, 
Density, Volume) 

- 

Defects Detection 

Ref. App. 
Data 

type 

Dataset 

access 

Synthetic 

data 

Augmented 

data 

Num. of 

data 

Num. of 

objects 
Targets Sensor type 

[17] Indoor NIR  Private - - 115 11 Features 
3 Values (Weight, 

Density, Volume) 
- 

[18] Indoor RGB  Private - - 268  -  -   

[19] Indoor RGB  Private - - 4663 4663 
2 Classes (Defective, 

Healthy) 
MV-EM200C 

camera 

[20] Indoor 
Hypersp

ectral 
Private - - 237  - -   - 

Disease Detection 

Ref. App. 
Data 

type 

Dataset 

access 

Synthetic 

data 

Augmented 

data 

Num. of 

data 

Num. of 

objects 
Targets Sensor type 

[21] Outdoor RGB  Private - - 7404 - 
10 classes  

Disease Severity 
Canon Camera 

[22] Outdoor RGB  Public  - - 12000 12000 4 severity levels - 

[23] Outdoor 
Hypersp

ectral 
Private - - 504 - 

2 Classes 

(Symptomatic,  

non-symptomatic 

spectroradiometer 

 (ASD 
FieldSpec® HandH

eld 2) 

[24] 
Indoor/ 
Outdoor 

RGB Private - 6500 2101 - 
5 classes 
 Diseases 

Nikon D7500 

[25] Outdoor RGB Private - - 504 504 
2 Classes 

(Symptomatic,  

non-symptomatic 

- 

[26] Outdoor RGB Private - 11322 666 666 leaves 3 Classes (Disease) 
BM-500GE/BB-

500GE 

[27] Outdoor RGB Private - - 29951 29951 10 Classes (Diseases) - 

[28] Outdoor RGB Private - 3600000 17820 
360000 

Leaves 
6 Classes (Disease) Nikon DSLR 

[29] Outdoor RGB Public - 25168 2115 2115 leaves 6 Classes (Disease) - 
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TABLE II 
CONT. 

 

Image Analysis 

Ref. App. 
Data 
type 

Dataset 
access 

Synthetic 
data 

Augmented 
data 

Num. of 
data 

Num. of 
objects 

Targets Sensor type 

[30] 3D scan RGB Private Yes 3000 480 - 1 Class (Kiwi) - 

Kiwifruit Detection 

Ref. App. 
Data 
type 

Dataset 
access 

Synthetic 
data 

Augmented 
data 

Num. of 
data 

Num. of 
objects 

Targets Sensor type 

[31] Outdoor RGB Private - - 117 7114 kiwis 1 Class (Kiwi) - 

[32] Outdoor RGB Private -  - 487  - -  -  

[33] Outdoor RGB Private -  - 223  -  - -  

[34] Outdoor RGB Private - - 4175 37720 kiwis 1 Class (Kiwi) - 

[35] Outdoor RGB, NIR Public - - 1000 39678 kiwis 
4 Classes (kiwi, overlap, 

adjutancy, separated) 
Kinect V2 

[36] Outdoor RGB Private - - 66 
5361 (poly), 
2925 (rect) 

1 Class (Kiwi) Smartphone 

[37] Outdoor RGB Public - - 48 11760 Kiwi 1 Class (Kiwi) 
Basler ac1920-

40uc 

[38] Outdoor RGB Private - 20160 2400 - 1 Class (Kiwi) Canon S110 

[39] Outdoor RGB Private - - 700 2100 1 Class (Kiwi) (Canon S110 

[40] Outdoor RGB Public - - 1500 41168 kiwis 1 Class (Kiwi) - 

[41] Outdoor RGB Private - - 100 300 kiwis 1 Class (Kiwi) - 

[42] Outdoor RGB Private - - 0 - 1 Class (Kiwi) Kinect 

[43] Outdoor RGB Private -  - 63  - -   - 

[44] Outdoor RGB Private -  - 1936  - -  -  

[45] Outdoor RGB Private -  - 103  - -  -  

Flower Detection 

Ref. App. 
Data 
type 

Dataset 
access 

Synthetic 
data 

Augmented 
data 

Num. of 
data 

Num. of 
objects 

Targets Sensor type 

[46] Outdoor RGB Private - 3344 880 7000 Flowers 
1 Class (Kiwi-Flower), 1 

Class (Flower Center) 

