
Transforming Weakness into Strength: Improving
Unreliable Malware Detection Methods

Pavel Novak, and Vaclav Oujezsky

Abstract—This paper proposes a novel malware detection
methodology that leverages unreliable Indicators of Compro-
mise to enhance the identification of latent malware. The
core contribution lies in introducing a sequence-based detection
method that contextualizes unreliable IoCs to improve accuracy
and reduce false positives. Unlike traditional methods reliant
on predefined signatures or behavior analysis, this approach
dynamically assesses system behaviors, focusing on suspicious
actions and interaction patterns. Key contributions include a
novel combination of unreliable IoCs with sequence alignment
methods, an extensive mapping study of detection techniques, and
initial experiments on a dataset of over 19,000 malware samples.
Results demonstrate the method’s ability to cluster and identify
malware families based on their behavioral signatures, even in
its early developmental stage. This innovative approach shows
promise for detecting previously unknown threats, establishing a
foundation for advanced research in malware detection.

Index Terms—Behavioral Analysis, Cybersecurity, Malware
Detection, Sequence Similarity.

I. INTRODUCTION

As the complexity and frequency of cyber threats con-
tinue to rise, traditional malware detection methods, such
as signature-based and heuristic approaches, face significant
challenges in keeping up with the evolving tactics employed
by adversaries. Malware authors are increasingly utilizing so-
phisticated obfuscation techniques, polymorphism, and evasive
strategies to bypass conventional defenses. In this context, the
techniques used by defenders must evolve as well.

This paper builds on a proposal for a novel approach to mal-
ware detection presented at the SoftCOM 2024 conference [1].
This approach leverages non-reliable Indicator of Compromise
(IoC) to improve detection efficacy and enable the identifica-
tion of latent malware. Our idea is simple. Latent and hiding
malware might be hidden in the system for some time. But it
still somehow changes the system state [2]. By monitoring
tiny suspicious actions and indicators, we can reveal the
malware presence. Unlike traditional methods, which rely on
predefined signatures or known attack patterns, our method
dynamically assesses system behavior and interaction patterns
that are deemed suspicious. Since the collected indicators are
not reliable on their own and the methods employed may result

Manuscript received November 6, 2024; revised December 6, 2024. Date of
publication December 16, 2024. Date of current version December 16, 2024.
The associate editor prof. Toni Perković has been coordinating the review of
this manuscript and approved it for publication.

Authors are with the Department of Computer Systems and Communica-
tions, Masaryk University, Brno, Czechia (e-mails: novakpav@mail.muni.cz,
oujezsky@fi.muni.cz).

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0098

in a high rate of false positives, our approach seeks to enhance
reliability by placing these actions in context and examining
similarities and patterns in the sequence of suspicious actions,
rather than relying on a single detection hit.

This paper further develops this idea and presents the
results of a mapping study of malware detection methods,
sequence matching algorithms, and initial experiments with a
dataset obtained from public sources. These experiments aim
to provide basic verification, revealing whether the method has
potential for success. Based on a manual review of various
malware families, we identified a set of 19 suspicious events
that we aim to collect for each sample in the preprocessing
step. After preprocessing the data, we extracted statistics about
the suspected events and employed multiple algorithms to
cluster and categorize the results to verify the concept.

Even though both the testing dataset and the suspicious
event set were not in their final state and we conducted only
several experiments on a limited dataset, the results obtained
exhibit promising outcomes. We expect further improvements
in the algorithm’s reliability as our research progresses,
with the number of collected events increasing alongside the
dataset.

Like any other malware detection method, this one is not
bulletproof. Since the descriptions of the suspicious events
being collected are publicly available, an attacker may attempt
to conceal their presence. However, the general principle of the
algorithm is robust, as it allows for custom changes in what
is considered suspicious and facilitates the creation of reliable
detection based on unreliable indicators.

In our research, and in the context of the proposed algo-
rithm, we face three major questions: What malware detection
methods and techniques exist, and how reliable are they? How
can we compare the sequence of events, considering not only
the sequence itself but also the internal structure of each event?
Lastly, is the proposed method more effective in disclosing
unknown threats than the methods currently in use?

The main contributions of this work are:

• Novel Malware Detection Approach: The methodology
combines unreliable IoCs and dynamic behavioral analy-
sis to create an enhanced detection framework, diverging
from traditional static or heuristic methods.

• Sequence-Based Analysis: A new approach contextual-
izes suspicious actions in sequences, providing a mech-
anism to improve detection accuracy, particularly for
unknown threats.

• Extensive Mapping Study: A comprehensive review of

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024 317

1845-6421/12/2024-0098 © 2024 CCIS

existing malware detection methods and sequence simi-
larity techniques, forming a foundation for our method-
ology.

• Experimental Validation: Initial experiments with a
dataset of 19,313 malware samples showcase clustering
and classification capabilities, highlighting the method’s
potential in reducing false positives and detecting latent
threats.

The following sections elaborate on the underlying princi-
ples, implementation, and empirical evaluation of the initial
experiments based on the proposed method and the rest of
the paper is structured as follows. Section II provides an
overview of the malware detection methods and methods used
to compare the similarity of the obtained data. Section III
briefly summarizes the method and its key aspects. Section IV
details the methodology and specific steps taken during the
experiments. Section V discusses the performed experiments
and evaluates their results. Finally, Sections VI and VII
conclude and discuss the paper and summarize the results
presented in the previous sections.

II. STATE OF THE ART

This section provides a mapping study of the two areas
essential for our research. Section II-A is devoted to an
overview of detection methods in general and their reliability.
Section II-B focuses on methods that may be applicable for
comparing suspicious event sequences.

A. Malware Detection Methods

This section maps the currently used malware detection
methods and evaluates their focus, implementation difficulty,
resource demands, and reliability based on a literature review.
Table I presents the main directions in malware detection
approaches based on the collected events [3].

TABLE I
MALWARE DETECTION METHODS OVERVIEW

Category Impl. Dif-
ficulty

Resource
Demands

Reliability

Traffic Fingerprinting
[4], [5], [6], [7], [8]

Medium Medium Medium

System Call Sequence
[9], [10], [11], [12],
[13], [14]

High Medium Medium

Assembly Code
Sequence [15], [16],
[17], [18]

Medium Low Medium
to High

Byte Sequence [19],
[20], [21], [22]

Low Low High

Hardware Traces [23],
[24]

High Medium Medium

Behavioral Analysis
[25], [26], [27], [28],
[29]

High High Medium

System Artifacts [30],
[31], [32], [33]

Low to
Medium

Low Low

1) Traffic Fingerprinting: Traffic fingerprinting is a family
of methods that can be used for various purposes, including
malware detection and traffic monitoring. The core of these
methods is to condense the extensive amount of packets flow-
ing through the network into manageable pieces of information
that can be further processed. However, this condensation
comes at a cost, as we lose information, and detection methods
based on this data may have a higher false positive rate than
those based on Deep Packet Inspection (DPI) [34], [35]. On
the other hand, these methods can detect new and unknown
threats and can also handle encrypted communication.

