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Abstract—As computer vision and machine learning advance, 

face detection has become a major focus. Face recognition has 

several methods and models. Every implementation starts with 

face detection. Haar Cascades and Multi-task Cascaded 

Convolutional Networks (MTCNN) are compared for facial pose 

variation robustness. This research will examine how well these 

two models detect faces in yaw postures from -90 to +90 degrees. 

Many studies have contrasted these two models, but the yaw 

poses of faces were not addressed due to the scarcity of datasets 

with systematic degrees of face orientation.  Thus, the UPM face 

dataset, created at the UPM embedded systems lab using 

developed equipment to produce high-resolution photographs 

and a systematic range of face orientations from -90 to 90 

degrees, was used to evaluate the range of degrees these two 

models can reach.  UPM includes 100 students with different yaw 

angles and occlusions (masks, glasses, or both). The results reveal 

that MTCNN is the best for detecting faces with yaw poses only, 

masks, glasses, and both at all degrees (-90 to +90) with 100%, 

99.9%, 96.4%, and 80% accuracy. Instead, Haar cascades were 

92.5%, 67.3%, 80.4%, and 76.3% accurate.   

  Index terms—Face Detection, facial occlusions, haar 

Cascades, MTCNN, occluded faces, UPM dataset, yaw poses. 

I. INTRODUCTION 

Face detection has progressed with the widespread adoption 

of deep learning techniques, the ever-increasing security 

needs, user authentication, and human-computer interaction 

systems in modern computer vision applications. However, 

real-world face detection faces challenges such as facial 

occlusions and variations in yaw poses. In this paper, two 

recent approaches to face detection — Multi-task Cascaded 

Convolutional Networks (MTCNN) and Haar Cascades’ 

Classifiers — are compared in terms of performance under 

different types of facial occlusion and yaw pose variations. 

It is well known that MTCNN is widely used in complex 

and unconstrained environments. Its deep learning 
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methodology and detection performance are optimized 

through cascaded convolutional networks that perform tasks 

sequentially. MTCNN generates candidate windows, refines 

them, and consolidates face landmarks [1, 2]. The model’s 

ability to discern complex facial features, combined with its 

rigorous training regimen, results in extremely high precision 

and recall rates, especially in cases with minimal to 

moderately disruptive facial occlusions [3]. 

On the other hand, Haar Cascades’ classifiers are based on 

machine learning and use features to detect objects. More 

specifically, these classifiers were trained using a shallow 

learning approach with basic Haar features, requiring only a 

small number of positive and negative instances—making 

them significantly simpler than the deep features learned by 

convolutional networks [4]. This is because the model uses a 

cascading function that sequentially removes non-face regions, 

resulting in fast computation and suitability for real-time 

applications. Recent studies have explored the adaptability of 

Haar Cascades’ classifiers to different scenarios, including 

their compatibility with standard techniques and ability to 

recognize human faces [5, 6]. 

The experimental analysis of these two models was carried 

out on the UPM face dataset, which consists of four subsets. 

The first subset contains face images with various yaw poses 

ranging from -90 to 90 degrees. The second subset contains 

face images covered with masks at various yaw poses within 

the same range. The third subset contains face images covered 

with glasses at various yaw poses, and the last subset consists 

of face images covered with both masks and glasses at 

different yaw angles. This dataset epitomizes the complexities 

of real-world scenarios, making it an appropriate benchmark 

for evaluation. 

MTCNN and Haar Cascades have been widely applied and 

compared in previous studies, as they are two well-known face 

detection models proven to be robust. However, those studies 

[7, 8] did not conduct a systematic analysis of face detection 

across various yaw poses, as they applied datasets that were 

not specifically designed to measure the robustness of these 

models in detecting faces at different yaw angles. Therefore, 

the systematically organized UPM dataset will be used to 

evaluate the robustness of these two models. Figures 1–3 

illustrate examples of non-systematic face orientation datasets 
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used in previous studies to compare the robustness of MTCNN 

and Haar Cascades. 

This selection of MTCNN and Haar Cascades as face 

detection models for this study was made due to the 

complementary strengths and weaknesses of these two models. 

As a deep learning architecture with a multi-stage cascaded 

convolutional network, MTCNN performs well in scenarios 

involving complicated pose variations and partial occlusions, 

where it can detect faces from a wide range of angles. 

However, Haar Cascades is computationally less demanding, 

making it a faster and more cost-effective option for simpler 

scenarios. In face detection, both models have been 

extensively studied, but their performance under systematic 

yaw variations—one of the most challenging problems in real-

world applications—has not been sufficiently compared. 

 

 

Fig. 1. Wider Face Dataset [7] 
 

 

Fig. 2.  Faces in the Wild Dataset [7] 
 

 

Fig. 3. Labeled Face in the Wild (LFW) datasets [9] 

 

Figures 1-3 clearly show that face orientations are not being 

taken in systematic degrees since the degree of each yaw pose 

of a face is not precisely specified. Therefore, this paper will 

be analyzing the capability of these two proposed face 

detection models to check to what degree it can detect faces at 

different yaw poses. In this study, we prioritize yaw poses 

(horizontal plane rotations of the face) as they often appear in 

surveillance and human-computer interaction applications. 

Unlike tilt and roll, which are often mitigated via camera 

alignment or preprocessing, yaw poses directly influence the 

frontal visibility of key facial features and thus are more 

important for face detection robustness. 

The main contributions of this work are: 

• Development of a comprehensive dataset with yaw 

poses and facial occlusions. 

• Comparative analysis of MTCNN and Haar Cascades 

for robust face detection under various conditions. 

• Evaluation of face detection performance in occluded 

and rotated faces, providing insights for real-world 

applications. 

    As yaw poses directly affect the visibility of the key facial 

landmarks (eyes and nose), which are critical for detection, 

they are prioritized in this study. In contrast to pitch or roll, 

yaw poses tend not to have been considered in preprocessing 

or camera alignment. 

    The focus of this study is on the yaw angle, which 

frequently occurs in real-world applications, including 

horizontal face orientation cases for the camera or on the 

pinpoint input by the user for a surveillance system. Our 

dataset focuses on yaw variations, as yaw variations are a 

primary challenge in face detection. Future work could add 

additional angles (e.g., pitch and roll) to expand the modeling 

accounting for face detection. 

    This paper is organized as follows: Section I provides a 

brief introduction to both face detection models. Section II 

explores the available face detection models, including 

MTCNN and Haar Cascades. In Section III, the methodology 

used in the experiments, including a dataset and face detection 

models, among others, is described. The experimental results 

are presented in Section IV, and MTCNN and Haar Cascades 

are compared under different conditions. In Section V, we 

discuss the importance of the findings and then conclude the 

paper in Section VI. 

