
A Framework to Evaluate Software Engineering
Program Using SWEBOK Version 4

Mohammad Zarour, Mamdouh Alenezi, and Mohammed Akour

Abstract—Software engineering (SE) has a dynamic nature
that makes it challenging to design educational material that
can adequately communicate the necessary knowledge and skills
to students. The Guide to the Software Engineering Body of
Knowledge (SWEBOK) has been updated and a new version has
been released to cope with the fast base changes in the domain.
Any software engineering program needs to be evaluated from
different perspectives, including curricula, teaching methods, lab
facilities, and faculty expertise. This paper aims to develop a com-
mon framework for evaluating software engineering programs.
A case study is conducted to evaluate two aspects of the SE
program, namely, the curricula and the expertise of the faculty.
The main findings show the lack of coverage in several SWE-
BOK areas such as maintenance, software process, configuration
management, construction, and software engineering economics.
Additionally, new SWEBOK areas like software security and
software engineering operations have limited course offerings.
The study also recognizes some challenges in evaluating the
success of bridging academia and industry through capstones
and collaborations. Practitioners are recommended to conduct
regular reviews of SE curricula in accordance with evolving
standards such as the SWEBOK. They should strive to improve
the coverage of areas that have not been adequately addressed
and to expand course offerings in emerging SWEBOK areas.

Index Terms—SWEBOK, Software Engineering Program,
Evaluation, Education.

I. INTRODUCTION

Software Engineering (SE) is defined as ’the application
of a systematic, disciplined, quantifiable approach to software
development, operation, and maintenance’ [1]. Since its in-
ception in 1968, SE has evolved and encompassed sub-fields
such as programming languages, methodologies, and tools.
Software engineering professionals play vital roles in various
aspects of software development, including quality assurance,
maintenance, and documentation, enabling information tech-
nology (IT) to meet business needs effectively.

As IT becomes indispensable for operations, revenue gen-
eration, and customer engagement, businesses are increasingly
adopting technologies such as e-Commerce, mobile, cloud, and
blockchain. In this context, software quality is paramount, as

Manuscript received November 13, 2024; revised February 3, 2025. Date
of publication March 20, 2025. Date of current version March 20, 2025. The
associate editor prof. Tihana Galinac Grbac has been coordinating the review
of this manuscript and approved it for publication.

M. Zarour is with the Faculty of Prince Al-Hussein Bin Abdullah II for
Information Technology, Department of Software Engineering, Hashemite
University, 13133- Jordan (e-mail: mzarour@hu.edu.jo).

M. Alenezi is with the AI Academy at Tahakoom, Riyadh 12331 Saudi
Arabia (email: mkalenezi@tahakom.com).

M. Akour is with the Department of Software Engineering, Prince Sultan
University, Riyadh, Saudi Arabia (email: makour@psu.edu.sa).

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0088

cyber-threats require secure development practices. The grow-
ing emphasis on continuous delivery requires the automation
of IT processes and the use of software automation tools,
which, in turn, requires highly skilled SE professionals to
develop, adopt, and maintain these systems. Consequently,
SE education plays a crucial role in ensuring the success
of both the workforce and the industry. High-quality SE
curricula, aligned with industry needs and teaching in-demand
skills and knowledge, are essential for student success [2],
[3]. However, designing robust and up-to-date SE curricula
remains a challenge due to rapid changes in the field.

Undergraduate SE education serves as an entry point into
the field, providing multidisciplinary training in areas such as
programming, design, testing, and project management. The
goal of SE curricula is to equip students with the practical
knowledge and skills required in the industry. Despite this
objective, SE education has long grappled with providing
practical industry-oriented experience [4]. Collaborations with
industry partners can offer realistic learning opportunities that
enable students to apply their knowledge and skills. Several
case studies demonstrate the effectiveness of such partnerships
[5].

This study aims to provide an overview of the current
state of software engineering education and its alignment with
industry practices, specifically in relation to the SWEBOK
framework [6], [7]. SWEBOK serves as a foundational frame-
work for defining the essential knowledge areas in software
engineering, influencing both educational curricula and pro-
fessional practices. SWEBOK has evolved significantly since
its inception, reflecting the changing landscape of software
engineering and the need for continuous adaptation in training
and organizational processes. The latest version of SWEBOK
V4 [6], incorporates agile, DevOps, and new knowledge areas
in software architecture, operations, and security to reflect
current industry practices. As the digital environment changes
constantly, academic and training programs must adapt to
include these elements to equip software engineers for current
and future challenges, as outlined in SWEBOK V4 [8]. Hence,
recent developments in continuous delivery, automation, and
security require updates to the SE curriculum.

Our study emphasizes the need for curriculum updates to
reflect current industry practices, as reflected in the latest
version of SWEBOK (V4), which includes agile, DevOps,
and new knowledge areas in software architecture, operations,
and security [9]. We highlight the importance of incorporating
emerging trends and technologies, such as continuous delivery,
automation, and security, into software engineering curricula.

66 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025

1845-6421/03/2024-0088 © 2025 CCIS



We understand that there are other criteria or guidelines
available for software engineering education, and our study
acknowledges the existence of these. However, we argue that
SWEBOK provides a comprehensive and widely accepted
framework for software engineering education that can be
applied across various educational institutions and industry
settings. With regard to the unique characteristics of SWEBOK
and its applications, we highlight the following: SWEBOK
provides a comprehensive framework for software engineering
education, covering a wide range of topics and knowledge
areas that are relevant to both introductory and advanced
courses. SWEBOK is regularly updated to reflect current
industry practices and emerging trends, ensuring that students
are prepared for the latest challenges and technologies in
the field. SWEBOK emphasizes the importance of agile,
DevOps, and security in software engineering, which are
critical skills in the modern software industry. Furthermore,
SWEBOK provides a common language and set of concepts
for software engineering education, facilitating collaboration
and communication between educators, students, and industry
professionals. Note that adding security as a core topic in
the SWEBOK has resulted in integrating security in ABET
accreditation of software engineering programs [10].

Although the industry rapidly adopts new technologies and
tools, best practices for software development and maintenance
are not always followed. Consequently, interest is growing in
the use of software standards to address this issue [2]. Univer-
sities can play a central role by incorporating best practices
and standards into SE curricula. Although SE programs claim
to adhere to the SWEBOK and ACM guidelines, few studies
evaluate or periodically reassess compliance. Regular updates
to SE curricula must align with standards and industry needs.
Documenting compliance ensures that the curricula remain
current and meet established standards. All this should be done
through a clear and repeatable evaluation framework which is
developed in this paper. The case study presented in this article
has been developed to explain and implement the proposed
evaluation framework.