John Althouse et al. work on the fingerprinting of Transport
Layer Security (TLS)-encrypted traffic. Their initial method,
JA3, utilizes information in the initial unencrypted TLS hand-
shake messages to identify the underlying TLS library used
by the communicating program [4]. This method can help
identify malware-generated traffic, and there exists a database
of JA3 fingerprints mapped to particular malware families [36].
However, this database is not regularly updated.

The same research group developed a more generic set
of fingerprinting methods, JA4+, capable of analyzing Hyper
Text Transfer Protocol (HTTP), Secure Shell (SSH), and
Transmission Control Protocol (TCP) traffic. However, no
database of malicious fingerprints exists so far.

Cabaj et al. also employed an HTTP traffic fingerprinting
method to detect specific ransomware families based solely
on the traffic patterns of HTTP messages observed on the
network [6]. Since this method proved successful, it was tested
only on two ransomware families.

Liu et al. introduced a novel approach to fingerprinting
network traffic in order to detect malware [7]. They fingerprint
multiple sessions instead of individual packets, and their
method successfully recognized several malware families.

The MalDiscovery method, introduced by Hong et al., is
dedicated to the identification of malware in encrypted traffic
based on the similarity of encrypted session features [8].

2) System Call Sequence: Another group of methods that
can be applied to detect polymorphic malware is the sequence
of system calls. Since almost every program needs to use
system calls to interact with the underlying hardware, the
sequence of such calls may reveal the true intentions of the
software.

The most straightforward method is to use the import table,
or its hash [12]. Since most compilers order the import hash
based on the order of the first usage of the respective system
calls, a simple hash over this table can serve as a signature-
based malware detection method.

Chen et al. attempted to use a more sophisticated method
that considers not only the bare sequence of system calls but
also their parameters, training a deep neural network [13].
The problem with this method is that it requires system call
hooking during runtime.

Amer et al. analyzed system call sequence graphs of ma-
licious and benign programs to derive the key features that
distinguish malicious graphs from benign ones [14].

Shenderovitz et al. used patterns of system calls to detect
and recognize Advanced Persistent Threat (APT) groups for

318 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

specific samples [9]. They also collected a dataset of APT
samples to test their results.

Prachi et al. applied a genetic algorithm to recognize new
and unknown malware families based on system call sequences
pruned from generic calls [10].

Maniriho et al. utilized Natural Language Processing (NLP)
methods to extract core features from the sequence of system
call names [11].

3) Assembly Code Sequence: Analyzing opcode sequences
offers a further level of granularity for evaluating software
behavior. Previous methods focused only on system calls,
as they are essential for the software; many actions can be
performed only via system calls as a proxy.

Kakisim et al. address the common problem of all meth-
ods using opcode sequences—the extensive length of the
sequence [15]. They present a method to create more compact
embeddings that are shorter but preserve all important infor-
mation needed to detect malware. Their experimental results
achieve 100% correctness.

Jeon et al. reduce the high dimensionality of the opcode
sequence using convolutional autoencoders and a dynamic
recurrent neural network classifier to recognize malware sam-
ples, achieving an accuracy of 96% [16].

Santos et al. use opcode frequency as a feature and then train
several classification models, including decision trees, Support
Vector Machine (SVM), Bayesian networks, and K-Nearest
Neighbours (KNN), achieving roughly 90% efficacy [17].

Pektas et al. focus on Android malware and extract features
from execution graphs by analyzing all possible execution
paths [18]. They use Deep Learning (DL) methods to classify
apps.

4) Byte Sequence: The last level of granularity we can
achieve is analyzing the sequence of raw bytes in the binary.
This approach can be tricky, as the same byte sequence might
be interpreted differently depending on the context. The most
straightforward approach in signature-based methods is to
specify the exact combination of byte sequences in the binary
that determines its maliciousness. This needs a lot of manual
work performed by an expert or a malware analyst. However,
more sophisticated methods exist.

Saha et al. propose a novel method inspired by genome
alignment techniques to compare DNA sequences [19]. They
trained a Machine Learning (ML)-based classifier to detect
malware.

Rezaei et al. use byte embedding on the Portable Executable
(PE) header to obtain a more compact representation of the
PE header features [20]. They then cluster these features using
KNN, achieving over 90% malware recognition accuracy. A
similar approach was used by Raff et al. [21].

Li et al. employed the technique of grabbing the memory
dump of a running process and evaluating its opcode sequence
together with a Graph Neural Networks (GNN) model to
determine the maliciousness of the running binary, achieving
over 95% accuracy [22].

5) Hardware Traces: Collecting information directly from
the hardware is more challenging than simply analyzing the
malicious binary. However, hiding traces at the hardware level
is much more difficult for an attacker.

TABLE II
SEQUENCE SIMILARITY METHODS OVERVIEW

Method Family
Markov Chains [40], [41], [42], [43]

Graph-based Methods [44], [45]

Sequence Alignment Methods [46], [47], [48], [49]

Language Models [50], [51]

Neural Networks [52], [53], [54]

Tian et al. use Intel Processor Trace to collect the control
flow of the inspected program and apply DL methods to
detect malware [23]. Their method performs well regarding
the resources needed.

Panker et al. focus on the detection of malware in the Virtual
Machine (VM) environment. They dump memory regions of
the running process, collect a set of interesting features, and
determine the maliciousness of the running program [24].

6) Behavioral Analysis: Behavioral analysis of software
is another method for detecting malware. Behavior-based
techniques typically collect events on the system, such as
file modification patterns, process creation, or network access.
These methods are the closest to our proposed approach.

Jacob et al. provide a general overview of behavior-based
detection methods [25]. A significant number of studies focus
on behavioral malware detection on mobile devices, particu-
larly Android [26], [27].

Liu et al. present their malware behavior feature classifier
based on a set of manually identified actions [29].

7) Suspicious Artifacts: Essentially, any cyber observable
can serve as a basis for malware detection, which also mo-
tivated our research. We can utilize not only some of the
aforementioned detection methods but also many individually
suspicious actions. Simple events like creation of new registry
key, change of the system file or scheduling new task might be
considered suspicious as these actions are often performed by
malware to achieve persistence or hiding itself on the system.
For the best of our knowledge there is currently no study
addressing the most prevalent suspicious actions performed
by malware, this is one of the future goals of our research.
However, we can draw inspiration from the taxonomy of com-
monly used techniques published by MITRE [37] and derive
information from publicly available Sigma repository [38].