 

II.  COMPREHENSIVE THEORETICAL BASIS 
 

One of the basic tasks of computer vision is face detection, 

which is essential in surveillance, security systems, and social 

networks. This paper aims to compare the strengths and 

weaknesses of two widely used face detection models—

MTCNN and Haar Cascades Classifiers—along with their 

real-world implementations. 

 

A. Multi-task Cascaded Convolutional Networks (MTCNN) 
  
   The face detection system, which is the Multi-task cascaded 

convolutional network (MTCNN), has gained the attention of 

many scholars of this generation due to its effectiveness and 

flexibility. In [10], the authors described some potential 

problems that may arise in MTCNN and underlined the fact 

that these problems should be taken into consideration when 

using the method in real-world security applications. In [11], 

the authors provided a detailed study of MTCNN, about the 

concept and implementation of the model, its applications in 
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computer vision, and its significance. This paper has used 

MTCNN for face detection using the Wider Face dataset; 

therefore, the accuracy rate of training this dataset was 85%. 

Another work presented in [12] introduced an improved 

MTCNN for face detection in the classrooms that is beneficial 

for educational systems where the identification of faces is 

crucial for activities like tracking attendance or monitoring the 

activity in the classroom.  

   To enhance small-scale face detection, a deep residual 

feature generation subnetwork is incorporated into the network 

architecture. This module has the properties of low-level fine 

granularity and transforms the initial poor features into higher-

level deformation features. Thus, the simplified MTCNN 

model is arrived at by removing all the components that are 

linked to the landmarks from the original model. This model is 

then followed by a deep residual feature generation module to 

enhance the detection while at the same time enhancing the 

speed. In [13], MTCNN was not only used in face detection 

but also for emotion detection and human-computer 

interaction in real-time, this showed the sophistication of the 

said model for real-time application. In particular, [14] 

demonstrated that it is possible to integrate MTCNN with 

facial expression recognition, which confirms its effectiveness 

in more complex and multi-faceted tasks, including the 

identification of humans’ feelings and actions. 

The author of [15] put forward a system of access control 

using MTCNN, and the author concentrated on the 

effectiveness of MTCNN in access control and recognizing 

systems and also the importance of MTCNN in real-life 

security systems. The paper [16] also looked into multi-view 

face detection and landmark localization, where MTCNN was 

used and has been applied to different tasks, including 

augmented reality and 3D face models. MTCNN++ [1], a 

CNN-based face detection algorithm that builds on the 

MTCNN concept, demonstrates how MTCNN informed the 

advancement of face detection algorithms and how it defines 

the advancement of the same. All in all, these papers show that 

MTCNN is versatile and has applications in the enhancement 

of face detection across different fields. 

B. Haar Cascades Classifiers

Haar Cascades classifiers have made a great contribution to

face detection due to their performance, flexibility, and 

success in a variety of conditions and uses. Other scholars 

have followed suit and have taken the classifiers’ functions to 

present-day applications such as social media networks, 

particularly in the context of content curation on Instagram 

[17]. [18, 19] analyzed the possibilities of the classifier to be 

combined with other classifiers or methods, for example, the 

Fisherface algorithm, and the increase in the classifier’s 

efficiency, which makes it promising for application in 

complex and multifaceted tasks of face analysis. The 

applicability of the model was investigated by [20, 21], where 

results revealed the model’s effectiveness in different 

illuminations and the model’s ability to be fine-tuned, which is 

useful for outdoor surveillance and specific applications, 

respectively. 

   At the same time, [22] gives a rather detailed and fair 

appraisal of the Haar Cascades and its effectiveness, which is 

necessary for understanding the further perspectives of its 

application in real life. Within the general context of Haar 

Cascade’s recognition as one of the primary methods for face 

detection, [23] noted that neural networks could be 

incorporated into it. More evidence of the model’s 

adaptability, [24] used it in multi-face recognition, which is 

important in crowd and group identification, while [25] 

focused on its applicability in security-related activities such 

as biometric identification. Altogether, these works 

demonstrate the efficiency of Haar Cascades classifiers in face 

detection, stress their versatility, the possibility of their 

interaction with other systems, and their significance in the 

traditional and innovative uses in the constantly developing 

field of computer vision. 

    Face detection and facial attribute analysis have also been 

the focus of a number of recent studies, which explore the 

problem of pose variations, occlusions, or other real-world 

challenges. As an example, YOLO-FaceV2 combines 

YOLOv5 by increasing the receptive field to find small faces 

and installing attention mechanisms to boost the performance 

of face detection under occlusions. Additionally, this model 

employs a novel repulsion loss to minimize false detections 

resulting from occlusions and outperforms previous YOLO 

models on subsets of the WiderFace dataset, which is known 

to be challenging [26]. In particular, it is robust, yet its 

computational complexity might hinder its application to the 

real-time case. 

    Moreover, an IoT-based MTCNN model achieves face 

detection for such low-resource environments as smart 

doorbells. This model makes significant gains in detection 

speed and accuracy under occlusions and unconstrained pose 

variations through depthwise separable convolution blocks. 

Though designed for IoT deployment, performance requires 

computational optimizations that enable it to operate well 

under noisy lighting and multiple face detections [27]. 

   The Pose Invariant Face Recognition (PIFR) is addressed in 

another novel approach using a self-supervised Random Mask 

Attention GAN (RMAGAN) to fill in the gaps that occur due 

to pose variations present in face images [28]. Unlike 

traditional GAN-based PIFR methods, Mask Rotate GAN does 

not require paired frontal view data and is therefore more 

scalable. The method presented here is computationally 

expensive, especially for real-time applications, and although 

the model exhibits good geometry-preserving properties while 

dealing with extreme poses, there is room for future 

improvement. 

   These recent advancements reinforce the existing difficulties 

of pose distortions and occlusions in face detection and 

highlight the necessity to balance model precision against 

affordance for computation. In this study, we compare 

MTCNN to Haar Cascades to gain more insights into these 

trade-offs and, in particular, under real-world surveillance 

scenarios so common. 

   Therefore, MTCNN and Haar Cascades Classifiers 

mainstream research confirms that framework flexibility, 

reliability, and efficiency when performing real-life projects. 

These models have not only developed face detection but have 

also expanded ideas about them and indicated a hint at the 

development of new models and solutions. The balance of this 

paper is based on this literature review where a comparative 
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analysis of MTCNN and Haar Cascades models under 

different face detection environments is done. 

    Lately, there have been some big improvements in real-time 

face detection, such as YOLOFace and RMAGAN, which 

perform better than the conventional methods in real time but 

lack detailed robustness analysis on systematic yaw variations. 