This study evaluates, in its case study, the SE programs at
Saudi Arabian universities against SWEBOK V4. SWEBOK
model has been frequently used to assess SE programs, as in
[7], [11], [12], [13], [14]. This study builds on the foundation
laid by [14] in their SECDEP framework to evaluate software
engineering curricula.The work in [14] used SWEBOK v3 as
a reference to assess the alignment of software engineering
courses with industry demands. The current study extends
this research by applying the same SECDEP methodology,
encompassing all phases of data collection, rating, validation,
analysis, and visualization, but utilizing the latest version of
SWEBOK (v4). This update aims to provide a more contem-
porary and comprehensive evaluation of software engineering
curricula, considering the evolving landscape of software en-
gineering practices and knowledge. The recommendations aim
to improve the outcomes of the SE program. The case study
focuses on SWEBOK V4 knowledge areas and their coverage
in selected university curricula. The scope is limited to SE
programs, excluding non-SE courses and topics. Concentrating
on programs addresses a gap in existing research.

The paper is structured as follows. Section 2 reviews the
relevant literature. Section 3 presents the general evaluation
framework. Section 4 presents a case study that evaluates
undergraduate SE curricula in a selected group of universities
and proposes possible adjustments to align with the demands
of the software market. Section 5 offers recommendations
to improve the SE learning outcomes. Section 6 discusses
the limitations of our research process and suggests potential
avenues for future research.

II. RELATED WORK

Software Engineering Education (SEE) has long focused on
developing curricula that keep pace with the evolving needs
of the industry. Unfortunately, software engineering curricula
cannot change and adopt new technologies in a fast way.
Modifying the curriculum to better serve industry needs is a
long and tedious process in an academic setting [15]. Research
in curriculum and education management is a critical area of
study aiming to innovative better teaching methods [16]. In the
past decade, there has been a significant body of literature on
software engineering (SE) courses and their suitable teaching
methods. [17], [18], [19], [20], [21], [22], [23]. This research
is a result of international collaboration and co-work among
researchers over different countries and in different languages
[24]. However, research on SE programs and their alignment
with standards and the body of knowledge, such as SWEBOK,
has been relatively limited. Therefore, more effort is needed
from researchers and stakeholders to improve SE education at
the program level [25].

For example, Kitchenham et al. [26] conducted a notable
study that examined the coverage of SWEBOK knowledge
areas in undergraduate SE programs worldwide. Although
most of the programs addressed most of the 15 SWEBOK V.3
knowledge areas, several gaps were identified, specifically in
software engineering economics and processes. The study also
revealed a lack of coverage of emerging topics such as artificial
intelligence, blockchain, and cybersecurity, and recommended
that undergraduate SE programs be updated to include these
subjects. Radaideh, M. [27], [28] has studied the alignment of
a Jordanian university with the SWEBOK KA. The adoption
of SWEBOK V3.0 helps identify gaps in the current software
engineering curriculum at Jordan University of Science and
Technology . The integration of SWEBOK KAs ensures that
essential knowledge areas are addressed, enhancing the overall
quality of the software engineering program. The evaluation
highlights areas where the curriculum aligns well with industry
standards and areas needing improvement, guiding future
curriculum development

Recently, the use of SWEBOK to enhance the teaching of
core software engineering topics has been discussed in several
research work. For example, Huang et al. [29] addressed the
challenges faced in teaching and learning software engineering
economics and reformed the corresponding course based on
SWEBOK. Colares et al. [30] manipulated the SWEBOK
knowledge area of software process improvement to create
a set of content and competencies to be addressed in the
course of software process improvement. Qamar and Ikram

M. ZAROUR et al.: A FRAMEWORK TO EVALUATE SOFTWARE ENGINEERING PROGRAM USING SWEBOK VERSION 4 67



[23] adopted the SWEBOK requirement engineering knowl-
edge area to monitor and evaluate the course of requirement
engineering.

The analysis and improvement of SE curricula on a global
scale is essential to ensure that these programs remain updated
with novel approaches and teaching methods. Researchers
often investigate the alignment of SE curricula with established
models such as SWEBOK or SE2014 in various universities
and countries [31], [32], [14], [33], [34], [35], [36], [37].
These researches highlighted the need for software engineers
who possess a diverse skill set, including technical and soft
skills. To address the global skill gap, which require imple-
menting new engineering methodologies, curriculum renewal,
and innovative education and training methods. Unfortunately,
no further studies have been documented that re-evaluate
the SE curricula to explore if the recommendations of the
aforementioned researches have been adopted, and if there are
any new gaps. This led us to think of the evaluation process as
an iterative, incremental and repetitive process, as discussed
in the next section.

As the skills gap in IT is a worldwide problem, academics
must not only focus on the coverage of knowledge areas
and topics as outlined by SWEBOK or SE2014 but also on
delivering these topics in a way that fills the skill gap in the
IT industry [38]. To adequately prepare software engineering
(SE) students for the industry, it is crucial to include soft
skills such as continuous learning, creativity, and solution-
oriented thinking in the SE curricula. However, this presents
a more significant challenge than aligning the curricula with
the SWEBOK and SE2014 guidelines.

The recent literature reflects a growing interest in addressing
this issue and proposes solutions to bridge the gap between
SE curricula and industry practices [32], [39], [40], [41], [42],
[43], [44], [45], [46], [47]. To achieve this objective, col-
laborations between academia and the software development
industry, along with the incorporation of real-world systems
and products into the curriculum, have been recognized as
crucial strategies. Additionally, career monitoring surveys can
provide valuable insights into how well academic programs
prepare graduates for the industry [36], [37].

Consequently, this study aims to develop an evaluation
framework for the SE program to help evaluate SE programs
in any university. The developed framework and the conducted
case study will contribute to ongoing efforts to improve soft-
ware engineering education and ensure that graduates possess
the skills necessary for career success.

III. SE PROGRAM EVALUATION FRAMEWORK

The SE program evaluation process should be designed
as an iterative, incremental, and repetitive process. This is
because the SE domain is very dynamic and is rapidly
evolving. Hence, a dynamic evaluation framework should
provide a tool for assessing the strengths and weaknesses in
various dimensions. Using SWEBOK latest version supports
developing a robust evaluation as SWEBOK v4 represents the
latest advancements in the field. The framework is depicted
in Fig. 1. is iterative and incremental in the sense that the

evaluation can have various scopes as discussed, next, in the
second step of the framework. After completing the first round
of the evaluation that covers certain evaluation scope, the
evaluator can repeat the evaluation to cover another scope,
and so on. The evaluation framework consists of the following
steps:

A Understand SWEBOK v4 First of all, the evaluators who
aim to use this evaluation framework should familiarize
themselves with the overall structure and organization
of SWEBOK v4. It is divided into knowledge areas
(KA) that cover various aspects of software engineering,
such as requirements, design, development, testing, and
maintenance. Within each KA, evaluators need to explore
the topics, knowledge elements, and practices outlined.
This will give you a comprehensive understanding of
the core knowledge and skills that a competent software
engineer should possess.

B Define the evaluation scope Determine which aspects
of the program, as an evaluator, you want to evaluate.
It could be the curriculum, teaching methods, faculty
expertise, lab facilities, industry collaborations, or student
outcomes. The possible evaluation aspects are summa-
rized in Table I. Usually, most of these aspects are
overlooked when conducting the evaluation. Although
conducting an evaluation that includes all these aspects
can be tedious and time-consuming work, it can be done
with a sequence of studies or research projects. Then
choose specific SWEBOK v4 KAs that best align with
your chosen evaluation scope.