B. Sequence Similarity Methods

The second challenge of our proposed method is to deter-
mine the most suitable way to compare the similarity of event
chains. This section provides the results of a mapping study
of sequence similarity methods [39]. Table II summarizes the
studied approaches and the main publications. Because the
sequence similarity problem is very common in biology and
chemistry, many publications are related to this field.

1) Markov Chains and Markov Models: A Markov chain
is a mathematical model that describes a sequence of events
where the probability of each event depends only on the state
of the previous event. A Markov model, based on this concept,
is used to represent systems where future states depend solely

P. NOVAK et al.: TRANSFORMING WEAKNESS INTO STRENGTH: IMPROVING UNRELIABLE MALWARE DETECTION 319

on the current state, rather than the entire history of previous
states. Markov models are commonly applied to sequence
data, such as text, biological sequences, or time-series data, to
model transitions between states and predict future sequences.
They can also be utilized to compare sequence data by
calculating the likelihood of one sequence being generated by
a given model and predicting future states based on current
observations. Several studies have employed Markov Chains
and Markov Models to compare and predict sequence data.

Paxinou et al. analyzed sequences of actions performed by
students during an experiment to evaluate the effectiveness of
different learning techniques [40].

Perdikaris et al. used Markov Models to analyze a teacher’s
behavior based on their actions [42].

Saw et al. applied Markov Chain parameters to compare
protein sequences and calculate their similarity [43].

2) Graph-based Methods: In the context of malware de-
tection, representing malicious activities as graphs provides a
structured way to capture the sequence of actions or events.
For our problem, each graph represents a malware attack,
where nodes symbolize suspicious actions observed during
the malware execution. The task is to evaluate the similarity
between these event chains by incorporating both the structural
properties of the graph and the internal characteristics of
individual nodes, assessed using a node similarity function
f(node1, node2).

The Graph Edit Distance (GED) is a natural choice for
measuring similarity between chain-like graphs. GED com-
putes the minimum number of operations (insertion, deletion,
substitution of nodes or edges) required to transform one graph
into another. This approach can be adapted to our problem by
incorporating the node similarity function f to adjust the cost
of node substitution.

Other methods include a simple comparison of adjacency
matrices. The DeltaCon method is based on node-pair simi-
larity in the graph [45].

3) Sequence Alignment Methods: Since the graphs primar-
ily represent simple chains of events, they can be treated as
sequences of nodes, allowing us to employ techniques from
sequence alignment, which are commonly used in bioinfor-
matics [49], [47]. Algorithms like Needleman-Wunsch (for
global alignment) or Smith-Waterman (for local alignment)
can be applied to align two attack chains, using the node
similarity function f as the scoring function for matching
nodes [55], [56]. These methods aim to maximize the overall
similarity score by allowing gaps (insertions or deletions) and
mismatches between nodes, which is analogous to handling
differences in the sequence of actions across different mal-
ware attacks. Sequence alignment methods are well-suited to
linear structures like chains and can efficiently incorporate the
similarity of nodes through f . Additionally, these algorithms
offer dynamic programming solutions, making them compu-
tationally tractable even for longer chains.

4) Language Models: Language models, particularly those
employed in NLP, can be adapted to compare and predict
sequence data by treating sequences as analogous to sentences
or phrases. In the context of suspicious malware events, each
event can be viewed as a ”token” in a sequence, where the

order of events and their interdependencies carry meaningful
patterns. By training a language model on historical malware
event sequences, it can learn the statistical relationships be-
tween events, enabling it to predict the likelihood of future
sequences, detect anomalies, or classify new event sequences
as suspicious or benign. This approach leverages the model’s
ability to understand temporal dependencies and context,
making it well-suited for analyzing and predicting malware
behavior patterns.

A similar approach has been used in bioinformatics to
compare protein sequences by Ofer et al. and Li et al. [50],
[51].

5) Neural Networks: Neural networks can be applied to
malware event sequences by treating each sequence as a fixed-
dimensional vector, which ignores the sequential nature of the
data. In this approach, each malware event sequence is trans-
formed into a feature vector that encapsulates key attributes,
without regard for the order in which the events occur. The
neural network then processes these vectors, learning patterns
or correlations between features that can be utilized for tasks
such as classification, anomaly detection, or comparing mal-
ware sequences. This method is beneficial when the order of
events is less important than the presence or combination of
specific features.

However, when the order is crucial, GNN provide a more
powerful solution. GNN are designed to operate on graph-
structured data, where individual events can be represented as
nodes and their interactions, dependencies, or co-occurrences
as edges. This representation allows GNN to model non-
linear and non-sequential relationships, capturing how differ-
ent malware events might influence each other within a broader
context. By representing suspicious events as a graph, GNN
can uncover deeper patterns and interactions that classical
neural networks might miss, thereby improving the model’s
ability to detect subtle and complex malware behaviors. This
combination of classical and graph-based approaches enables
a more flexible and comprehensive analysis of malware event
sequences, accounting for both feature patterns and relational
structures.

Bai et al. proposed a novel algorithm called SimGNN for
efficient similarity search on the sequences [52]. Xu et al.
implemented a prototype similarity search algorithm Gemini
capable of efficient similarity search in big data [53].

III. PROPOSED METHOD

The novel malware detection method proposed in [1] uses
structured Cyber Threat Intelligence (CTI) data combined with
advanced ML techniques to detect latent malware. Traditional
detection methods often rely on specific IoCs, such as file
hashes or Internet Protocol (IP) addresses, which can be easily
circumvented by attackers. In contrast, this method aggregates
high-level, albeit less reliable, IoCs, including events like
file modifications, registry changes, and suspicious network
communications, to create a holistic overview of the system
state.

By correlating these aggregated indicators, our system
should be able to detect subtle patterns in system behavior that

320 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

Host
Agent(s)

Network
Agent(s)

Artifacts
Database

Decision
Maker

No

Automatic

Report to

YesInfection Probability > t?Wait for another
evaluation

Manual

System Operator

Counteraction

Database
of

Threats

Protected System

Fig. 1. Detection Pipeline Flow

align with known malware tactics. These patterns are collected
and stored using a structured format.

Our method stands out by detecting anomalies even when
individual IoCs might not suffice to trigger alarms in tra-
ditional systems. The collected suspicious events are trans-
formed into structured reports, and the scoring mechanism
provides a probabilistic indication of potential system com-
promise, facilitating faster response times and reducing false
positives.