This study focuses on these specific scenarios to understand 

Haar cascades and MTCNN practical performance under 

controlled conditions. 

 

III.  METHOD 
 

This study aims to evaluate and compare the performance of 

two prominent face detection models, Multi-task Cascaded 

Convolutional Networks (MTCNN) and Haar Cascades 

classifiers, using a custom dataset known as UPM. The UPM 

dataset is composed of systematically created images of 

various yaw pose degrees and occlusions such as masks and 

glasses, which provides a comprehensive ground for analysis. 

The main aim of this newly created dataset is to testify to 

which degree each model can detect faces because face 

detection can be more challenging once the pose of a face gets 

larger.  This section outlines the methods used for model 

evaluation, dataset generation, and performance comparison. 

Here is the workflow of the proposed methodology of the two 

models represented as a flowchart in Figure 4.  

 

 
 

Fig. 4. Flowchart of the proposed models 
 

   The face detection process flow chart is shown above. The 

initial step involves loading two models: MTCNN and Haar 

Cascades. Images are read, validated, and for each subject, the 

MTCNN and Haar Cascades models are used to detect faces 

and extract their distinct features. The face coordinates are 

stored in a data frame resulting from the results. The detection 

performance of each subject is determined by returning 

accuracy, ROC curve, and confusion matrix after models are 

executed in batch mode. 

 

A. Aim 
 

The main objective of this research is to analyze the 

effectiveness of MTCNN and Haar Cascades classifiers on the 

UPM dataset. The emphasis is made on the fact that facial 

landmarks’ localization is tested on yaw poses and occlusions 

of faces. 

 

B. Dataset Description 
 

The UPM dataset is unique, featuring 100 individuals 

comprising 54 males and 46 females from diverse ethnic 

backgrounds, capturing undergraduate and postgraduate 

students. The dataset was collected under a controlled 

environment where the lightning of face images was stable. 

Also, the dataset of face images does not include facial 

expressions. The images were captured by the embedded 

system's laboratory camera. The camera type was Canon, and 

the resolution of the captured images was 72 dpi. The images' 

dimensions are (3456*4608) pixels. UPM face dataset is 

composed of images with various yaw degrees, and those 

degrees were accurately set and measured using the 

engineering protractor under the supervision of the lab's 

instructors. Therefore, the UPM dataset consists of four 

subsets, each designed to test different face detection 

conditions. Images for the training and testing sets were 

selected randomly within each subset of the UPM dataset. The 

training and testing sets in this study were carefully 

constructed to evaluate the models under controlled and 

systematic variations. For each subset of the UPM dataset 

(e.g., yaw poses, masks, glasses, both), 13 images representing 

different yaw angles (-90° to +90°, at 15° intervals) were 

selected. From these, 10 images per subject were randomly 

chosen for training, ensuring a representative sample for each 

condition, and the remaining 3 images were reserved for 

testing. This approach balances training sufficiency with 

evaluation integrity. 

 

• Set 1: Faces with varied yaw degrees (ranging from -90 

to 90) without any masks or glasses as illustrated in 

Figure 5. 
 

 
 

Fig. 5. Sample images of yaw poses without face accessories 
 

• Set 2: Faces with the same yaw variation, covered with 

masks only. 
 

112 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



 
 

Fig. 6. Yaw poses with masks only 

 

• Set 3: Faces with yaw variations, wearing glasses only. 

 

 
 

Fig. 7. Yaw poses with glasses only 

 

• Set 4: Faces subjected to yaw changes, obscured with 

both masks and glasses as represented in Figure 8. 

 

 
 

Fig. 8. Yaw poses with masks and glasses 

 

Each subset is designed to challenge the detection capabilities 

of the models very thoroughly, especially with partial face 

visibility and varying orientations. 

 

C. Face Detection Models 
 

In this paper, face detection was applied via MTCNN and 

Haar Cascades classifiers. The deep learning mechanism 

behind MTCNN is used for accurate face detections, while 

traditional machine learning-based Haar Cascades classifiers 

are known to be fast and efficient. 

C.1 MTCNN Model 
 

The Multi-Task Cascaded Convolutional Network 

(MTCNN) is an instance of a deep learning model designed to 

do face detection, having the main feature of the structure of 

convolutional networks that are cascaded and give output 

results from the 1st to the final stage. The MTCNN operates 

through three primary stages: the proposal network (P-Net), 

the refine network (R-Net), and the output network (O-Net). 

Window and bounding box proposals are produced by the P-

Net; the refiner is R-Net and filters false positives and 

produces final refined windows and landmarks as O-Net [31].  

We thus discuss the factors that make MTCNN feasible for 

face detection with pose and occlusion variability. MTCNN is 

first trained on large amounts of face images with different 

direction angles as well as faces hidden in part. This full 

training of the network helps the network learn and then draw 

the complex facial features, making it more effective. Second, 

the MTCNN has a multiple-stage model so that the objects can 

be better detected based on the output of its previous stage. 

The whole face should be learned at every level of the 

proposed model, and hence, partial occlusion and angle 

change. Also, the facial landmarks and the face-bounding box 

are available, provided with the face-bounding box together by 

MTCNN. Since MTCNN recognizes facial landmarks, it can 

then align and flip faces, which is crucially important when 

facing up to the task of detecting faces because they are 

looking at the face and some parts of the face may be hidden 

[31] [32] [33]. Figure 9 clearly illustrates the network 

architecture of MTCNN. 
 

 
 

Fig. 9. MTCNN network architecture [34] 
 

C.2  Haar Cascades Model 
 

Haar Cascades, proposed by Viola and Jones, are widely 

used techniques for object detection, particularly for face 

detection in images and videos. The method operates based on 

machine learning to train a cascade of AdaBoost classifiers 

using Haar-like features, which are digital image features used 

for object detection. The process involves a cascade of stages, 

each consisting of a classifier trained with a set of positive and 

negative samples to determine whether a specific region of an 

image contains a face. At each stage, the classifier receives the 

image, evaluates the region, and either rejects it as non-face or 

passes it to the next stage [35]. 

One key advantage of Haar Cascades, compared to other 

techniques, is its ability to detect faces in real-time, which is 
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particularly useful when time is critical. The approach utilizes 

the Integral Image to speed up the extraction of Haar-like 

features and AdaBoost for feature selection and classifier 

learning. This helps optimize resource usage and improves the 

efficiency of the face detection process within the cascade 

structure. 