C Develop an evaluation tool Based on the chosen KAs,
identify specific knowledge elements and practices from
SWEBOK v4 that can be used as evaluation criteria. For
each criterion, define measurable indicators or metrics
that allow you to assess how well the program meets the
expected standards. This could involve analyzing course
syllabi, student projects, graduate surveys, employer feed-
back, or industry certifications achieved by graduates.

D Conduct & validate the evaluation Data collection pri-
marily involved reviewing the corresponding websites
for each SE program at the selected universities. This
included examining program descriptions, course syllabi,
faculty profiles, and any other relevant information avail-
able online. The data collected was then evaluated against
the SWEBOK v.4 knowledge areas. The evaluation fo-
cused on identifying areas of alignment and areas for
improvement in each program. To ensure the reliability
of the evaluation, inter-rater reliability was assessed by
calculating the Kappa coefficient for each SWEBOK
knowledge area. This analysis helped minimize subjec-
tivity and ensure consistency in the evaluation process.

E Report and recommendations Prepare a report sum-
marizing the evaluation findings, including insights on
the program’s strengths and weaknesses in relation to
SWEBOK v4 standards. Provide recommendations for
improvement, such as curriculum adjustments, updates
in teaching methods, or industry partnerships for specific
KA areas.

68 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



Fig. 1. Software Engineering Programs Evaluation Framework

Note that the evaluation is an iterative and continuous process
in which the evaluator may conduct the evaluation periodi-
cally to maintain an updated status of the SE program. The
evaluators can focus on certain aspects of the SE program in
each evaluation. Hence, the evaluator may require different
evaluation cycles to cover all aspects.

IV. CASE STUDY

To practice the proposed framework, a case study is con-
ducted to evaluate the curriculum of software engineering
programs at Saudi universities. In Saudi Arabia, the demand
for software engineering professionals is growing due to
the increasing reliance on technology across various sectors.
Several universities have established SE programs in response
to this demand. Hence, it is crucial to ensure that these
programs remain current with the latest developments in the
field of software engineering and effectively prepare students
for success in the industry.

A. Understand SWEBOK v4

The Software Engineering Body of Knowledge (SWEBOK)
is a comprehensive guide that defines the core knowledge
areas in the field of Software Engineering. SWEBOK has been
revised several times since its inception and the latest version,
SWEBOK V.4. incorporates new topics and updates to existing
ones, making it an essential reference for educators, practi-
tioners, and researchers in the field. Some of the significant
changes in SWEBOK V.4 are:

1) New Knowledge Areas: SWEBOK V.4 includes three
new knowledge areas, namely, Software Architecture,
Software Engineering Operations, and Software Security.
These areas are critical for modern software engineering

practices and help bridge the gap between software en-
gineering and related fields.

2) Revised knowledge areas: Some of the existing knowl-
edge areas in SWEBOK have been revised to reflect
the latest developments in the field. For example, the
Software Testing Knowledge Area has been updated to
include new testing techniques, such as agile testing and
DevOps testing.

3) New topics: SWEBOK V.4 includes several new topics,
such as Continuous Delivery, Cloud Computing, Machine
Learning, and IoT (Internet of Things). These topics
have become increasingly important in modern software
engineering and are essential for keeping up with the
latest trends in the field.

4) Updated references: SWEBOK V.4 updates the references
and resources used in the earlier versions to reflect the
latest research and industry practices. This ensures that
the SWEBOK remains relevant and up-to-date with the
latest developments in the field.

In general, the changes in SWEBOK V.4 reflect the evolving
nature of software engineering and the need for a comprehen-
sive and updated guide that can help practitioners, educators,
and researchers keep up with the latest developments in the
field. Well-known SE curricula guidelines refer to the SWE-
BOK when specifying core and elective courses, For instance,
IEEE/ACM SE2014 curriculum guidelines. Table II, compares
the SWEBOK V3 and V4 showing the new knowledge areas
that have been added to it. Table III compares the IEEE/ACM
SE2014 curricula guidelines and SWEBOK V.4. As can be
seen in III, all the SE2014 KA are covered in the SWEBOK
guide with at least one KA. This means that the SWEBOK
model covers in more detail some KA more than the SE2014
model, for instance, KA 1, KA 2, and KA 6 in SE2014.

M. ZAROUR et al.: A FRAMEWORK TO EVALUATE SOFTWARE ENGINEERING PROGRAM USING SWEBOK VERSION 4 69



TABLE I
SOFTWARE ENGINEERING PROGRAM EVALUATION ASPECTS USING SWEBOK V4

Category Aspect Evaluation Focus

Curriculum Technical Knowledge Coverage of SWEBOK KAs, depth and breadth of courses, project-based learning,
modern tools and technologies
Course content, assignments, learning outcomes, projects, industry relevance

Teaching Methods Active Learning Use of discussions, group projects, problem-solving activities
Classroom engagement, student participation, teaching strategies

Faculty Expertise Qualifications & Experience Academic credentials, industry experience, relevance to program focus
Curriculum vitae review, industry partnerships, guest lectures from experts

Facilities & Resources Computing Labs Hardware, software, and network resources adequacy, lab environment
Inventory of equipment, software licenses, lab management practices, accessibility for
students

Student Outcomes Graduate Rates & Employment Percentage of graduates employed in software engineering field, time to secure employ-
ment
Tracking graduate employment data, employer surveys, career services statistics

This study aims to explore how the new topics have been
adopted, and evaluate the Software Engineering programs at
the regional level in Saudi Arabia to explore their agility
in adopting the new SWEBOK V.4 and cope with the new
needs related to the Software Engineering curricula. The same
exercise can be done on SE programs offered by universities
in other countries using the same framework.

B. Define the Evaluation Scope

For the conducted case study, two aspects have been selected
for evaluation, the curricula and the faculty expertise. The
curricula of each SE program offered by a Saudi university is
identified by reviewing the university’s website and available
documentation about the program. Similarly, faculty expertise
and their domain of knowledge and interest are also reviewed
and collected from their university website and personal
websites (if available). As mentioned previously, considering
all the evaluation aspects can be infeasible in one research
work, but it can be achieved over a sequence of continuous
evaluations.