The detection mechanism depicted in Figure 1 presents a
simplified view of the entire pipeline. The protected system
is monitored using two agents (components). The host agent
component resides directly on the monitored VM but runs only
during specified time frames. This component is responsible
for collecting host-based artifacts, such as changes in system
files, settings, newly created and scheduled tasks, system logs,
and other defined potentially suspicious actions. The host agent
runs only when a request is sent to limit the resources it
consumes.

On the other hand, the network agent is a standalone
component completely separated from the monitored system.
This design has two advantages: first, it is harder, if not
impossible, for an attacker to manipulate this component;
second, we can monitor network traffic continuously, which
is not feasible for the host agent. Continuous monitoring is
crucial since network traffic is transient and cannot be captured
once it flows through the network. Both agents produce a
stream of events in a standardized format and store them in
the central artifact database.

At the time of evaluation, the decision maker component
collects all previous events, merges them with new events that
occurred since the last evaluation, and compares the sequence
of events (if any) with known malware patterns stored in the
threat database. If the similarity is above a given threshold
or if the sequence has the potential to evolve similarly to a
known malware pattern, the system is considered infected and

reported. Note that the similarity will likely not be 100%. This
is because not only the order of the sequence is evaluated, but
also the similarity of individual event values, which may be
randomized.

The proposed method differs from traditional malware de-
tection approaches by combining unreliable IoCs as foun-
dational elements to identify complex, evasive malware. It
leverages the advantages of both signature-based and behavior-
based methods while mitigating their limitations. The method
partially employs signature-based detection, which relies on
static patterns, but also allows for the inclusion of highly unre-
liable detection patterns with a high false-positive rate. These
observations are then connected through sequence analysis,
closely aligning with behavior-based detection systems.

However, behavior-based detection systems typically col-
lect exclusively either network traffic or host-based artifacts.
Additionally, behavior-based detection is significantly more
resource-intensive, as it generally observes the real-time be-
havior of every process on the system and collects extensive in-
formation. By contrast, our method focuses only on suspicious
actions, which significantly reduces its resource demands [57].

In conclusion, this approach provides a significant im-
provement over conventional malware detection systems by
capturing broader and more generic behavioral patterns, thus
adding another layer of security to the system.

IV. METHODOLOGY

Our approach relies on a sequence of custom unreliable
detection methods. To test their efficacy, we need to build a
custom testing environment (sandbox) capable of collecting
relevant information. However, creating such a sandbox is a
time-consuming task. Therefore, we decided to utilize data
from public sandbox services and, in conjunction with a data
pre-processing step, create a dataset to test and evaluate our
approach.

We collected reports from 19,313 malware samples obtained
from the public sandbox service Joe Sandbox [58]. These
malware reports were parsed and pre-processed to form a
dataset containing the selected events used in our detection
method. The whole process, shown in Figure 2, consists of
the following key steps: 1) Dataset collection, 2) Data pre-
processing, 3) Basic statistics collection and 4) Unsupervised
learning. The following sections describe the processes of
sample collection, data pre-processing, and feature extraction,
which lead to the creation of the final dataset.

A. Sample Collection

As with any detection method, the quality of testing data
is essential. Since we are using a custom set of events for
which no existing dataset is available, we faced the challenge
of how to collect the necessary data. While we are in the
process of building a specialized sandbox environment capable
of monitoring custom events, this is a time-consuming task that
is not yet complete. Therefore, we opted to utilize existing
malware reports and convert them into the format required for
our experiments and initial validation of the proposed detection
method.

P. NOVAK et al.: TRANSFORMING WEAKNESS INTO STRENGTH: IMPROVING UNRELIABLE MALWARE DETECTION 321

Dataset Collection
(Public Sandboxes)

Processing and
Event Extraction

Suspicious Events
Identification

Event Clustering
and Feature Analysis

Sequence Similarity
and Pattern Matching

Validation of Clusters
(Supervised Models)

Results Evaluation and Refinement
- Cluster Validity

- Algorithm Improvement
- Real-World Scenario Testing

Fig. 2. Block diagram of the proposed malware detection methodology

We used reports from the publicly available and free sand-
box service Joe Sandbox for several reasons. The results are
openly accessible and provide extensive information about the
analyzed samples, including detailed network communication,
the complete process tree, and other useful data. This level of
detail is particularly beneficial for collecting certain events,
such as those derived from comprehensive network traffic
captures.

In total, the final dataset consists of 19,313 randomly
selected malware samples. Detailed statistics about the dataset
are presented in Table III and Table IV.

The samples were selected randomly, with the only re-
quirement being that they were classified as malicious by the
automated classification of the sandbox.

B. Pre-Processing

Based on a manual analysis of multiple malware families,
we identified an initial set of suspicious events commonly
occurring in the studied samples. This selected set is only
a subset of a larger set of monitored events planned for
future work. The features encompass both network-based and
host-based events. The complete set of collected features is
presented in Table V.

If a suspicious feature was identified in the report, a new
event was created. Since we were unable to obtain timestamps
for all events in the reports and reconstruct the chronological
order of events, we decided to omit this aspect for now.
However, in future work, the temporal sequence of events
will play a crucial role in malware identification, particularly
when using graph-based similarity search methods or Markov
Chains. For the purpose of our experiments, we focused solely
on the set of identified events as the dataset.

TABLE III
MALWARE FILETYPES IN THE DATASET

Filetype Count
exe 11,738

xlsx 1,038

doc 862

xls 480

xlsm 134

dll 128

N/A 4,427

TABLE IV
MALWARE TYPES IN THE DATASET

Identified Malware Type Count
Agent Tesla 3,426

FormBook 2,207

Lokibot 1,361

Remcos 843

Snake Keylogger 782

RedLine 650

N/A 5,516

The result of the pre-processing step is a collection of iden-
tified events for each sample, accompanied by the following
metadata:

• ID: Universally Unique Identifier (UUID) used to
uniquely identify the particular event.

• Feature Type: Categorized as either Network or Host.
• Feature Name: The specific name of the feature.
• Value: The particular value identified as suspicious.
• Reference: Additional context that may enhance under-

standing (e.g., the full URL for the random path event).
• Datetime: The date and time of the event occurrence

(currently not utilized).

The collected dataset consists of a separate file for each
studied sample, populated with the set of observed suspicious
events from Table V. The suspicious events were extracted
from the reports and evaluated using our custom evaluation
logic to determine if they satisfied any of the identified
suspicious categories. The source code for this evaluation,
along with the specific criteria that the observed values must
meet, is available in the project GitLab repository [59].