Haar cascades are very effective when the conditions 

defined are met but are a complete failure when the subject is 

at a different angle, partially obscured, or has different 

lighting. Nevertheless, for the faces at different poses or 

occluded, the method will not be effective since the Haar 

features defined will not comprise all the aspects of such 

faces. The structure of the classifiers is determined by the 

training data set, and there is no certainty that it will be 

effective for the new and quite different samples of variation 

in the direction of the face or occlusion. Hence, Haar cascades 

[35-37] can be applied efficiently for the simple function of 

face detection, while for the more complicated task with 

different poses and occlusions of the face, other algorithms or 

some preprocessing steps may be required. 

 

D. Evaluation Procedure 
 

The performance of these models is evaluated by first 

processing all images in the UPM dataset using both models, 

extracting detection results, and then comparing based on 

some parameters. The Python programming language is used 

to facilitate this implementation with CV2 and MTCNN 

libraries.    

• Image Processing: This data set of images is 

preprocessed by resizing them to handle the model 

requirements. As the images are already in RGB 

format, there is no need for the MTCNN to perform 

conversion.  

• Face Detection: The main evaluation step is the 

application of both face detection models to each 

image. Face detection using the different challenges of 

the UPM dataset is tested against the models and yields 

the coordinates of bounding boxes for the detected 

faces. 

• Data Extraction and Compilation: Once detected, the 

bounding box coordinates are extracted from the data 

and organized as a structured format like a data frame 

for further analysis. 

Finally, each model is compared by the accuracy and detection 

performance, and confusion matrices and ROC curves are 

utilized to visualize the results. 

 

E. Performance Comparison 
 

   Following the data compilation, the study conducts a 

rigorous comparison analysis based on detection accuracy 

across all scenarios, where each scenario represents a set of 

UPM datasets. 

• Scenario-based Analysis: This level of analysis 

involves evaluating model performance, which will be 

decided based on the accuracy rates of each specific 

scenario (set) within the UPM dataset. This step 

determines how each model fares in conditions of 

varying complexities introduced by different yaw 

angles and obstructions.  

The UPM dataset is composed of four sets of data, where each 

set contains 13 face images of various yaw degrees. The first 

set contains face images with various yaw angle degrees 

without any occlusion accessories. The second set is also 

composed of 13 face images, and those images are covered 

with glasses only. The third set also contains 13 face images, 

but those images are covered with masks only, while the 

fourth set contains the same number of face images, but they 

are covered with both masks and glasses. Each set has been 

divided into two sets: the training set and the testing set. The 

training set contains 10 face images, and the testing set 

contains 3 face images. The images of the testing set were 

randomly selected from the training set. 

 

F. Computational Environment 
 

   Experiments were performed on an Intel Core i7-1165G7 

processor (11th generation, 2.80GHz) and 8 GB of RAM. 

With these setups, we have sufficient processing power for 

real-time analysis of face detection models. While we have 

enough memory available with this dataset, improving the 

performance by increasing available memory would also be 

useful when using larger datasets or more complex models. 

 

IV.  EXPERIMENTS AND RESULTS 
 

   The comprehensive evaluation of MTCNN and Haar 

Cascades models applied to the UPM dataset, which 

incorporates various challenges in the form of yaw poses and 

facial occlusions, provides valuable insights into their 

performance. The results are categorized by tables and 

highlight the contrasting abilities of these models, offering 

guidance for their application in different real-world contexts. 

One subject will be randomly selected from each set of UPM 

datasets and then compared to check the two models’ 

robustness in detecting faces at all yaw pose degrees. Then the 

overall accuracy of the 100 subjects will also be classified in a 

table. After that, the ROC curve and confusion matrix of that 

randomly selected subject of each set will also be illustrated.  

   Tables I–IV show that MTCNN has high detection accuracy 

as it is robust to occlusions and yaw pose variations. The 

observed extremes in accuracy (100% or 0%) for individual 

subjects and angles originate from the binary nature of 

detection. These results imply that MTCNN exhibits strong 

performance in face detection with all tested angles and 

conditions, while Haar Cascades fails for some excessive yaw 

poses and occlusions, resulting in poorer overall performance. 

   It focuses on systematic variations in yaw poses for which 

granular insights into each model’s detection capability are 

provided, closing the gap of prior studies. This setup 

guarantees reproducibility and appraisal precision, hence the 

methodological rigor of the study. 

 

• Set 1: Faces with varied yaw degrees (ranging from -90 

to 90) without any masks or glasses. 

 

Table I represents the accuracy results of subject eighty-nine 

using the two models. The (1s) mentioned in the table mean 

that faces were correctly and accurately detected, while the 

(0s) mean that faces were not detected. In Table I, the 

MTCNN model has precisely detected subject eighty-nine at 
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all angles, while the Haar Cascades model did not detect 

subject eighty-nine at angle (90). 

 
TABLE I 

SUB. 89 ACCURACIES OF MTCNN AND HAAR (NO MASKS & NO GLASSES)  
 

Degrees MTCNN 
Detection 

MTCNN 
Accuracy 

% 

Degrees Haar 
Detection 

Haar 
Accuracy 

% 

0 1 100 0 1 100 

15 1 100 15 1 100 

-15 1 100 -15 1 100 

30 1 100 30 1 100 

-30 1 100 -30 1 100 

45 1 100 45 1 100 

-45 1 100 -45 1 100 

60 1 100 60 1 100 

-60 1 100 -60 1 100 

75 1 100 75 1 100 

-75 1 100 -75 1 100 

90 1 100 90 0 0 

-90 1 100 -90 1 100 

 

 
Fig. 10. ROC of subject 89 data from Table 1 

 

 

 
 

Fig. 11. Confusion matrix of both MTCNN and Haar Cascades from Table I 

 

The results from Set 1 confirm our hypothesis that yaw poses 

have a large effect on detection accuracy. For example, as the 

yaw angle increases, decided features like eyes and mouth 

disappear to some extent, and performance degrades, 

especially in cases of less complex models, such as Haar 

cascades. 

• Set 2: Faces occluded with glasses only at various yaw 

degrees (ranging from -90 to 90). 

 

TABLE II 
SUB. 49 ACCURACIES OF MTCNN AND HAAR (GLASSES ONLY)  

 

Degrees MTCNN 

Detection 

MTCNN 

Accuracy 
% 

Degrees Haar 

Detection 

Haar 

Accuracy 
% 

0 1 100 0 1 100 

15 1 100 15 1 100 

-15 1 100 -15 1 100 

30 1 100 30 1 100 

-30 1 100 -30 1 100 

45 1 100 45 1 100 

-45 1 100 -45 1 100 

60 1 100 60 1 100 

-60 1 100 -60 1 100 

75 1 100 75 0 0 

-75 1 100 -75 0 0 

90 1 100 90 1 100 

-90 1 100 -90 0 0 

 

Subject 49's accuracy scores when using the two models are 

shown in Table II. The table shows that the (1s) mean that 

faces covered with glasses were correctly and accurately 

spotted, while the (0)s mean that faces were not detected. 