C. Define the Evaluation Tool

Once the evaluation scope is defined, the evaluation tool
has to be developed based on the latest version of SWEBOK,
currently version 4. Hence, for the curricula evaluation tool,
the tool consists of all SWEBOK KA and their subareas
and the coverage level of each KA in the evaluated cur-
ricula. The curriculum evaluators will independently study
the courses’ descriptions. Whenever possible, the evaluators
should communicate with the evaluated SE program coor-
dinator or department chair at the corresponding university
asking for more details. The evaluators then rate the courses
according to the SWEBOK knowledge areas. Ratings and
decisions will be discussed together and compiled. In case
of any discrepancies, the reviewers will discuss and resolve
them by mutual agreement; this process is depicted in Fig. 2
which outlines the curriculum evaluation process, expanding
upon the methodology presented in [14]. A key enhancement
is the inclusion of faculty expertise evaluation, providing a
more comprehensive assessment of the curriculum’s alignment
with industry needs and best practices. The rating of each
SWEBOK KA is done using a scale of 0-4 as follows:

A. Scale 0: No coverage of the knowledge area.
B. Scale 1: Some coverage in one course, but no dedicated

course for the knowledge area.
C. Scale 2: Some coverage in more than one course, but no

dedicated course for the knowledge area.
D. Scale 3: One dedicated course related to the knowledge

area.
E. Scale 4: Two or more dedicated courses for the knowl-

edge area.
Evaluating faculty expertise is conducted by reviewing the

faculty web-page in each evaluated university, search the
web for more information for each faculty member including
their own websites, Google Scholar and Linked-In whenever
available. The evaluation will adopt the same scale for the KA
coverage as follows:

A. Scale 0: No faculty member is specialized in the assessed
knowledge area.

B. Scale 1: A faculty member has some expertise in the
evaluated knowledge area (based on his graduate stud-
ies majors, declared research interest, publications, and
delivered courses).

C. Scale 2: More than one faculty member has some exper-
tise in the evaluated knowledge area (based on his gradu-
ate studies majors, declared research interest, publications
and delivered courses).

D. Scale 3: One faculty member is specialized in the evalu-
ated knowledge area (based on his graduate studies ma-
jors, declared research interest, publications and delivered
courses).

E. Scale 4: Two or more faculty members specialized in
the evaluated knowledge area (based on his/her graduate
studies’ majors, declared research interest, publications
and delivered courses).

D. Conduct and Validate the Evaluation

Conducting the evaluation means running the evaluation
process as part of the evaluation framework, where the eval-
uation team collects data, rates the SE program and analyzes
the findings. Validation the evaluation is discussed in the next
section IV-E.

1) Curricula Evaluation - Data Collection: The initial
phase of assessing the coverage level of each SWEBOK

70 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



TABLE II
KNOWLEDGE AREAS OF SWEBOK VERSION 3 COMPARED TO SWEBOK VERSION 4.

No. Knowledge Areas No. Knowledge Areas
1 Software Requirements 1 Software Requirements

2 Software Architecture
2 Software Design 3 Software Design
3 Software Construction 4 Software Construction
4 Software Testing 5 Software Testing

6 Software Engineering operations
5 Software Maintenance 7 Software Maintenance
6 Software Configuration Management 8 Software Configuration Management
7 Software Engineering Management 9 Software Engineering Management
8 Software Engineering Process 10 Software Engineering Process
9 Software Engineering Models and Methods 11 Software Engineering Models and Methods

10 Software Quality 12 Software Quality
13 Software Security

11 Software Engineering Professional Practice 14 Software Engineering Professional Practice
12 Software Engineering Economics 15 Software Engineering Economics
13 Computing Foundations 16 Computing Foundations
14 Mathematical Foundations 17 Mathematical Foundations
15 Engineering Foundations 18 Engineering Foundations

TABLE III
KNOWLEDGE AREAS OF SWEBOK VERSION 4 COMPARED TO SE2014.

KA# SE2014 Knowledge Areas KA# SWEBOK V4 Knowledge Areas
1 CMP: Computing Essentials 16 Computing Foundations

4 Software Construction
2 FND: Mathematical and Engineering Fundamentals 17 Mathematical Foundations

18 Engineering Foundations
3 PRF: Professional Practice 14 Software Engineering Professional Practice
4 MAA: Software Modeling and Analysis 11 Software Engineering Models and Methods
5 REQ: Requirements Analysis and Specification 1 Software Requirements
6 DES: Software Design 2 Software Design

3 Software Architecture
7 VAV: Software Verification & Validation 5 Software Testing
8 PRO: Software Process 10 Software Engineering Process
9 QUA: Software Quality 12 Software Quality
10 SEC: Security 13 Software security

Fig. 2. Software engineering curricula assessment process.

M. ZAROUR et al.: A FRAMEWORK TO EVALUATE SOFTWARE ENGINEERING PROGRAM USING SWEBOK VERSION 4 71



knowledge area (KA) involves two steps. Firstly, the selection
of universities to be included in the evaluation process and
gathering adequate information about their software engi-
neering (SE) curricula. This requires identifying academic
departments related to computer and information sciences in
the relevant universities. Although some universities may not
offer dedicated SE programs, they may provide SE courses
as part of their computer science programs. Therefore, it is
essential to specify the academic programs to be inspected.
Secondly, collecting information about the curricula, courses,
and their expected outcomes. However, this information may
not be readily available on the web, and it may be necessary to
contact the corresponding departments to obtain the necessary
information. To enhance the evaluation process, information
such as study plans, core courses, elective courses, credit
hours allocated to each course, credit hours related to the SE
discipline, and general education courses can be beneficial.

In Saudi Arabia, there are a total of 34 universities across the
country, covering the entire geographical area. Approximately
one-fourth of these universities are private, while the remain-
ing are public. Of the 34 universities in Saudi Arabia, only nine
have a dedicated software engineering program or department.
Four of these universities are public: King Saud University
(KSU), King Fahad University for Petroleum and Minerals
(KFUPM), Hail University (HU), and Jouf University (JU),
while the remaining five are private: Prince Sultan University
(PSU), Alfaisal University (Alfaisal), Prince Mohammad Uni-
versity (PMU), University of Business and Technology (UBT),
and Alyamamah University (Alyamamah). Table IV provides
a summary of the software engineering programs offered by
these universities.

TABLE IV
SOFTWARE ENGINEERING PROGRAMS IN SAUDI ARABIA.

Type Name Foundation Date SE Programs
Public KSU (U1) 1957 BSc, MSc

KFUPM (U2) 1963 BSc, MSc
HU (U3) 2005 BSc
JU (U4) 2005 BSc

Private PSU (U5) 1999 BSc
Alfaisal (U6) 2002 BSc
PMU (U7) 2006 BSc

AlYammamah (U8) 2001 BSc
UBT (U9) 2012 BSc

2) Faculty Expertise - Data Collection: Collecting data
related to faculty expertise is challenging. The universities’
websites that show the faculty members information are in-
complete. The websites like google scholar and Linked-In
shows details about publications and expertise but not for
example their graduate studies majors. due to these limitations,
and based on the available information, the faculty expertise
evaluation was conducted to two universities, PSU and Al-
Faisal Universities.

3) Data Analysis: Once the evaluators complete their eval-
uation, their findings are tabulated in a table showing, for each
SE program in a university, their rating of the KA coverage.
Table V shows the rating levels of the courses delivered by
Saudi Universities. The collected data are summarized and
presented using illustrative charts, for this research, the radar

net charts are used (as depicted in Fig. 3). To calculate credit
hours, elective courses should be disregarded as their content
and frequency of offerings may vary from one semester to
another. Similarly, senior project courses are also excluded as
they mainly involve the application of knowledge gained in
previous courses, and typically do not cover new knowledge
areas. However, we will track programs that provide senior
projects for cooperative training, as this can indicate which
programs equip their students with the necessary industry
skills.