TABLE V
COLLECTED SUSPICIOUS EVENTS

Feature Type Name
Network Direct HTTP connection to IP

Network Random path in Unified Resource Locator (URL)

Network Random domain in URL

Network Suspicious filetype

Network Suspicious Top Level Domain (TLD)

Network Double extension

Network PE header in data

Network Using geolocation service

Network Simple Mail Transfer Protocol (SMTP) communica-
tion

Network Communication to mega.io or archive.org

Network Suspicious JA3 hash

Host Random filename

Host Process running from suspicious location

Host Unusual PE entrypoint section

Host Unusual PE section names

Host Manipulation with firewall or Anti-Virus (AV)

Host Changes in autorun registries

Host Scheduled tasks

322 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

V. EXPERIMENTS AND RESULTS

The initial experiments with a limited dataset aimed to
reveal key features of the resulting event sets, guiding our
decisions regarding the sequence comparison methods. In total,
we tested 19,313 randomly selected malware samples, each of
which was reported as malicious.

A. Goals

The primary goal of our experiments was to verify several
hypotheses regarding the method, test its potential, and gather
insights about the dataset that could inform future design and
research decisions.

The main questions addressed by these experiments include:
What is the typical length of the event chain? How many
different types of events are usually observed for a given mal-
ware sample? Do various malware families form groups with
similar observations? Are these groups identifiable through
visual inspection? Can these groups be identified through
unsupervised learning (clustering)? Finally, can these groups
be identified through supervised learning (classification)?

The results of these experiments were not intended to
measure the efficacy of the detection method. Instead, they
focused on exploring the potential of this method and gaining
insights into malware behavior. The knowledge acquired from
these initial experiments will facilitate future research on this
novel approach.

B. Event Chain Statistics

As a starting point, we utilized the set of suspicious events
presented in Table V. Table VI explores the frequency of
each suspicious event across the samples. The most prevalent
suspicious event was the random process name, occurring
in more than 96% of samples. This statistic may be biased
though, as many samples are submitted with the Message
Digest (MD5) or Secure Hash Algorithm (SHA1) as their
filenames, which are evaluated as random strings. In real-world
scenarios, this should not pose a problem, as benign processes
typically do not have random names.

Among the network-based suspicious events, the most com-
mon was communication with suspicious TLD. Attackers
often utilize non-standard and suspicious TLD because they
allow for the registration of names associated with existing
companies, and they are cheaper and easier to register [60],
[61].

Another interesting statistic concerns the number of unique
event types, indicating how many distinct suspicious events
were observed for each sample. The results are illustrated
in Figure 3. The vast majority of samples exhibit between
3 to 5 unique suspicious event types. Notably, there were 244
samples with 0 suspicious events, which included partially
misclassified samples (those that were actually clean) and
parsing errors. The maximum number of unique event types
observed was 13. The distribution of unique event types
conforms to a Poisson distribution with λ = 4.36.

While the chain of 3 to 5 unique suspicious events may be
insufficient for similarity search, considering the entire event

TABLE VI
COLLECTED SUSPICIOUS EVENTS

Type Name Count Percentage
Host Random process name 18,585 96.2%

Host Process running from suspi-
cious location

17,066 88.3%

Network Suspicious TLD 9,191 47.6%

Host Autorun modification 4,757 24.6%

Host New task scheduled 4,659 24.1%

Host Unusual section name 4,637 24.0%

Network Suspicious extension 4,468 23.1%

Network Direct IP communication 3,439 17.8%

Network Download of executable file 3,323 17.2%

Network Randomly generated path 2,893 15.0%

Network Randomly generated domain 2,757 14.2%

Host Unusual entrypoint section 2,550 13.2%

Network Using geolocation service 2,049 10.6%

Network SMTP communication 1,072 5.5%

Network Exfiltrates user information 886 4.5%

Network Double extension 686 3.5%

Network Suspicious JA3 fingerprint 531 2.7%

Network Using public storage 384 2.0%

Host Firewall manipulation 347 1.8%

chain—potentially including duplicates in event types (e.g.,
multiple communications to suspicious TLD)–yields more
favorable numbers. Figure 4 presents the histogram of event
chain lengths for the studied samples. The event chain statistics
revealed that the mean length of the event chain is 19.97, with
a median of 10 and a mode of 8. The range of the event
chain lengths spans up to 883, indicating a wide variation in
lengths. Additionally, the standard deviation is calculated as
41.46, reflecting significant variability in the dataset.

The average event chain length is notably high, even with
the limited set of only 19 specified suspicious events. This
is promising, as the size of the event set is expected to
grow in the future. The range of event chain lengths is quite
large, with 244 samples exhibiting no observed events, while
the maximum event chain length reached 833. However, the

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1,000

2,000

3,000

4,000

Unique Suspicious Events

Fr
eq

ue
nc

y
[S

am
pl

es
]

Fig. 3. Number of Unique Suspicious Events per Sample

P. NOVAK et al.: TRANSFORMING WEAKNESS INTO STRENGTH: IMPROVING UNRELIABLE MALWARE DETECTION 323

0 5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

0

200

400

600

800

1,000

1,200

1,400

Event Chain Length

Sa
m

pl
es

Fig. 4. Event Chain Length

number of samples with high event chain lengths is relatively
low, as data points above 500 have been omitted from the
histogram.

C. Event Correlation

Another interesting aspect to investigate is whether some
features might be duplicates. Figure 5 illustrates the co-
observations of unique events. The numbers represent the
fraction of samples where feature x was observed together
with feature y, relative to all samples where feature x was
present. Here, x corresponds to the feature specified in the
row, and y corresponds to the feature specified in the column.

The strongest co-observations are noted between the sus-
picious TLD, random process name, and processes running
from suspicious locations. This correlation arises because these
three events are among the most generic and cover the widest
range of samples, as evidenced in Table VI. Additionally, the
values on the diagonal indicate the fraction of samples where
the suspicious event was the only one observed for a given
sample.

The standard correlation matrix between features is pre-
sented in Figure 6. Similar to the co-observation matrix, there
are no significant correlations observed among the features,
with the exception of the unusual section name events.

D. Malware Clustering

As part of our initial experiments, we tested the clus-
tering capabilities of our proposed method on the dataset.
We pre-processed our dataset into 19-tuple vectors, where
each position in the vector represented the count of specific
events observed for each sample. For clearer visualizations, we
limited the following experiments to the top five virus families
presented in Table IV.

Despite the pre-processing omitting substantial information,
such as specific suspicious values or the event sequence,
Figure 7 demonstrates clearly visible clusters for various
malware families. This suggests that, even with a limited
amount of information compared to the full reports, distinct
malware families tend to cluster based on similar behavior.