Intel 
RealSenseD415 

 camera 

[4] Outdoor RGB Private -  - 1451 -   - -  

[47] Outdoor RGB Private - 1704 355 - 
7 Classes (Kiwi Flower 

Stage) 
- 

[48] Outdoor RGB Public - 0 740 - 
2 Classes (Kiwi Flower, 

Kiwi Bud) 
- 

[49] Outdoor RGB Private - 0 1451 - 
1 Class (Kiwi-Flower), 1 

Class (Flower Center) 
- 

Quality Control 

Ref. App. 
Data 

type 

Dataset 

access 

Synthetic 

data 

Augmented 

data 

Num. of 

data 

Num. of 

objects 
Targets Sensor type 

[50] Indoor NIR Private - 0 400 400 1 Value (Hardness) - 

[51] Indoor RGB Private - 0 2056 2056 4 Classes kiwi varieties 
Raspberry Pi 

Camera 

[52] Outdoor 
Multimo

dal data 
Private - 0 0 - Phenology Observations IoT Device 

[53] Indoor NIR Private - 0 140 - 3 Classes (Sugar Level) Spectral Camera 

[54] Indoor 
Hypersp

ectral 
Private - 0 495 495 1 Value (Solid Content) 

Hyspex-VNIR-

1800 camera 

[55] Indoor 
Hypersp

ectral 
Private - 0 495 495 

1 Value (Soluble Solids 
Content) 

Hyspex-VNIR-
1800 camera 

[56] Indoor RGB Private - 0 490 10 Features 4 Classes kiwi quality - 

[57] Indoor RGB Private - 0 326 326 kiwis 3 Class of kiwi quality - 

Yield Estimation 

Ref. App. 
Data 
type 

Dataset 
access 

Synthetic 
data 

Augmented 
data 

Num. of 
data 

Num. of 
objects 

Targets Sensor type 

[58] Outdoor RGB Private -  -  - - -  -  

[59] Outdoor RGB Private -  -  -  -  -  - 

[60] Outdoor RGB Private - 0 50 - 1 Class (Kiwi) Sony Alpha 5100 

A more comprehensive analysis of crop management could 

include additional dimensions, such as environmental 

sustainability and economic analysis studies, as well as impact 

analysis of the integration of technological interventions. 

Defects detection focus mainly on external abnormalities on 

the fruit surface, since appearance significantly influences 
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consumer appeal, and defines the economic value of fruits. 

Identified research works manage to detect defects reporting 

accuracies of more than 90% in all cases. Studies on disease 

detection focus on the analysis of defects on leaves and fruits 

towards identifying specific diseases that are common on 

kiwifruit cultivations, such as black and brown spot.  

Regarding image analysis, only one work has been 

identified for the reconstruction of the incomplete surface of 

kiwifruit images based on generative artificial intelligence 

techniques. Generative AI has been extensively used for 

synthetic dataset generation in the agricultural sector, aiming 

to address the challenge of data scarcity and enhance precision 

agriculture.  Both fruit and flower detection are among the 

most popular tasks in the literature, and the ones that have 

been extensively integrated in robotic automations, either for 

yield estimation, harvesting or automatic pollination, 

reporting efficient detection accuracies.  

Studies on quality control mainly focus on fruits grading 

based on specific objectives such as phenology observations. 

Note that quality control and defect detection for fruits are 

closely related but not exactly the same; defects detection is a 

specific process within quality control towards identifying 

external or internal defects, while quality control is a broader 

process that involves additional aspects such as size, hardness, 

ripeness, sugar content, compliance with standards for 

packing, storage and transportation and more. More insights 

regarding the eight AI applications that have been identified 

are included in the discussion section.   

Table II is a supplementary table that includes information 

regarding the used datasets in each one of the previously 

referenced works of Table I. Details on the used datasets, such 

as their type, accessibility, number of data, synthetic data, 

features, and targets, as well as the acquisition sensor type, are 

summarized in Table II, and discussed in the discussion 

section.  

Note that all information included in both Tables has a 

meaningful reflection on the results, which are further 

analyzed and discussed thoroughly in the upcoming section. 
 

IV.  DΙSCUSSION 
 

In this section, the current status of AI in kiwifruit farming 

is presented, as a result of the information included in Tables I 

and II. Applications, datasets and research gaps are also 

identified. 