Table II shows that the MTCNN model correctly identified 

subject 49 from all angles, but the Haar Cascades model failed 

to do so at angles (75, -75, -90). 

 

 
Fig. 12.  ROC of subject 49 data from Table II 

 

 
Fig. 13. Confusion matrix of both MTCNN and Haar Cascades from Table II 

 

• Set 3: Faces occluded with masks only at various yaw 

degrees (ranging from -90 to 90). 

 

With the introduction of masks as obstructions in this scenario, 

MTCNN's performance remains robust in face detection. Haar 

Cascades, while still exhibiting lower accuracy compared to 
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MTCNN, shows some adaptability to the presence of masks. 

Hence, Table III shows that MTCNN was able to detect faces 

of subject 98 at all yaw angle degrees, while Haar cascades 

could not handle detecting faces covered with masks at angles 

(60, 75, 90, and - 90). 
 

TABLE III 
SUB. 49 ACCURACIES OF MTCNN AND HAAR (MASKS ONLY)  

 

Degrees MTCNN 

Detection 

MTCNN 

Accuracy 
% 

Degrees Haar 

Detection 

Haar 

Accuracy 
% 

0 1 100 0 1 100 

15 1 100 15 1 100 

-15 1 100 -15 1 100 

30 1 100 30 1 100 

-30 1 100 -30 1 100 

45 1 100 45 1 100 

-45 1 100 -45 1 100 

60 1 100 60 0 0 

-60 1 100 -60 1 100 

75 1 100 75 0 0 

-75 1 100 -75 1 100 

90 1 100 90 0 0 

-90 1 100 -90 0 0 

 
 

 
Fig. 14. ROC of subject 98 data from Table III 

 

 
Fig. 15. Confusion matrix of both MTCNN and Haar Cascades from Table III 

 

• Set 4: Faces occluded with both masks and glasses at 

different yaw degrees (ranging from -90 to 90). 

 

In this challenging scenario with both masks and glasses as 

occlusions, MTCNN displays superior performance compared 

to Haar cascades. Haar cascades’ accuracy decreases 

significantly, while MTCNN thrives in these complex 

conditions. The accuracy results can be seen in Table IV, 

where MTCNN was not detecting a yaw face image of subject 

19 at angle (-30), while Haar cascades could not detect faces at 

angles (-45, 60, and 75). The ROC and confusion matrix of 

Table IV are also presented in Figures 15 and 16. 

 
TABLE IV 

SUB. 19 ACCURACIES OF MTCNN AND HAAR (MASKS AND GLASSES)  
 

Degrees MTCNN 

Detection 

MTCNN 

Accuracy 
% 

Degrees Haar 

Detection 

Haar 

Accuracy 
% 

0 1 100 0 1 100 

15 1 100 15 1 100 

-15 1 100 -15 1 100 

30 1 100 30 1 100 

-30 0 0 -30 1 100 

45 1 100 45 1 100 

-45 1 100 -45 0 0 

60 1 100 60 0 0 

-60 1 100 -60 1 100 

75 1 100 75 0 0 

-75 1 100 -75 1 100 

90 1 100 90 1 100 

-90 1 100 -90 1 100 

 

 
Fig. 16. ROC of subject 19 data from Table IV 

 

 
Fig. 17. Confusion matrix of both MTCNN and Haar Cascades from Table IV 

 

The final overview of total accuracy displayed in Table V 

shows the two models, MTCNN and Haar Cascades, with 

regard to face detection in the four subsets of the UPM dataset. 

Each of the four subsets is designed in order to evaluate the 

abilities of the face detection models in various conditions 

concerning different angles and forms of occlusion. The 

presented table shows the accuracy of both models, which can 

show the user how well the model can solve the problem and 

where it fails as it has been compared with the other model on 

the similar probability that arises out of the data set. 
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TABLE V 
THE OVERALL ACCURACY OF MTCNN AND HAAR OF EACH SUBSET OF UPM 

 

Models UPM Datasets Overall 
Accuracy% 

 

 
MTCNN 

Set 1(yaw poses only) 

Set 2 (yaw poses with masks) 
Set 3 (yaw poses with glasses only) 

Set 4 (yaw poses with masks and 

glasses) 

100% 

99.9% 
96.4% 

80% 

 
 

 

 
Haar Cascades 

Set 1(yaw poses only) 
Set 2 (yaw poses with masks) 

Set 3 (yaw poses with glasses only) 

Set 4 (yaw poses with masks and 
glasses) 

92.5% 
67.3% 

80.4% 

76.3% 

 

A. Computational Complexity and Speed Analysis 
 

Table VI presents the average processing time per subject of 

20 subjects for MTCNN and Haar Cascades models to show 

the speed trade-offs of each approach. In contrast, Haar 

Cascades tends to process subjects much faster than MTCNN, 

as Haar is simpler and has a deep learning structure. 

 
TABLE VI 

AVERAGE PROCESSING TIME PER SUBJECT FOR MTCNN AND HAAR 

CASCADES 
 

Subject MTCNN Avg Time (s) Haar Avg Time (s) 

0001 7.359769 1.155869 

0002 7.507557 0.982754 

0003 7.470676 0.947931 

0004 7.761935 1.258538 

0005 7.623581 1.293862 

0006 8.270880 1.207304 

0007 8.438117 1.176684 

0008 7.881345 1.394028 

0009 8.338813 1.187892 

0010 8.282511 1.212107 

0011 8.471939 1.143962 

0012 8.200059 1.096631 

0013 8.019938 1.412541 

0014 8.527875 1.395329 

0015 8.199158 1.028784 

0016 7.825409 1.352500 

0017 7.403527 1.171280 

0018 7.415334 1.063909 

0019 7.382514 0.911707 

0020 7.783880 1.623783 

 

   This computational efficiency is shown in Table VI in 

comparison with MTCNN, which is significantly faster. 

Nowadays, although modern methods like YOLOV5 make 

decisions faster than before, they consume more 

computational resources and thus can’t be used in 

environments that lack resources. 

 

V.  DISCUSSION 
 

   Therefore, the findings of this paper, which utilize both 

MTCNN and Haar Cascades for face detection on the new 

UPM dataset—containing systematic variations in yaw poses 

and occlusion—provide valuable insights into their 

performance and applicability. From the results tables, it is 

evident that MTCNN outperforms Haar Cascades [38] in 

detecting faces under all tested conditions. More precisely, 

MTCNN demonstrated near-perfect accuracy in detecting 

faces across yaw poses ranging from -90 to 90 degrees, 

including those partially occluded by a mask, glasses, or both. 