TABLE VII
CLASSIFICATION PERFORMANCE SUMMARY

Model Accuracy Precision
(avg)

Recall
(avg)

F1-Score
(avg)

Logistic Regres-
sion

0.84 0.84 0.77 0.79

Random Forest 0.90 0.91 0.86 0.88

SVM 0.71 0.70 0.48 0.51

KNN 0.87 0.87 0.83 0.85

Gradient Boost-
ing

0.89 0.91 0.84 0.87

Neural Network
(Multi Layer Per-
ceptron (MLP))

0.89 0.90 0.83 0.86

Although these clusters are apparent through visual inspec-
tion, a critical question arises: Can these clusters be recognized
by an automatic clustering algorithm? Due to the testing
dataset lacking information about the event sequence—which
will be included in the custom dataset—we opted to test tra-
ditional clustering algorithms to see if they could successfully
identify any clusters related to the virus families shown in
Figure 8.

However, none of the tested clustering algorithms were
able to effectively cluster the dataset. The most promising
results came from the GMM, but these results were still far
from satisfactory. This leads us to conclude that although
the malware patterns are visually identifiable, they cannot be
automatically detected due to the lack of information. As a
result, even though the clusters are distinguishable by visual
inspection, they remain inseparable by automatic clustering
methods.

E. Prediction Models

To verify our hypothesis, we employed several supervised
learning algorithms to train a classification model. Given that
various malware families form visible clusters, we anticipated
that the classification task would yield successful results. We
tested six algorithms without any parameter tuning. The results
of this classification task are presented in Table VII.

Except for the SVM, all algorithms performed quite well.
These findings suggest that malware can be effectively recog-
nized based on our suspicious event set, as it exhibits distinct
patterns.

VI. DISCUSSION

The initial part of the research aimed to explore various
detection methods that can be included in our method.

The initial results of our proposed method indicates ad-
vantages over traditional malware detection techniques, par-
ticularly in handling complex and evasive malware. By pri-
oritizing unreliable Indicators of Compromise and analyzing
them through structured sequence analysis, our approach offers
a balanced solution that combines both signature-based and
behavior-based detection strengths, while minimizing their
individual weaknesses.

324 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

D
ire

ct
 IP

 C
om

m
un

ic
at

io
n

Su
sp

ic
io

us
 E

xt
en

si
on

Ra
nd

om
ly

 ge
ne

ra
te

d
pa

th

Ra
nd

om
ly

 ge
ne

ra
te

d
do

m
ai

n

Su
sp

ic
io

us
 TL

D

Us
in

g G
eo

 A
PI

SM
TP

 C
om

m
un

ic
at

io
n

D
ou

bl
e

ex
te

ns
io

n

Us
in

g p
ub

lic
 st

or
ag

e

Ex
fil

tr
at

es
 u

se
r i

nf
or

m
at

io
n

D
ow

nl
oa

d
of

 e
xe

 fi
le

Su
sp

ic
io

us
 JA

3
fin

ge
rp

rin
t

Ra
nd

om
 p

ro
ce

ss
 n

am
e

Pr
oc

es
s f

ro
m

 su
sp

ic
io

us
 lo

ca
tio

n

Fi
re

w
al

l m
an

ip
ul

at
io

n

Au
to

ru
n

m
od

ifi
ca

tio
n

N
ew

 ta
sk

 sc
he

du
le

d

Un
us

ua
l e

nt
ry

po
in

t s
ec

tio
n

Un
us

ua
l s

ec
tio

n
na

m
e

Direct IP Communication 0% 57% 44% 9% 50% 5% 3% 2% 3% 9% 52% 3% 98% 84% 2% 15% 21% 16% 28%
Suspicious Extension 44% 0% 37% 13% 64% 20% 3% 15% 4% 1% 63% 5% 97% 87% 2% 21% 24% 13% 22%
Randomly generated path 53% 57% 0% 13% 57% 13% 1% 9% 5% 1% 42% 3% 95% 77% 2% 24% 22% 16% 27%
Randomly generated domain 11% 21% 13% 1% 57% 10% 11% 1% 2% 1% 16% 3% 95% 89% 2% 30% 26% 10% 22%
Suspicious TLD 19% 31% 18% 17% 1% 16% 4% 5% 2% 6% 25% 4% 97% 89% 2% 20% 23% 9% 22%
Using Geo API 9% 44% 19% 13% 73% 0% 3% 29% 2% 0% 15% 2% 98% 96% 1% 33% 28% 10% 24%
SMTP Communication 9% 13% 4% 28% 38% 6% 0% 2% 0% 0% 11% 1% 100% 99% 2% 24% 24% 4% 7%
Double extension 8% 97% 36% 6% 64% 87% 3% 0% 1% 0% 11% 0% 93% 91% 0% 10% 20% 5% 10%
Using public storage 28% 49% 37% 15% 52% 13% 1% 3% 0% 1% 7% 5% 99% 54% 2% 39% 19% 3% 7%
Exfiltrates user information 33% 3% 5% 3% 63% 0% 0% 0% 1% 0% 3% 0% 100% 98% 0% 4% 12% 9% 26%
Download of exe file 54% 85% 36% 13% 70% 9% 4% 2% 1% 1% 0% 6% 99% 94% 2% 16% 24% 14% 24%
Suspicious JA3 fingerprint 17% 42% 19% 14% 69% 6% 2% 0% 4% 0% 40% 2% 91% 58% 0% 12% 16% 1% 3%
Random process name 18% 23% 15% 14% 48% 11% 6% 3% 2% 5% 18% 3% 1% 92% 2% 26% 25% 14% 25%
Process from suspicious location 17% 23% 13% 14% 48% 12% 6% 4% 1% 5% 18% 2% 100% 0% 2% 27% 26% 15% 27%
Firewall manipulation 16% 21% 15% 14% 43% 4% 5% 0% 3% 0% 17% 0% 100% 100% 0% 61% 26% 11% 24%
Autorun modification 11% 19% 14% 17% 38% 14% 5% 1% 3% 1% 11% 1% 100% 96% 4% 0% 27% 18% 29%
New task scheduled 15% 23% 14% 15% 45% 12% 5% 3% 2% 2% 17% 2% 100% 96% 2% 27% 0% 10% 20%
Unusual entrypoint section 21% 22% 18% 11% 32% 8% 2% 1% 0% 3% 19% 0% 100% 98% 1% 33% 18% 0% 95%
Unusual section name 20% 21% 17% 13% 44% 11% 2% 2% 1% 5% 17% 0% 100% 98% 2% 30% 20% 52% 0%

Fig. 5. Feature Co-Observation

Higher false-positive rates of particular methods can result
from unreliable indicators, yet by linking these indicators in
a sequence, our approach verifies the context of suspicious
activity. This helps mitigate false positives that are common
in both signature-based methods (due to reliance on patterns
not exclusive to malware) and behavior-based systems.