 

A. Current Status 
 

The current status of AI in kiwifruit farming is depicted in 

Tables I and II. Research works included in both tables verify 

that agricultural digitalization has significantly advanced 

kiwifruit production during recent years, for multiple 

applications, however, leaving room for a greater involvement 

in the future, as discussed in the following subsections.  
 

A.1 Applications  
 

The studied works propose various applications using AI 

approaches. More specifically, eight applications have been 

identified, and are included in Table III. 

From Table III, it can be concluded that most applications 

focus on post-harvest stages of kiwifruits (application 

numbers: 1, 3, 4, 5, 6, and 8), while quality control and 

manufacturing phases are less popular (application numbers: 

2, 7). Table III also includes the amount of AI applications for 

kiwifruits, i.e., number of relevant papers. 

Observation of the results reveals that detecting kiwifruit 

and plant diseases from images captured in outdoor 

environments are the most common applications, followed by 

quality control.  
 

TABLE III 

DISTINCT APPLICATIONS IN KIWIFRUIT FARMING 
 

ID Application name No. of papers 

1 Crop management analysis 3 

2 Defects detection 4 

3 Disease detection 9 

4 Image analysis 1 

5 Kiwifruit detection 15 

6 Flower detection 5 

7 Quality control 8 

8 Yield estimation 4 

 

Indeed, fruit detection is a fundamental task in PA, and it is 

the first step towards several other applications, such as 

precision robotic harvesting, accurate yield estimation, 

detecting defects for quality control, growth tracking, 

application of pesticides, disease detection, and ripeness 

estimation. Computer vision and AI algorithms are therefore 

developed, aiming to detect and localize fruits under 

challenging environmental conditions, such as lighting and 

shadowing variations, occlusions, overlaps, etc.  

Intact early disease detection from images can provide an 

easy way to analyze the infection of kiwi plants, towards 

applying pesticides more efficiently, thus, reducing waste and 

limiting environmental impact, ensuring optimal use of 

resources and sustainable farming management.  

Significant research can also be observed in the quality 

control of kiwifruits, primarily focusing on indoor 

applications, therefore, after harvest time. The reviewed 

methods evaluate the concentration of sugar towards ripeness 

estimation, defects, and geometrical attributes of the harvested 

fruits through images to ensure compliance with quality 

market standards.  

Table I also indicates a tendency towards integrating 

algorithms for kiwifruit detection into robotic systems. Most 

robotic systems found in the literature provide kiwifruit 

detection for automatic harvesting tasks or kiwi flower 

detection for automatic pollination. Therefore, our work 

located two functional autonomous robotic harvesting systems 

[43], [44] as well as robotic pollinators [4], [46], [49].  

Pollination is essential for the fertilization process leading 

to the setting of kiwifruits, therefore directly influencing yield 

production. Moreover, efficient pollination ensures the 

optimal size and shape of the produced fruits. Yet, pollinator 

populations of bees, which are vital for the ecosystem, are 

ever decreasing. Supporting pollinators, other than natural, are 

therefore required. Manual pollination techniques are 
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common, while in recent years, artificial pollination based on 

robotics and computer vision detection techniques has 

emerged as a novel trend. Advancements in computer vision 

algorithms can lead to high detection accuracies, as seen from 

the results included in Table I, increasing the efficiency of 

automated systems. 

Another interesting conclusion from the summarized 

findings of Table I is regarding the use of each application, 

i.e., their distribution as final products or plain research. 

It is evident that most of the studies are intended primarily 

for research purposes, with only two published works 

presenting a more comprehensive solution for end users and 

the market in general. The first one [52] introduces a platform 

that collects data from weather stations, cameras, and soil 

sensors to predict and analyze phenology in kiwi fields. 

Additionally, a complete platform is provided to end-users 

towards monitoring crops. The second one [59], refers to a 

web service combined with a computer vision methodology 

for detecting and counting kiwi fruits in the field. The 

counting results are correlated with harvest metrics, such as 

kiwi weight, for yield estimation.  

 

A.2 Datasets  
 

The existence of quality data is crucial for the development 

of AI methods in general, as well as for kiwifruit farming 

applications. Efficient AI models, especially machine and 

deep learning models require large amounts of high-quality 

data. In the case of crops, such as in our case, diverse 

conditions need to be captured in datasets, so as to endure 

generalization of models under varying conditions, since 

farming involves outdoor conditions subjected to noises, 

occlusions and dynamic environmental conditions, resulting in 

lighting variations and shadowing. On top of these, different 

climates, soil types and evolving farming practices may lead 

to several different scenarios, that would be useful towards 

adaptable, robust, and models that generalize well. To this 

end, while Table I includes more general information, Table II 

is focused on the used datasets in each referenced work due to 

their underlined importance. 