Similarly, for faculty expertise evaluation, the review of each
faculty expertise and its mapping to the corresponding SWE-
BOK KA(s) is recorded. Table VI summarizes the evaluation
accordingly. The results are depicted in figure 4.

The analysis of the current SE curricula in the various
programs/universities showed that:

A. A large number of computing and math foundations
courses are offered in various universities. Despite the
importance of these two domains which are covered in
SWEBOK, we believe that these computing and math
courses should be revised and a decision should be made
on how to deliver them; as separate courses or merge
some topics in one course and design special math and
computing courses for SE programs. This will reserve
some room for more SE-related courses to be added to
the SE curricula.

B. Course offering: some SE courses are offered along with
other courses, while it is better to offer them in different
semesters, the sequence of SE courses’ offerings needs
to be revised and sequenced properly.

C. Some SWEBOK knowledge areas are not covered ad-
equately; this includes maintenance, software process,
configuration management, construction, and software
engineering economics.

D. With regard to the three new knowledge areas, few univer-
sities have made a proactive step and offered a dedicated
course in software security. The operations knowledge
area is still uncovered adequately, neither as part of a core
course nor an elective course, while software architecture
is partially covered as part of the software design and
architecture course in most universities.

E. Although SE programs in Saudi Arabia worked to bridge
the gap between academic programs and industrial needs
through either a capstone project or cooperative programs
with the industry or both, the success of such solutions
is not evaluated yet and needs further studies.

The analysis of the faculty expertise in the two universities
showed that:

A. There is a critical shortage in knowledge areas (rated
as 0 or 1) such as software operations, and software
engineering economics knowledge areas. These two KA
are uncovered as separate courses or as part of other
courses, maybe due to the shortage of expertise.

B. There is a major shortage in several other knowledge
areas (rated 2 or 3) like software construction, main-
tenance, software configuration management, software
management, software process.

72 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



TABLE V
RATING LEVELS OF THE COURSES DELIVERED BY SAUDI UNIVERSITIES

Area Universities

KA U1 U2 U3 U4 U5 U6 U7 U8 U9

REQ Sw Requirements 3 3 3 3 3 3 1 3 3
DES Sw Design 3 1 2 2 2 2 2 2 2
ARCH SW Architecture 1 2 2 2 3 2 3 3 2
CST Sw Construction 3 2 3 3 3 0 0 0 0
TST Sw Testing 3 3 2 3 3 3 3 3 3
OPS SW Operations 0 0 0 0 0 0 0 0 0
MNT Sw Maintenance 3 0 0 3 1 0 1 3 3
CNF Sw Config. Mgmt. 1 0 0 0 1 1 0 0 0
MGT SwE Management 3 3 3 3 3 3 0 3 3
PRC SwE Process 1 1 1 2 1 1 2 2 3
MAM SwE Models and Methods 2 2 2 2 2 1 2 2 2
QLY Sw Quality 3 3 3 3 2 2 2 2 4
SEC SW Security 3 2 2 1 2 2 2 3 2
SEP SE Professional Practice 4 4 3 3 3 4 1 3 1
SEE Software Engineering Economics 1 1 0 1 2 0 3 0 0
COF Computing Foundations 4 4 4 4 4 4 4 4 4
MAF Mathematical Foundations 4 4 4 4 4 4 4 4 4
ENF Engineering Foundations 1 1 4 1 0 1 3 0 3

TABLE VI
RATING LEVELS OF THE FACULTY EXPERTISE IN TWO SAUDI

UNIVERSITIES

KA SWBOK KA Desc. PSU AlFaisal

REQ Sw Requirements 3 3
DES Sw Design 4 4
ARCH SW Architecture 3 4
CST Sw Construction 2 2
TST Sw Testing 4 2
OPS SW Operations 1 0
MNT Sw Maintenance 3 2
CNF Sw Config. Mgmt. 2 2
MGT SwE Management 2 2
PRC SwE Process 3 2
MAM SwE Models and Methods 2 4
QLY Sw Quality 4 2
SEC SW Security 4 3
SEP SE Professional Practice 2 0
SEE Software Engineering Economics 1 0
COF Computing Foundations 4 4
MAF Mathematical Foundations 4 4
ENF Engineering Foundations 3 4

Note that each department can use this evaluation tool to more
deeply delve into its expertise and work to bridge the gap
accordingly.

E. Validate the Evaluation

Identifying the knowledge areas to which each course be-
longs can be a challenging task when evaluating each course.
Therefore, determining whether a KA is partially or fully
covered by a course is subjective. To measure the level of
agreement among evaluators (the authors of this paper), we
calculated the inter-rater agreement level using Fliess Kappa
analysis. A sample of the kappa analysis is shown in Table VII,
where we randomly selected five universities and calculated

the kappa coefficient for KAs. The Fliess Kappa coefficient
reflects the credibility and robustness of the rating process
conducted, as well as the homogeneity in the ratings provided
by the raters. The strength of the agreement can be determined
based on the classifications given in [12]. Table VII indicates
that there is a good level of agreement in almost all KAs. A
very good agreement is recorded in software process KA and
a moderate agreement is recorded for software operations KA.
To further validate the results of the SE curricula evaluation,
we plan to send emails to the chair of the department where the
software engineering program is delivered at each university.
We believe that the emails will be more credible and will
gain the recipient’s interest if the email includes an attached
copy of this research paper that documents the results. By
reaching out to the faculty of each SE department, we can gain
additional insights that may significantly impact the accuracy
of the obtained results. The SE programs will undergo another
evaluation process in 2-3 years to explore the updates on the
curricula and see to what extent our recommendations are
considered.

V. GUIDELINES AND RECOMMENDATIONS

Software engineering programs must adapt to the changing
skill requirements in software engineering due to the evolution
of the industry’s needs, the advent of large language models,
cybersecurity, and AI. This is vital due to the growing de-
mand for engineers with a combination of technical and non-
technical skills in the local software industry [48], [49], [50].
The following are some examples of these ways:

A. Integration of machine learning and AI: Software engi-
neering programs can integrate machine learning and AI
into their curricula to ensure that students have a solid
understanding of these technologies. This can include
courses on data science, machine learning algorithms, and
natural language processing.

M. ZAROUR et al.: A FRAMEWORK TO EVALUATE SOFTWARE ENGINEERING PROGRAM USING SWEBOK VERSION 4 73



Fig. 3. The evaluation results of the nine studied universities.

B. Integration of cybersecurity into the SE program: cyber-
security plays an integral role in software development.
Nowadays developing secure software is crucial and can-
not be underestimated. So, software engineering should
incorporate security in each phase of the development
process.

C. Emphasis on ethics and responsible AI and cybersecurity:
As the demand grows for ethical and responsible AI and
cybersecurity, software engineering programs can include
courses on the ethical and social implications of AI as
well as cybersecurity. These courses can cover topics such
as bias in AI, privacy concerns, the responsible use of AI,
ethical hacker responsibilities and practices.