The results also highlight our method’s potential in detecting

Di
re

ct
 IP

 C
om

m
un

ica
tio

n

Su
sp

ici
ou

s E
xt

en
sio

n

Ra
nd

om
ly

 g
en

er
at

ed
 p

at
h

Ra
nd

om
ly

 g
en

er
at

ed
 d

om
ai

n

Su
sp

ici
ou

s T
LD

Us
in

g
Ge

o
AP

I

SM
TP

 C
om

m
un

ica
tio

n

Do
ub

le
 e

xt
en

sio
n

Us
in

g
pu

bl
ic

st
or

ag
e

Ex
fil

tra
te

s u
se

r i
nf

or
m

at
io

n

Do
wn

lo
ad

 o
f e

xe
 fi

le

Su
sp

ici
ou

s J
A3

 fi
ng

er
pr

in
t

Ra
nd

om
 p

ro
ce

ss
 n

am
e

Pr
oc

es
s r

un
ni

ng
 fr

om
 su

sp
ici

ou
s l

oc
at

io
n

Fir
ew

al
l m

an
ip

ul
at

io
n

Au
to

ru
n

m
od

ifi
ca

tio
n

Ne
w

ta
sk

 sc
he

du
le

d

Un
us

ua
l e

nt
ry

po
in

t s
ec

tio
n

Un
us

ua
l s

ec
tio

n
na

m
e

Direct IP Communication

Suspicious Extension

Randomly generated path

Randomly generated domain

Suspicious TLD

Using Geo API

SMTP Communication

Double extension

Using public storage

Exfiltrates user information

Download of exe file

Suspicious JA3 fingerprint

Random process name

Process running from suspicious location

Firewall manipulation

Autorun modification

New task scheduled

Unusual entrypoint section

Unusual section name

1.00 0.58 0.41 -0.04 0.48 -0.07-0.06-0.04 0.02 -0.01 0.40 0.02 0.29 0.32 0.19 0.02 0.20 -0.05 0.01

0.58 1.00 0.41 0.09 0.65 0.15 -0.09 0.22 -0.00-0.09 0.73 0.09 0.30 0.28 0.16 -0.01 0.29 0.00 0.03

0.41 0.41 1.00 0.04 0.29 0.05 -0.07 0.08 -0.01-0.04 0.30 -0.00 0.43 0.33 0.13 0.14 0.22 -0.03-0.00

-0.04 0.09 0.04 1.00 0.02 -0.12 0.12 -0.07 0.03 -0.10 0.10 0.03 0.07 0.03 -0.01 0.05 0.13 0.03 -0.03

0.48 0.65 0.29 0.02 1.00 0.12 -0.15 0.07 0.02 0.01 0.56 0.14 0.24 0.29 0.17 -0.07 0.24 0.02 0.06

-0.07 0.15 0.05 -0.12 0.12 1.00 -0.11 0.51 -0.03-0.10-0.01-0.03 0.00 -0.03-0.01-0.03-0.04-0.03-0.05

-0.06-0.09-0.07 0.12 -0.15-0.11 1.00 -0.07-0.03-0.10-0.06-0.02-0.08-0.05-0.02-0.03-0.04-0.06-0.09

-0.04 0.22 0.08 -0.07 0.07 0.51 -0.07 1.00 -0.02-0.05-0.01-0.02 0.02 -0.02-0.01-0.07-0.03-0.06-0.05

0.02 -0.00-0.01 0.03 0.02 -0.03-0.03-0.02 1.00 -0.02-0.01 0.08 0.07 0.03 -0.00 0.07 -0.03-0.01-0.02

-0.01-0.09-0.04-0.10 0.01 -0.10-0.10-0.05-0.02 1.00 -0.08-0.04-0.11-0.08-0.01-0.11-0.09 0.03 0.03

0.40 0.73 0.30 0.10 0.56 -0.01-0.06-0.01-0.01-0.08 1.00 0.07 0.25 0.26 0.14 -0.06 0.30 0.01 0.04

0.02 0.09 -0.00 0.03 0.14 -0.03-0.02-0.02 0.08 -0.04 0.07 1.00 0.00 -0.04-0.01-0.01-0.05-0.04-0.05

0.29 0.30 0.43 0.07 0.24 0.00 -0.08 0.02 0.07 -0.11 0.25 0.00 1.00 0.78 0.25 0.52 0.36 -0.03-0.01

0.32 0.28 0.33 0.03 0.29 -0.03-0.05-0.02 0.03 -0.08 0.26 -0.04 0.78 1.00 0.15 0.45 0.29 -0.02 0.01

0.19 0.16 0.13 -0.01 0.17 -0.01-0.02-0.01-0.00-0.01 0.14 -0.01 0.25 0.15 1.00 0.02 0.09 -0.02 0.02

0.02 -0.01 0.14 0.05 -0.07-0.03-0.03-0.07 0.07 -0.11-0.06-0.01 0.52 0.45 0.02 1.00 0.08 0.09 0.05

0.20 0.29 0.22 0.13 0.24 -0.04-0.04-0.03-0.03-0.09 0.30 -0.05 0.36 0.29 0.09 0.08 1.00 -0.01-0.00

-0.05 0.00 -0.03 0.03 0.02 -0.03-0.06-0.06-0.01 0.03 0.01 -0.04-0.03-0.02-0.02 0.09 -0.01 1.00 0.84

0.01 0.03 -0.00-0.03 0.06 -0.05-0.09-0.05-0.02 0.03 0.04 -0.05-0.01 0.01 0.02 0.05 -0.00 0.84 1.00

Correlation Matrix of Vector Components

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Feature Correlation Matrix

polymorphic and stealthy malware, which can bypass static
signature detection. By possibility of using less reliable and
more generic static patterns and focusing on their sequence,
our approach is positioned to recognize latent, evasive behav-
iors that are detectable only when examined within a structured
sequence, enhancing its robustness against stealth tactics.