Due to this high reliability, MTCNN emerges as the preferable 

model for applications demanding greater accuracy in 

complex and dynamic environments. 

Haar Cascades offer the advantage of speed and are quick to 

implement; however, under challenging conditions, they 

exhibit significantly lower performance than MTCNN [29], 

[30]. Therefore, the choice of model for a given problem 

involves a trade-off between speed and the need for high 

accuracy. Further studies might explore the possibility of 

combining the advantages of both methods, such as integrating 

Haar Cascades—which learn faster than MTCNN and other 

deep learning algorithms—into more precise detection 

techniques. 

When it comes to surveillance and security, MTCNN provides 

the ability to identify faces even in scenarios with extreme 

occlusion and angles when integrated into real-time 

applications such as monitoring. This paper has successfully 

developed a model that enhances human-computer interaction 

systems, particularly by enabling users to interact with the 

system in various settings that may impose facial constraints, 

such as when wearing personal protective gear. 

Haar Cascades and MTCNN demonstrate reliability primarily 

in systematic, controlled scenarios, whereas YOLO-Face and 

RMAGAN excel in real-time, dynamic environments. In 

applications with constrained computational resources or 

specialized requirements, such insights are particularly 

valuable. 

Although Haar Cascades and MTCNN are considered 

traditional, they remain highly useful for applications 

requiring low computational cost or those involving 

systematic pose variation. MTCNN delivers superior 

performance but at the expense of speed; for real-world 

applications with increasing complexity, Haar Cascades offer 

the fastest detection but are best suited for simpler tasks. 

 

VI. LIMITATIONS OF THE STUDY 
 

    However, while this study yields useful measurements of 

the performance of MTCNN and Haar Cascade models in 

different yaw angles and occlusion conditions, several do 

deserve to be mentioned. The analysis was then performed on 

the UPM face dataset alone, a dataset that is robust concerning 

systematic angle variations and occlusions but might not cover 

the possible diversity of real-world cases, e.g., for different 

lighting conditions, backgrounds, and dynamic expressions. 

Thus, testing further on other datasets with different 

environmental factors would allow a more comprehensive 

examination of model performance as observed in different 

environments than the current one. 

    Second, while the MTCNN model worked well, it is 

computationally resource-intensive and has reached a limit on 

speed, making it less suitable for real-time scenarios in 

resource-constrained environments. Haar Cascades are fast in 

nature but may not be the best option where high accuracy is 

required in challenging conditions. The overall approach could 

be extended to future research by considering hybrid 
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approaches that combine the strengths of both models in a 

computationally efficient way. 

    Lastly, this paper mostly centers on variations in yaw angle, 

with occlusions taken to include only masks and glasses. 

Further validation of the model's robustness in different 

conditions could be achieved by this analysis being expanded 

to cover other types of occlusions (e.g., hats, scarves, facial 

hair) and other facial poses (pitch and roll). 

     

VII.  CONCLUSION AND FUTURE WORK  
 

A. Summary of Findings and Model Performance 
 

This paper assesses the performance of two face detection 

algorithms, MTCNN and Haar Cascades, on the UPM dataset 

and concludes that MTCNN outperforms Haar Cascades in all 

tested conditions. In the first UPM scenario (faces with 

different yaw poses and no occlusion), MTCNN achieved an 

accuracy of 100%, while Haar Cascades came in second with 

92%. With masked faces, MTCNN reached 99.9% accuracy, 

whereas Haar Cascades dropped to 67.3%. For faces with 

glasses, MTCNN achieved 96%, compared to Haar Cascades 

at 80.4%. In the final scenario (faces with both masks and 

glasses), MTCNN showed an accuracy of 80%, with Haar 

Cascades at 76.3%. 

 

B. Theoretical and Practical Implications 
 

In face detection, as with other methods, this study shows 

that MTCNN is more precise than other methods, regardless if 

the subject’s face is rotated or not fully occluded. This is due 

to the fact that MTCNN has greater accuracy when compared 

to Haar Cascades and is well suited to surveillance 

applications where precise face identification under tough 

conditions is required. 

 

C. Research Contributions and Practical Advantages 
 

The main contribution of this study lies in enhancing 

human-computer interaction systems, particularly in 

environments where users may wear personal protective 

equipment. Additionally, the results underscore the 

relationship between detection speed and accuracy, a key 

consideration in selecting face detection models. While Haar 

Cascades provides faster processing, MTCNN’s superior 

accuracy makes it preferable for applications that prioritize 

precision. 

 

D. Research Limitations and Future Directions 
 

More occlusions and lighting conditions could be included 

in future research to investigate further the model's stability. 

Furthermore, MTCNN can be combined with other deep 

learning techniques for higher detection efficiency and 

effectiveness. In order to build on this study, datasets should 

incorporate yaw, pitch, and roll poses in order to more fully 

evaluate face detection models. 

 

 

 

   

REFERENCES 

 
[1] S. S. Khan, D. Sengupta, A. Ghosh, and A. Chaudhuri, "MTCNN++: A 

CNN-based face detection algorithm inspired by MTCNN," The Visual 

Computer, pp. 1-19, 2023, doi: 10.1007/s00371-023-02822-0. 
[2]  L. Zhou, H. Zhao, and J. Leng, "MTCNet: Multi-task collaboration 

network for rotation-invariance face detection," Pattern Recognition, 

vol. 124, p. 108425, 2022, doi: 10.1016/j.patcog.2021.108425. 
[3]  S. Bhattacharya, M. Ghosh, and A. Dey, "Face detection in 

unconstrained environments using modified multitask cascade 

convolutional neural network," Proceedings of the International 
Conference on Industrial Instrumentation and Control (ICI2C 2021), 

pp. 287-295, 2022, doi: 10.1007/978-981-16-7011-4_29. 

[4] C. H. Choi, J. Kim, J. Hyun, Y. Kim, and B. Moon, "Face detection 
using Haar cascade classifiers based on vertical component calibration," 

Human-centric Computing and Information Sciences, vol. 12, no. 11, 

pp. 1-17, 2022. 
[5]  J. M. Shamrat, F. M., A. Majumder, P. R. Antu, S. K. Barmon, I. 

Nowrin, and R. Ranjan, "Human face recognition applying Haar 

cascade classifier," Pervasive Computing and Social Networking: 
Proceedings of ICPCSN 2021, pp. 143-157, Springer Singapore, 2022, 

doi: 10.1007/978-981-16-5640-8_12. 