D. Cloud computing, web, and mobile applications: The
market requires engineers who possess the skills to de-
sign and develop applications and solutions based on
current and emerging technologies. To meet this demand,
software engineering programs should of- fer courses
in web/mobile design, cloud architectures, and related
frameworks to equip students with the necessary com-
petencies.

E. Hands-on experience: Software engineering programs can
provide students with hands-on experience with AI and
machine learning technologies. This can include projects
that involve building AI systems, using AI to solve real-
world problems, and working with large datasets.

74 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



Fig. 4. Faculty Expertise Evaluation for Two Universities.

TABLE VII
INTER-RATER AGREEMENT CALCULATIONS – KAPPA COEFFICIENT.

KA K-Value Agreement’s strength
REQ 0.73214 Good
DES 0.75625 Good

ARCH 0.72231 Good
CST 0.73942 Good
TST 0.73077 Good
OPS 0.42308 Moderate
MNT 0.76315 Good
CNF 0.64286 Good
MGT 0.73473 Good
PRC 0.80588 V. Good

MAM 0.76315 Good
QLY 0.73588 Good
SEC 0.74954 Good
SEP 0.73624 Good
SEE 0.76879 Good
COF 0.71519 Good
MAF 0.71519 Good
ENF 0.75838 Good

F. Collaboration with industry: Software engineering pro-
grams can collaborate with industry partners to ensure
that their curricula are aligned with the latest trends
and technologies in the field. These partnerships can
also provide students with opportunities for internships,
mentorship, and real-world experience.

G. Lifelong learning: Software engineering programs can
emphasize the importance of lifelong learning and en-
courage students to continue developing their skills after
graduation. This can include offering professional de-
velopment courses, providing access to online learning
resources, and encouraging participation in industry con-
ferences and events.

H. Testing and quality assurance: Strong skills in testing, val-
idation, and quality assurance are essential to meet market
needs. Programs should include specialized courses on
test design, automation, and formal verification methods
to build expertise in this area.

I. Project management: In addition to technical skills, the
Saudi industry requires engineers with a working knowl-
edge of project management, communication, and lead-
ership skills to help deploy software solutions. Programs
should provide opportunities to develop these soft skills

through team projects, case studies, and possibly dedi-
cated project management courses.

J. Emerging technologies: The fast-changing nature of the
Saudi software industry demands lifelong learning skills
to keep up with new innovations. Programs should foster
a culture of continuous learning and exploration of new
technologies to produce adaptable engineers.

VI. LIMITATIONS

This study, while providing valuable insights into evaluating
software engineering programs, has certain limitations. Firstly,
data collection relied heavily on university websites, which
may not always provide comprehensive and accurate informa-
tion about curricula and faculty expertise. We were unable to
include universities with websites that were either unavailable
or lacked detailed descriptions of their software engineering
(SE) programs and courses offered. As a result, we may have
excluded some relevant data that could have influenced our
findings. Secondly, our classification is based solely on the
information obtained from the websites of the universities
studied, including program specifications, course descriptions,
and the web-pages of the faculty members. Although we at-
tempted to validate our results by obtaining feedback from all
the universities studied, this approach may not have captured
all the nuances of the SE curricula, courses offered, and all the
expertise of the faculty. Throughout our study, we encountered
several difficulties, such as incomplete course descriptions or
descriptions that did not reflect all the course content, missing
information related to faculty expertise, their research interests,
list of courses taught, and their majors.

Secondly, the focus was on Saudi Arabian universities
which limits the generalizability of the findings to other
contexts. However, the framework developed can be applied
by any SE program. Additionally, it is worth mentioning that
excluding senior projects from the rating presented in this
paper may be viewed as a limitation, as most SE students gain
opportunities to enhance their SE skills by working on their
graduation projects, which involve all phases of the software
development life-cycle. However, this decision was made due
to the variability of these projects in their topics and scope,
making it challenging to rate them accurately. Ultimately,

M. ZAROUR et al.: A FRAMEWORK TO EVALUATE SOFTWARE ENGINEERING PROGRAM USING SWEBOK VERSION 4 75



these limitations do not impact the applicability of the results
obtained in this research, but rather provide directions for
future research and improvements in the methodology.

In addition to the limitations of the case study, the pro-
posed framework itself has some inherent limitations. While
SWEBOK is a globally recognized reference for software
engineering knowledge, it may not fully capture all aspects of
modern software development practices. For instance, emerg-
ing technologies and trends might not be adequately reflected
in SWEBOK, potentially limiting the framework’s ability to
assess the preparedness of graduates for the evolving demands
of the industry. Furthermore, the SWEBOK knowledge areas
are broad, and ensuring comprehensive coverage by evalu-
ators, particularly in specialized areas, can be a significant
challenge. The framework also relies on the assumption that
the SWEBOK knowledge areas provide a sufficient basis for
evaluating the quality of SE education. While SWEBOK is a
valuable resource, it is important to acknowledge that it is not
an exhaustive or static standard. The continuous evolution of
software engineering practices necessitates regular updates to
SWEBOK. Therefore, it is crucial to periodically re-evaluate
SE curricula in light of SWEBOK updates to ensure alignment
with the latest industry standards and best practices.

Finally, the successful implementation of this framework re-
quires significant resources and expertise. Institutions need to
invest in training evaluators, gathering data, and conducting the
evaluation process. Moreover, ensuring consistent application
of the framework across different programs and institutions
can be challenging.

VII. CONCLUSION AND FUTURE DIRECTIONS

In conclusion, this study developed an evaluation framework
and applied it to evaluate the software engineering curricula
and faculty expertise of selected Saudi universities using the
SWEBOK Guide Version 4. The analysis revealed that while
the curricula provide adequate coverage of the core software
engineering knowledge areas and align with local market
needs, certain topics remain underrepresented.

Specifically, the curricula adequately address newly in-
troduced areas in SWEBOK V4 such as software security
and professional software engineering practice. This indicates
the universities’ cognizance of evolving software engineering
domains and commitment to adjusting curricula accordingly.
However, areas such as software economics, software oper-
ations, engineering foundations, software maintenance, and
software process require additional coverage in curricula.
Based on an analysis of market requirements, increasing the
number of testing and project management courses, currently
covered by only one course each, would also benefit the
curricula. Revision of the curriculum to align with the updated
SWEBOK V4 guidelines is also recommended. The suggested
actions aim to optimize the curricula to meet both SWEBOK
standards and local market demands. Future research could
evaluate each SWEBOK knowledge area individually across
programs or utilize course hour allocations in curriculum
guidelines to quantitatively assess knowledge area coverage.
Examining course materials in more detail may also yield

in-sights into better alignment with knowledge areas. Other
studies could focus on developing quantitative criteria to
evaluate software engineering curricula based on metrics such
as the number of core courses, general education courses, and
hours per course. Analyzing senior cap- stone projects and
industry collaborations to identify their strengths, weaknesses,
and potential improvements constitutes another area for further
research.

In summary, while the evaluated software engineering pro-
grams exhibit adequate coverage of core topics and adapt
to changes in the field, opportunities remain to strengthen
certain under- represented areas and enhance alignment with
SWEBOK guidelines through a multifaceted approach. Future
research can build upon this study, using various methodolo-
gies to gain a more comprehensive understanding of software
engineering curricula.