From the analyzed papers, certain characteristics of the 

used datasets have been collected, such as data type (image, 

tabular data or multimodal), the number of data, if they used 

augmentation or synthetic images, the targets for each study 

and whether the dataset is publicly available or not.  

It is evident that in most cases image data are preferable. Of 

the analyzed papers, 45 use image data, while only four works 

use other types such as tabular data from sensors or chemical 

indicators. Images are preferable for AI algorithms and 

particularly for farming tasks related to computer vision and 

pattern recognition. Images can capture a wide range of 

complex data such as textures, shapes, colours, spatial 

relations, etc., that can be used to fully interpret the world, 

while they provide an intuitive representation for humans that 

can be visually explainable and naturally perceived. Note that 

deep learning models work by analyzing image data, therefore 

advancements in AI and machine learning need image data to 

be tested.  

Therefore, it is clear that image data have high value and 

information density which gives an advancement in computer 

vision for agricultural tasks. This emphasis points out that 

future research may continue prioritizing visual data.   

Figure 2 summarizes the number of images used in the 

works for the three most common target applications, as 

identified from our research: kiwifruit detection (Fig. 2(a)), 

disease detection (Fig. 2(b)), and quality control (Fig. 2(c)).  

From Fig. 2, it can be observed that most of the proposed 

works use a relatively small amount of image data for all three 

applications. Additionally, kiwi disease recognition datasets 

contain more images than kiwi fruit detection datasets. This 

difference can be attributed to the fact that most kiwi fruit 

diseases are identified on leaves, which have diverse shapes 

and positions within images. Furthermore, kiwi disease 

recognition involves a greater number of classes compared to 

kiwifruit detection. These findings highlight the need for rich 

image datasets that could cover a wider range of visual 

detection tasks. 

Figure 3 visually shows the availability of the used datasets 

in all selected works. Most of the used datasets, in 44 of the 

studies, are not public, while there are only five open access 

datasets. Of these five public datasets studies, three are for 

kiwifruit detection, one for kiwi flower detection, and one for 

disease detection. Note that this one dataset for disease 

detection is not specified on kiwifruit diseases; it is designed 

for various crops diseases on leaves also including kiwi 

leaves.  
 

A.3 Research Gaps 
 

Based on the previous analysis, several research gaps have 

been identified.  

There is a profound lack of open datasets for kiwi-related 

AI methodologies. This lack creates several issues, such as 

limitations in benchmarking and comparability between the 

developed methodologies, as there is no common base for 

comparing various proposed methods. 

Additionally, when many methods rely on private, in-house 

datasets, there is a high risk that these methods may be biased 

and lack generalization to broader scenarios. Another issue 

arising from the lack of open datasets is the limited 

reproducibility. Researchers and commercial product 

developers are unable to test and replicate the performance of 

published methods, which hinders scientific progress and the 

development of reliable solutions. 

Another important research gap is the lack of studies that 

consider applicability and end-user experience in 

methodology design. This approach keeps many proposed 

studies at an academic level, without presenting or testing 

their methodologies from an end-user perspective. As a result, 

scalability and practicality are limited, particularly regarding 

user-friendliness and performance with larger, more diverse 

datasets.  

In a real agricultural scenario, consider for example 30 

farmers that grow kiwifruits. If each farmer captures 20 

photos of kiwi plants daily, this will return up to 600 images 

per day, which is a significant volume of data with high 
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diversity in content. Note that current methods are trained on 

datasets of around 2,000 images. The latter scenario highlights 

the potential limitations of such methods to handle both the 

diversity and volume of images existing in real-world 

conditions since most studies are tested on limited data from 

controlled datasets, raising concerns about whether research-

focused methods are robust enough to handle the challenges 

and variability of real-world conditions. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Number of data used for (a) kiwifruit detection, (b) disease 

detection, (c) quality control 

 

 
Fig. 3. Availability of datasets 

 

Moreover, there is a gap in kiwifruit quality estimation 

directly in the field. Most quality estimation methods are 

designed for indoor environments, which limits options for 

managing fruits that do not meet market quality standards. 