[6]  V. Dores, "Identifikasi masker pada face detection dengan 
menggunakan metode Haar Cascade dan CNN," Jurnal Sistim 

Informasi dan Teknologi, vol. 4, no. 4, pp. 149-154, 2022, doi: 

10.37034/jsisfotek.v4i4.154. 
[7]  K. A. Majeed, Z. Abbas, M. Bakhtyar, Z. Durrani, J. Baber, and I. 

Ullah, "Face detectors evaluation to select the fastest among DLIB, 

HAAR Cascade, and MTCNN," Pakistan Journal of Emerging Science 
and Technologies, vol. 2, no. 1, pp. 1-13, 2021. 

[8]  M. H. Robin, M. M. U. Rahman, A. M. Taief, and Q. N. Eity, 

"Improvement of face and eye detection performance by using multi-
task cascaded convolutional networks," 2020 IEEE Region 10 

Symposium (TENSYMP), pp. 977-980, June 2020, doi: 

10.1109/TENSYMP50017.2020.9230681. 
[9]  M. Gao and Y. Tang, "Rotation face detection based on three-window 

convolutional neural networks," Journal of Physics: Conference Series, 
vol. 1229, no. 1, p. 012013, May 2019, doi: 10.1088/1742-

6596/1229/1/012013. 

[10] E. Kaziakhmedov, K. Kireev, G. Melnikov, M. Pautov, and A. Petiushko, 
"Real-world attack on MTCNN face detection system," 2019 

International Multi-Conference on Engineering, Computer and 

Information Sciences (SIBIRCON), pp. 422-427, Oct. 2019, doi: 
10.1109/SIBIRCON48586.2019.8958122. 

[11]  N. Zhang, J. Luo, and W. Gao, "Research on face detection technology 

based on MTCNN," 2020 International Conference on Computer 
Network, Electronic and Automation (ICCNEA), pp. 154-158, Sept. 

2020, doi: 10.1109/ICCNEA50255.2020.00040. 

[12]  M. Gu, X. Liu, and J. Feng, "Classroom face detection algorithm based 
on improved MTCNN," Signal, Image and Video Processing, vol. 16, 

no. 5, pp. 1355-1362, 2022, doi: 10.1007/s11760-021-02087-x. 

[13]  A. Ghofrani, R. M. Toroghi, and S. Ghanbari, "Realtime face-detection 
and emotion recognition using MTCNN and MiniShuffleNet V2," 2019 

5th Conference on Knowledge Based Engineering and Innovation 

(KBEI), pp. 817-821, Feb. 2019, doi: 10.1109/KBEI.2019.8734924. 
[14]  J. Xiang and G. Zhu, "Joint face detection and facial expression 

recognition with MTCNN," 2017 4th International Conference on 

Information Science and Control Engineering (ICISCE), pp. 424-427, 
July 2017, doi: 10.1109/ICISCE.2017.95. 

[15]  C. Wu and Y. Zhang, "MTCNN and FaceNet based access control 

system for face detection and recognition," Automatic Control and 
Computer Sciences, vol. 55, pp. 102-112, 2021, doi: 

10.3103/S0146411621010090.  

[16] M. Ma and J. Wang, "Multi-view face detection and landmark 

localization based on MTCNN," 2018 Chinese Automation Congress 

(CAC), Xi'an, China, Nov. 2018, pp. 4200-4205, doi: 

10.1109/CAC.2018.8623535. 
[17]  A. Priadana and M. Habibi, "Face detection using Haar cascades to 

filter selfie face images on Instagram," 2019 International Conference 

of Artificial Intelligence and Information Technology (ICAIIT), 
Yogyakarta, Indonesia, Mar. 2019, pp. 6-9, doi: 

10.1109/ICAIIT.2019.8834526. 

[18]  C. L., Q. Zhiliang, J. Nan, and W. Jianhua, "Human face detection 
algorithm via Haar cascade classifier combined with three additional 

classifiers," 2017 13th IEEE International Conference on Electronic 

118 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 21, NO. 1, MARCH 2025



Measurement & Instruments (ICEMI), Yangzhou, China, Oct. 2017, 
pp. 483-487, doi: 10.1109/ICEMI.2017.8265863. 

[19]  I. Gangopadhyay, A. Chatterjee, and I. Das, "Face detection and 

expression recognition using Haar cascade classifier and Fisherface 
algorithm," Recent Trends in Signal and Image Processing: Proceedings 

of ISSIP 2018, Springer Singapore, 2019, pp. 1-11, doi: 10.1007/978-

981-13-6783-0_1. 
[20]  D. T. P. Hapsari, C. G. Berliana, P. Winda, and M. A. Soeleman, "Face 

detection using Haar cascade in different illumination," 2018 

International Seminar on Application for Technology of Information 
and Communication, Semarang, Indonesia, Sep. 2018, pp. 555-559. 

[21]  A. Singh, H. Herunde, and F. Furtado, "Modified Haar-cascade model 

for face detection issues," International Journal of Research in 
Industrial Engineering, vol. 9, no. 2, pp. 143-171, 2020. 

[22]  R. Padilla, C. F. F. Costa Filho, and M. G. F. Costa, "Evaluation of 

Haar cascade classifiers designed for face detection," World Academy 
of Science, Engineering and Technology, vol. 64, pp. 362-365, 2012. 

[23]  A. Sharifara, M. S. Mohd Rahim, and Y. Anisi, "A general review of 

human face detection including a study of neural networks and Haar 
feature-based cascade classifier in face detection," 2014 International 

Symposium on Biometrics and Security Technologies (ISBAST), Kuala 

Lumpur, Malaysia, Aug. 2014, pp. 73-78, doi: 10.1109/ISBAST. 
2014.7013097. 

[24]  T. Mantoro and M. A. Ayu, "Multi-faces recognition process using 

Haar cascades and eigenface methods," 2018 6th International 
Conference on Multimedia Computing and Systems (ICMCS), Rabat, 

Morocco, May 2018, pp. 1-5, doi: 10.1109/ICMCS.2018.8525935. 

[25]  Z. Han, W. Song, X. Yang, and Z. Ou, "Face pose estimation with 
ensemble multi-scale representations," Proceedings of the 2nd 

International Conference on Artificial Intelligence and Pattern 

Recognition, Beijing, China, Aug. 2019, pp. 97-101, doi: 
10.1145/3357254.3357278. 

[26]  Z. Yu et al., "Yolo-facev2: A scale and occlusion aware face detector," 

Pattern Recognition, vol. 155, p. 110714, 2024, doi: 
10.1016/j.patcog.2024.110714. 