REFERENCES

[1] ISO/IEC 25010, ISO/IEC 25010:2011, Systems and software engineer-
ing — Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models, Std., 2011.

[2] Y.-T. Lin, “Effects of flipped learning approaches on students’ learning
performance in software engineering education,” Sustainability, vol. 13,
no. 17, p. 9849, 2021.

[3] A. Mishra and D. Mishra, “Sustainable software engineering: Curricu-
lum development based on acm/ieee guidelines,” Software Sustainability,
pp. 269–285, 2021.

[4] H. Su, S. Jodis, and H. Zhang, “Providing an integrated software devel-
opment environment for undergraduate software engineering courses,”
Journal of Computing Sciences in Colleges, vol. 23, no. 2, pp. 143–149,
2007.

[5] J. Maguire and Q. Cutts, “Back to the future: shaping software engi-
neering education with lessons from the past,” ACM Inroads, vol. 10,
no. 4, pp. 30–42, 2019.

[6] P. Bourque and F. R. E. (eds.), Eds., Software Engineering Course
(SWEBOK) V4 (Beta Version). Los Alamitos, CA: IEEE Computer
Society, 2022.

[7] P. Kamthan and H. Washizaki, “Swebok matters: Report and reflection
of a seke panel on the educational and professional implications of
swebok,” International Journal of Software Engineering and Knowledge
Engineering, pp. 1–11, 2022.

[8] H. Washizaki, M. I. S. Segura, J. Garbajosa, S. Tockey, and K. Nidiffer,
“2. envisioning software engineer training needs in the digital era
through the swebok v4 prism,” 2023.

[9] P. Singh and L. K. Singh, “Engineering education for development of
safety-critical systems,” IEEE Transactions on Education, vol. 64, no. 4,
pp. 398–405, 2021.

[10] W. Schilling, “The state of the practice integrating security in abet
accredited software engineering programs,” 06 2023.

[11] R. E. Fairley, “A software engineering competency model (swecom),”
IEEE Computer Society, 2014.

[12] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Sebern, and W. Visser,
“Se 2014: Curriculum guidelines for undergraduate degree programs in
software engineering,” Computer, vol. 48, no. 11, pp. 106–109, 2015.

[13] R. E. D. Fairley, P. Bourque, and J. Keppler, “The impact of swebok
version 3 on software engineering education and training,” in 2014
IEEE 27th Conference on Software Engineering Education and Training
(CSEE&T). IEEE, 2014, pp. 192–200.

[14] A. Arrifi, M. Zarour, N. Alomar, Z. Alshaikh, and M. Alsaleh, “Secdep:
Software engineering curricula development and evaluation process
using swebok,” Information and Software Technology, vol. 74, pp. 114–
126, 2016.

[15] A. Kiselev, “Extracting a body of knowledge as a first step towards
defining a united software engineering curriculum guideline,” Doctoral
Dissertation, Embry-Riddle Aeronautical University, 2023. [Online].
Available: https://commons.erau.edu/edt/743

[16] B. Malik and S. Zafar, “A systematic mapping study on software
engineering education,” International Journal of Educational and Ped-
agogical Sciences, vol. 6, no. 11, pp. 3343–3353, 2012.

76 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



[17] J. Yu, J. Zhang, Y. Chen, N. Wu, Y. Mei, W. Sun, and L. Zhu,
“Construction of a resource database of course ideology and politics
for software quality assurance and testing course,” structure, vol. 3, p.
285, 2023.

[18] M. Alenezi and M. Akour, “Methodical software testing course in higher
education.” International Journal of Engineering Pedagogy, vol. 12,
no. 1, 2022.

[19] N. Ibrahim, S. A. Halim, and N. A. Saadon, “Learners reflection
on collaborative project in project-oriented problem-based learning for
software engineering courses,” in AIP Conference Proceedings, vol.
2433, no. 1. AIP Publishing LLC, 2022, p. 030008.

[20] S. Jiménez, A. Alanis, C. Beltrán, R. Juárez-Ramı́rez, A. Ramı́rez-
Noriega, and C. Tona, “Usqa: A user story quality analyzer prototype
for supporting software engineering students,” Computer Applications
in Engineering Education.

[21] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, and A. Toval, “Requirements
engineering education: a systematic mapping study,” Requirements En-
gineering, vol. 20, pp. 119–138, 2015.

[22] M. Burch, “The importance of requirements engineering for teaching
large visualization courses,” in 2020 Fourth International Workshop on
Learning from Other Disciplines for Requirements Engineering (D4RE).
IEEE, 2020, pp. 6–10.

[23] F. Qamar and N. Ikram, “Improving monitoring and evaluation of
undergraduate curriculum: A case of software requirements engineering
course,” Education and Information Technologies, pp. 1–29, 12 2024.

[24] S. Alam, S. Zardari, U. Laila, M. Abbas, K. Shaheen, S. Fatima,
and S. A. Ahmed, “Swebok-based bibliometric analysis of software
engineering,” Journal of Independent Studies and Research Computing,
vol. 22, no. 1, 2024, iSSN (E): 1998-4154.

[25] M. M. Qadir and M. Usman, “Software engineering curriculum: A
systematic mapping study,” in 2011 Malaysian Conference in Software
Engineering. IEEE, 2011, pp. 269–274.

[26] B. Kitchenham, D. Budgen, P. Brereton, and P. Woodall, “An investiga-
tion of software engineering curricula,” Journal of Systems and Software,
vol. 74, no. 3, pp. 325–335, 2005.

[27] M. A. Radaideh, “Benchmarking the software engineering undergraduate
program curriculum at jordan university of science and technology
with the ieee software engineering body of knowledge (swe knowledge
areas #6–10),” in Advances in Software Engineering, Education, and e-
Learning, H. R. Arabnia, L. Deligiannidis, F. G. Tinetti, and Q.-N. Tran,
Eds. Cham: Springer International Publishing, 2021, pp. 85–100.

[28] ——, “Benchmarking the software engineering undergraduate program
curriculum at jordan university of science and technology with the ieee
software engineering body of knowledge: (software engineering knowl-
edge areas 11-15),” in 2021 International Conference on Computational
Science and Computational Intelligence (CSCI), 2021, pp. 1043–1049.

[29] J. Huang, J. Zhang, N. Chen et al., “Design and implementation of
experimental teaching in software engineering economics,” Frontiers in
Educational Research, vol. 6, no. 25, 2023.

[30] A. F. De Oliveira Colares, J. C. C. Furtado, and S. R. B. Oliveira,
“Content and skills for teaching software process improvement in the
computer science course: A mapping of acm / ieee, sbc, swebok, cmmi
and mr-mps-sw assets,” in 2023 IEEE Frontiers in Education Conference
(FIE), 2023, pp. 1–8.

[31] S. Hanna, H. Jaber, A. Almasalmeh, F. A. Jaber et al., “Reducing the gap
between software engineering curricula and software industry in jordan,”
Journal of Software Engineering and Applications, vol. 7, no. 07, p. 602,
2014.