Developing more computer vision methods for in-field quality 

estimation could offer better strategies for managing kiwi 

crops and optimizing harvest practices. 

A research gap in multimodal methodologies that combine 

sensory data (such as soil or weather information) with images 

of kiwi plants and chemical indicators has also been 

identified. Integrating these data types could lead to more 

accurate estimations of fruit quality or improved probability 

predictions for diseases’ occurrence. 

Therefore, image enhancement methods are crucial to 

improve the performance and reliability of detection 

algorithms, particularly for yield estimation applications, 

which remain relatively underexplored. Unfortunately, the 

lack of available public datasets obstructs the development of 

sophisticated methods capable of distinguishing between 

diseases with similar symptoms or detecting diseases at early 

stages.  

Nonetheless, there is a gap between indoor and outdoor 

applications around the agricultural digitalization of 

kiwifruits. Integrating these approaches into unified systems 

could greatly enhance yield management strategies.  

 

B. Future Potential 

The identification of both current status and research gaps 

can guide research and clarify the future potential of AI in 

kiwifruit farming. Therefore, the adoption of the following 

technological advancements has the potential to further 

revolutionize kiwifruit production contributing to the 

efficiency, sustainability, and profitability of future kiwifruit 

farming practices.  

 

B.1 Internet of Things Devices 

 

The Internet of Things (IoT) is an emerging trend in 

intelligent PA. The use of IoT devices and advanced sensors 

within kiwifruit orchards can enable the real-time collection 

of multiple agricultural information and monitoring of 

essential variables related to both the environment and crops’ 

health. IoT sensors are used in agriculture usually measuring 

temperature, humidity, pH, weather data, illuminance, etc. 

Even though ΙοΤ technologies are nowadays advanced and 

widely used in agriculture, their efficient application in the 

kiwifruit orchards is still under study [61]. 

 

B.2 Drones 

 

Drones are used extensively in PA due to their ability for 

aerial monitoring and surveillance on a farm scale, which is 

useful to timely identify pests and disease outbreaks. Drone 

systems in kiwifruit farming are mainly used for pollination; 

however, only limited real-world trials have been reported 

[62], while some researchers argue that robotic pollinators 

could not efficiently replace natural ones [63]. Therefore, the 

challenges related to aerial pollination, such as precision and 
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consistency due to dense foliage and weather conditions, and 

related acquisition and maintenance costs or technical 

complexities for farmers, could be further investigated.   

B.3 Blockchain 

 

Blockchain technologies combined with AI, IoT and big-

data analytics, have become very prominent in recent years. 

Blockchain can create records throughout the kiwifruit supply 

chain, enabling traceability, transparency and security of data 

[64]. The latter is important to build trust with consumers who 

would be able to validate the origins, quality, and organic 

certification of products [11].  

There are several open source blockchain environments that 

are currently available, such as Ethereum, that could be 

employed in kiwifruit farming in several innovative ways, 

towards enhanced traceability, automated transactions, data 

integrity, real-time monitoring of kiwifruit conditions during 

transportation and storage, and more, ultimately leading 

towards more sustainable agricultural practices. 

 

B.4 Robotics  

 

Robotics have already entered the agricultural sector and 

are expected to further revolutionize traditional labor-

intensive, time-consuming and costly processes. In kiwifruit 

farming, robots have been already used for harvesting and 

pollination, while other manual agricultural practices such as 

weeding, pruning, and spaying, have not yet been automated 

by robots in kiwifruit farming, leaving space for future 

innovations in kiwi orchard management. 

Robotic pollinators, either aerial or from ground platforms, 

are useful for the targeted spraying of kiwifruit flowers 

directly so as to efficiently substitute unreliable natural 

pollinators, aiming to improve both the quality and quantity of 

produced kiwifruits. Ground robotic systems have the ability 

to detect the targets more precisely and spray directly, 

reducing the costs of pollen (or herbicides in case of spraying) 

and related environmental impacts. Robotic harvesters can 

detach kiwifruits from the crops without harming their 

external surface, by using precise robotic vision algorithms 

and appropriate end-effectors.  

Yet, robotic systems for kiwifruits have not yet been 

adequately commercialized mainly due to slow picking rates. 

However, the future of robotics in kiwifruit farming is deemed 

feasible towards addressing seasonal labor shortages, due to 

the consistency and productivity of robotic systems and their 

ever-increasing capabilities for precision tasks due to the 

advancements of AI, robotics and machine learning 

algorithms. 