[27]  V. Gaikwad et al., "Design and implementation of IoT-based face 

detection and recognition," Computing & Intelligent Systems, 2024, pp. 
923-933, doi: 10.56155/978-81-955020-2-8-78. 

[28]  J. Liao, T. Guha, and V. Sanchez, "Self-supervised random mask 
attention GAN in tackling pose-invariant face recognition," Pattern 

Recognition, vol. 155, p. 111112, 2024, doi: 

10.1016/j.patcog.2024.111112. 
[29]  N. Singh and R. M. Brisilla, "Comparison analysis of different face 

detecting techniques," 2021 Innovations in Power and Advanced 

Computing Technologies (i-PACT), Chennai, India, Nov. 2021, pp. 1-
6, doi: 10.1109/i-PACT52855.2021.9696583. 

[30]  S. A. Hashmi, "Face detection in extreme conditions: A machine-

learning approach," arXiv preprint arXiv:2201.06220, 2022. 
[31]  L. Zhou, H. Zhao, and J. Leng, "MTCNet: Multi-task collaboration 

network for rotation-invariance face detection," Pattern Recognition, 

vol. 124, p. 108425, 2022, doi: 10.1016/j.patcog.2021.108425. 
[32]  M. T. Islam et al., "Convolutional neural network-based partial face 

detection," 2022 IEEE 7th International Conference for Convergence in 

Technology (I2CT), Pune, India, Apr. 2022, pp. 1-6, doi: 
10.1109/I2CT54291.2022.9825259. 

[33]  O. Naser, S. Ahmad, K. Samsudin, S. Shafie, and N. Zamri, "Facial 

recognition for partially occluded faces," Indonesian Journal of 
Electrical Engineering and Computer Science, vol. 30, no. 3, pp. 1846-

1855, 2023, doi: 10.11591/ijeecs.v30.i3.pp1846-1855. 

[34]  S. Li, Y. Dou, J. Xu, K. Yang, and R. Li, "GBCNN: A full GPU-based 
batch multi-task cascaded convolutional networks," IEEE Access, vol. 

7, pp. 20225-20234, 2019, doi: 10.1109/ACCESS.2019.2894589. 

[35]  C. Rahmad et al., "Comparison of Viola-Jones Haar cascade classifier 
and histogram of oriented gradients (HOG) for face detection," IOP 

Conference Series: Materials Science and Engineering, vol. 732, no. 1, 

p. 012038, 2020, doi: 10.1088/1757-899X/732/1/012038. 
[36]  C. H. Choi et al., "Face detection using Haar cascade classifiers based 

on vertical component calibration," Human-centric Computing and 

Information Sciences, vol. 12, no. 11, pp. 1-17, 2022. 
[37]  A. Singh, H. Herunde, and F. Furtado, "Modified Haar-cascade model 

for face detection issues," International Journal of Research in 

Industrial Engineering, vol. 9, no. 2, pp. 143-171, 2020. 
[38]  O. A. Naser, S. M. Syed Ahmad, K. Samsudin, and M. Hanafi, 

"Enhancing 2D face recognition systems: Addressing yaw poses and 

occlusions with masks, glasses, and both," Advances in Artificial 
Intelligence and Machine Learning, vol. 4, no. 3, pp. 2545-2574, 2024. 

 
Omer Abdulhaleem Naser is a final-year Ph.D. 

student at the University Putra Malaysia, Faculty 
of Engineering. Majored in computational 

methods in engineering. The specified research 

field is biometrics, particularly, facial recognition 
for occluded faces. Currently, Omer is working as 

a lecturer at the University of Information 

Technology and Communications, Department of 
Electronic Computer Center. Omer can be 

contacted via these emails: 

omar.abdulhalem592@gmail.com & 

omer.naser@uoitc.edu.iq. 

 
Sharifah Mumtazah Syed Ahmad (Assoc. Prof. 

Dr.) is an associate professor who currently works 
as a senior lecturer and supervisor at the 

University Putra Malaysia, Faculty of 

Engineering. Dr. Sharifah is specialized in many 
different areas, including biometrics, security, 

image and signal processing, and machine 

learning. She earned her PhD in electronics in 
2004 from the University of Kent, United 

Kingdom. Currently, she has over 50 cited 

publications with a Scopus index of 12.                                            

s_mumtazah@upm.edu.my. 

 
Khairulmizam b. Samsudin (Dr.) is a Dr. who 

currently works as a senior lecturer and supervisor 

at the University Putra Malaysia, Faculty of 

Engineering. Dr. Khairulmizam’s areas of 
specialties include embedded systems, robotics, 

and intelligent systems. Dr. Khairulmizam can be 

contacted via this email: 
khairulmizam@upm.edu.my.  

 

 
 

Marsyita Hanafi is a Dr. who currently works as a 

senior lecturer and supervisor at the University 
Putra Malaysia, Faculty of Engineering. Dr. 

Marsyita specializes in many different areas, 

including precision agriculture, smart monitoring 
systems, biometrics, security, image processing, and 

machine learning. Dr. Marsyita can be contacted via 

this email: marsyita@upm.edu.my. 
 

 

 
Siti Mariam Shafie received her M.Sc. and B.Eng. 

degrees in the Faculty of Engineering from 

Universiti Putra Malaysia in 2003 and 1999, 
respectively. She is currently working at the same 

university in the Department of Computer and 

Communication Systems Engineering. Her research 
interests include embedded systems, IoT, and 

machine learning. She can be contacted at email: 

mariam@upm.edu.my. 

 

 
Ts. Nor Zarina Zamri was appointed as Research 

Lead for the Malaysian Security Evaluation 
Facility Department under CyberSecurity Malaysia 

(CSM MySEF). Background in Bachelor (BCs 

Hons) in Computer Science (Software 
Engineering) and Master of Science (MSc) in 

Information Technology. She specializes in smart 

card, biometric, and hardware security and leads 
teams in cyber security research exploration, 

explores new technologies, and produces in-house 

test tools, test methods, guidelines, training, etc. Nor Zarina can be contacted 
via this email: norzarina.zamri@cybersecurity.my.  

 

 

 

 

 

 

O. A. NASER et al.: COMPARATIVE ANALYSIS OF MTCNN AND HAAR CASCADES FOR FACE DETECTION 119

mailto:omar.abdulhalem592@gmail.com
mailto:omer.naser@uoitc.edu.iq
mailto:s_mumtazah@upm.edu.my
mailto:khairulmizam@upm.edu.my
mailto:marsyita@upm.edu.my
mailto:mariam@upm.edu.my
mailto:norzarina.zamri@cybersecurity.my