[32] F. Al-Zaghoull, A. Hudaib, and M. Ahed, “Software engineering ed-
ucation in jordan,” in 2014 6th International Conference on Computer
Science and Information Technology (CSIT). IEEE, 2014, pp. 127–132.

[33] C. Watson, K. Blincoe et al., “Attitudes towards software engineering
education in the new zealand industry,” in 28th Annual Conference of
the Australasian Association for Engineering Education (AAEE 2017),
vol. 785. Australasian Association for Engineering Education Sydney,
2017.

[34] M. Barr and S. W. Nabi, “The development of students’ employability
skills on a work-based software engineering degree programme,” in 2022
IEEE Frontiers in Education Conference (FIE). IEEE, 2022, pp. 1–9.

[35] M. Marques, S. F. Ochoa, and M. C. Bastarrica, “Software engineering
education in chile-status report,” in Proceedings of the 2016 ACM Con-
ference on Innovation and Technology in Computer Science Education,
2016, pp. 180–185.

[36] D. Akdur, “Analysis of software engineering skills gap in the industry,”
ACM Transactions on Computing Education, vol. 23, no. 1, pp. 1–28,
2022.

[37] T. Hynninen, A. Knutas, and M. Hujala, “What can we learn from
recommendations of early-career engineers? assessing computing and
software engineering education using a career monitoring survey,” in
Proceedings of the 2022 Conference on United Kingdom & Ireland
Computing Education Research, 2022, pp. 1–7.

[38] W. Groeneveld, J. Vennekens, and K. Aerts, “Identifying non-technical
skill gaps in software engineering education: What experts expect
but students don’t learn,” ACM Transactions on Computing Education
(TOCE), vol. 22, no. 1, pp. 1–21, 2021.

[39] M. Shkoukani, “Proposed model to find the gap between academic
supply and industry demand in software engineering field in jordan,”
International Journal of Advanced Computational Engineering and
Networking, ISSN (p): 2320, vol. 2106, 2013.

[40] R. Kauppinen, A. Lagstedt, J. Lindstedt, and O. Rainio, “Software
engineering education with industry-mentored projects,” PACIS 2022
Proceedings, 2022.

[41] K. Hartmann and K. Zhu, “Incorporating learning by doing into the
software engineering curriculum,” DEStech Trans. Soc. Sci. Educ. Hum.
Sci., no. eshd, Jan 2017.

[42] V. Garousi, G. Giray, and E. Tuzun, “Understanding the knowledge gaps
of software engineers,” ACM Trans. Comput. Educ., vol. 20, no. 1, Nov
2019.

[43] V. Garousi, G. Giray, E. Tuzun, C. Catal, and M. Felderer, “Closing
the gap between software engineering education and industrial needs,”
IEEE Softw., vol. 37, no. 2, pp. 68–77, Mar 2020.

[44] V. Garousi, G. Giray, E. Tüzün, C. Catal, and M. Felderer, “Aligning
software engineering education with industrial needs: A meta-analysis,”
J. Syst. Softw., vol. 156, pp. 65–83, Oct 2019.

[45] L. H. Silva, R. X. Castro, and M. C. Guimaraes, “Supporting real
demands in software engineering with a four steps project-based learning
approach,” in 2021 IEEE/ACM 43rd Int. Conf. Softw. Eng. Softw. Eng.
Educ. Train., May 2021, pp. 50–59.

[46] G. Liargkovas, A. Papadopoulou, Z. Kotti, and D. Spinellis, “Soft-
ware engineering education knowledge versus industrial needs,”
arXiv:2112.12834v1, 2021.

[47] C. Gupta and V. Gupta, “C4 skills in the engineering graduate: A study
to align software engineering education with market-driven software
industry needs,” IEEE Transactions on Education, vol. 67, no. 1, pp.
31–43, 2024.

[48] M. Alghamlas and R. Alabduljabbar, “Predicting the suitability of it
students’ skills for the recruitment in saudi labor market,” in 2019
2nd International Conference on Computer Applications & Information
Security (ICCAIS). IEEE, 2019, pp. 1–5.

[49] M. Almaliki, “Software engineering in saudi arabia: A bibliometric
assessment,” IEEE Access, vol. 9, pp. 17 245–17 255, 2021.

[50] F. S. Altuwaijri and M. A. Ferrario, “Awareness and perception of
agile in saudi software industry,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Society
(ICSE-SEIS). IEEE, 2021, pp. 10–18.

M. ZAROUR et al.: A FRAMEWORK TO EVALUATE SOFTWARE ENGINEERING PROGRAM USING SWEBOK VERSION 4 77



Mohammad Zarour holds a Ph.D. in Software
Engineering since June 2009 from École de Tech-
nologie Supérieure (ETS) – Université du Québec
(Montréal, Canada). A master degree in Computer
Science in 1998 from University of Jordan. He is
currently a faculty member at Hashemite University,
Jordan. He has over twelve years of experience
in teaching in a university environment including
(Petra Unviersity, Jordan, and Prince Sultan Unvier-
sity, KSA). Dr. Zarour worked as a chief Technical
Advisor at one of the UNDP programmes in King

AbdulAziz City of Science and Technology in Riyadh for 3 years. He also has
several years of industry experience in information systems development and
process improvement. His research interests include software process quality,
software product quality, cost estimation, data mining and UX. He has tens
of peer-reviewed publications.

Mamdouh Alenezi is a Professor, a prominent
figure in software engineering and artificial intelli-
gence, leads the AI Academy at Tahakom, a key
player in Saudi Arabia’s tech industry. His pioneer-
ing research in AI and software engineering has
had a transformative impact, driving innovation and
positive change across sectors globally. Professor
Alenezi’s work bridges the gap between technology
and society, emphasizing excellence, innovation, and
societal improvement.

Mohammed Akour is a Professor in Software En-
gineering. He got his Bachelor (2006) and Master
(2008) degree from Yarmouk University in Com-
puter Information Systems with Honor. He joined
Yarmouk University as a Lecturer in August 2008
after graduating with his master in Computer In-
formation Systems. He joined Yarmouk University
again in April 2013 after graduating with his PhD in
Software Engineering from NDSU with Honor. He
serves as Keynote Speaker, Organizer, a Co-chair
and publicity Chair for several IEEE conferences,

and as ERB for more than 10 ISI indexed prestigious journals. He is a member
of the International Association of Engineers. (IAENG). Dr. Akour at Yarmouk
University served as Head of accreditation and Quality assurance for two
years and then was hired in 2017 as director of computer and Information
Center. In 2018, Dr. Akour was hired as vice Dean of Student Affairs at
Yarmouk University. In 2019, Dr. Akour got a sabbatical leave and joined
Al Yamamah University -Riyadh Saudi Arabia- as an associate professor
in Software Engineering, he served as a Software Engineering program
coordinator. In 2021, Dr. Akour joins Prince Sultan University as professor in
Software Engineering. Akour served as Computer Science department chair
2023-2024, and now he is the Software Engineering department chair.

78 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025