It should be noted that market demands are supporting 

robotic innovations, due to the related benefits of enhanced 

sustainability and high-quality products [8]. 

 

V. UNRAVELING THE POTENTIAL OF AI 
 

The last years have been transformative for AI. 

Groundbreaking innovations in the field are foreseen to 

reshape various fields, including agriculture, and more 

specifically kiwifruit farming. Companies like Fruitometry 

[65] are already using AI for kiwifruit farming practices, 

towards assessing early indication of crop load, harvest 

estimation, and more, by using 3D imaging and AI to count 

buds, kiwi flowers, and kiwifruit densities. Drones equipped 

with AI algorithms are used by Zespri [66], the world’s largest 

marketer of kiwifruit, to provide crop monitoring, yield 

prediction, irrigation, fertilization and supply chain 

optimization.    

However, most novel and current AI innovations, such as 

generative AI tools and multimodal AI, have not yet been 

integrated into practical in-field applications.  

The mass adoption of generated AI, starring ChatGPT, 

cannot leave agriculture intact. Generative AI tools can be 

efficiently integrated into feasible kiwifruit farming practices, 

to enhance their efficiency, by providing useful information 

and tailored guidance to farmers regarding kiwifruit practices. 

Large Language Models (LLMs) could be trained on specific 

input data to provide supporting tools for farmers towards 

efficient sensory data interpretation and optimal decision 

making by providing access to a huge knowledge-specific 

agricultural repository. By analyzing and combining complex 

data, such as historical plant and yield data, weather patterns, 

soil health, irritation and fertilization patterns, LLMs could 

provide data-driven estimates for yield and plant health issues, 

and guide farmers to manage effectively their resources. 

Towards the same direction, multimodal AI can integrate 

various data types acquired from drones, cameras, satellites, 

and various sensors, to provide farmers with holistic crop 

monitoring capabilities and enable forecasting to adapt their 

practices and prevent yield losses. Moreover, AI copilots, 

such as Microsoft’s security copilot, could assist in 

cybersecurity issues towards detecting threats in real-time.  

AI learning models could also be employed, by using 

digital twins integrated with AI, aiming to provide new data 

and create models that could learn and improve their accuracy 

over time, e.g., for yield prediction or anomaly detection. 

Therefore, AI simulations could predict possible outcomes on 

crops’ growth, such as the results from a fertilization or 

irrigation strategy and help farmers to select the most effective 

approach. Moreover, AI simulations could be used for 

predictive maintenance to predict failures in equipment such 

as agricultural machinery or irrigation systems.  

 

VI. CONCLUDING REMARKS 
 

In this work, a complete review of the most recent status of 

AI in PA kiwifruit farming is conducted. The conducted 

research aims to cover the past, the presence, and the future of 

all related aspects regarding the involvement of AI in kiwifruit 

farming. These aspects include the agricultural practices 

involved, commercial and research in-field applications, and 

kiwifruit datasets. Moreover, research gaps, trends of AI in 

kiwifruit farming, as well as the foreseen future of AI 

regarding technologies that have been recently introduced in 

the cultivation of kiwifruit but have not yet been incorporated, 

have been identified, aiming to provide a feasibility study 

towards their future integration.  

Results identified eight main applications using AI in 

kiwifruit farming, including crop management analysis, 

defects detection, disease detection, image analysis, kiwifruit 

detection, flower detection, quality control, and yield 
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estimation. Our analysis labelled key research gaps in AI 

methodologies for kiwifruit farming, highlighting a lack of 

open datasets, hindering benchmarking, comparability, and 

reproducibility of research, as well as leading to potential bias 

and limited generalization of AI models. Identified 

methodologies often overlook scalability and real-world 

applicability; limited in-field applications have been reported 

with most approaches restrained to indoor environments. 

Integration of multimodal data, such as images, sensory 

inputs, and chemical indicators, remains underexplored. 

Finally, results revealed limited AI-based robotic automations, 

and related research leading to commercial products, leaving 

space for more innovations. 

The potential of the kiwifruit industry is related to the 

integration and adoption of innovative digital technologies, 

such as IoT devices, drones, robotics, and blockchain, all 

empowered by AI algorithms. Recent advancements in 

generative AI are expected to play a vital role shortly, 

guaranteeing improved efficiency, productivity, and 

sustainability in cultivating kiwifruit. 
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