An attacker could try to avoid detection using our method
by using various evasion tactics. One common strategy is to
use obfuscation and polymorphism, where malware constantly

0 100 200 300 400 500

PCA Component 1

100102030405060
PCA Component 2

10

0

10

20

30

PCA Com
ponent 3

PCA of Virus Vectors
Virus Name

Remcos
Redline
Snake Keylogger

Lokibot
Agent Tesla

Fig. 7. Principal Component Analysis (PCA) Based on Virus Family

P. NOVAK et al.: TRANSFORMING WEAKNESS INTO STRENGTH: IMPROVING UNRELIABLE MALWARE DETECTION 325

changes its structure or encrypts its payload to avoid behavior-
based detection. Additionally, attackers can delay the execu-
tion of malicious actions or stagger them over time, making the
sequence of suspicious events less obvious. Another method
is mimicking legitimate behavior, where malware performs
actions that resemble normal system processes and mixes in
benign activities. Additionally, attackers could target specific
aspects of our method by suppressing or avoiding certain
suspicious events, such as not interacting with specific network
addresses or registry keys flagged as indicators of compro-
mise. Finally, they can manipulate data or use anti-analytical
techniques, such as virtual environment detection, to bypass
detection during analysis.

To mitigate these issues, our method emphasizes flexibility
by incorporating dynamic behavior analysis and a sequence-
based approach, rather than relying solely on predefined
patterns. By evaluating not only individual events, but also
the relationships and patterns between them, our system is
more resistant to attempts to imitate legitimate behavior or
delay actions. In addition, continuous updates to the event set
and improvements to the similarity algorithms ensure that the
detection process adapts to new malware tactics over time,
making it more difficult for attackers to consistently evade
detection.

A. Future Research Direction

The results presented in this paper summarize our ongoing
efforts; however, much work remains to fully implement and
refine our method.

1) Sandbox Environment: We are currently preparing a cus-
tom sandbox environment and developing the agent modules.
This sandbox environment will enable us to create a dataset by
running live malware samples and observing their behaviors.

2) Suspicious Event Set: To build a set of suspicious events,
we analyze the MITRE framework, the Sigma repository, and
malware samples. Our goal is to gather as comprehensive a
collection of suspicious events as possible, while avoiding

0 100 200 300 400 500

PCA Component 1
100102030405060

PCA Component 2

10

0

10

20

30

PCA Com
ponent 3

GMM - 3D PCA Clustering

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Cl
us

te
r

Fig. 8. PCA Based on Gaussian Mixture Model (GMM) Clustering

duplication and minimizing extensive event correlation to
reduce resource demands.

3) Experiments and Tests: Once we obtain a collection
of events from our environment, we will conduct tests and
experiments using various sequence alignment methods.

4) Comparison with Existing Detection Methods: Eval-
uating and comparing our method with existing detection
mechanisms is crucial. We will assess the efficacy and de-
tection speed of our approach based on the execution of novel
malware samples.

5) Dynamics of Event Chains: Understanding the sequence
and evolution of events may allow us to predict the future
behavior of malware and automatically generate preventive
and counter actions. This approach could enable automatic
remediation of infected systems without human intervention.

VII. CONCLUSION

In this study, we explored the potential of a novel approach
to malware detection through the analysis of suspicious event
chains derived from malware samples. By focusing on a care-
fully curated set of 19 suspicious events, we aimed to uncover
insights into the behavior and clustering of different malware
families. Our initial experiments revealed that the majority of
samples exhibited between 3 to 5 unique suspicious event
types, with a significant portion demonstrating a high event
chain length. This indicates a rich behavioral signature, even
within a limited feature set.

The co-observations and correlation analyses highlighted the
relationships between various suspicious events, particularly
among the most prevalent features. Despite the absence of tem-
poral data, which may enhance future analyses, our findings
suggest that distinct patterns emerge, enabling the possibility
of clustering and classification.

Although visual inspections indicated the presence of clus-
ters among different malware families, our attempts to employ
traditional clustering algorithms were largely unsuccessful in
automatically discerning these patterns. Conversely, our clas-
sification models demonstrated promising results, with most
algorithms achieving high accuracy. This reinforces the hy-
pothesis that malware behavior can be effectively distinguished
through the identified suspicious events.

In conclusion, this research underscores the viability of
using suspicious event analysis for malware detection and
classification. Future work will involve expanding the event
set, incorporating temporal data, and exploring more advanced
machine learning techniques to enhance the detection capabil-
ities further.

ACKNOWLEDGMENT

This research was funded by the Ministry of the Interior
of the Czech Republic, Open challenges in security research,
VK01030030, Data backup and storage system with integrated
active protection against cyber threats.

326 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

REFERENCES

[1] P. Novak and V. Oujezsky, “Heuristic malware detection method based
on structured cti data: A research study and proposal,” in 2024 Interna-
tional Conference on Software, Telecommunications and Computer Net-
works (SoftCOM), 2024. doi: 10.23919/SoftCOM62040.2024.10721992
pp. 1–6.

[2] P. T. S. Team, “Results of cybersecurity incident investigations
in 2021 2023,” https://www.ptsecurity.com/ww-en/analytics/results-of-
cybersecurity-incident-investigations-in-2021-2023/, 12 2023, (Accessed
2024-05-02).

[3] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury,
“A systematic literature review on windows malware detection:
Techniques, research issues, and future directions,” Journal of Systems
and Software, vol. 209, p. 111921, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223003163

[4] J. Althouse. (2021, 5) Tls fingerprinting with ja3 and ja3s. Online. Avail-
able from: https://engineering.salesforce.com/tls-fingerprinting-with-ja3-
and-ja3s-247362855967. (Accessed 2024-07-20).

[5] J. Althouse. (2023, 7) Ja4+ network fingerprinting. Online. Available
from: https://blog.foxio.io/ja4+-network-fingerprinting. (Accessed 2024-
07-20).

[6] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, “Software-
defined networking-based crypto ransomware detection using
http traffic characteristics,” Computers & Electrical Engi-
neering, vol. 66, pp. 353–368, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790617333542

[7] J. Liu, Q. Xiao, L. Xin, Q. Wang, Y. Yao, and Z. Jiang, “M3f: A novel
multi-session and multi-protocol based malware traffic fingerprinting,”
Computer Networks, vol. 227, p. 109723, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128623001688

[8] Y. Hong, Q. Li, Y. Yang, and M. Shen, “Graph based encrypted
malicious traffic detection with hybrid analysis of multi-view features,”
Information Sciences, vol. 644, p. 119229, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025523008149

[9] G. Shenderovitz and N. Nissim, “Bon-apt: Detection, attribution, and
explainability of apt malware using temporal segmentation of api calls,”
Computers & Security, vol. 142, p. 103862, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404824001639

[10] Prachi., N. Dabas, and P. Sharma, “Malanalyser: An
effective and efficient windows malware detection method
based on api call sequences,” Expert Systems with Ap-
plications, vol. 230, p. 120756, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417423012587

[11] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, “Api-
maldetect: Automated malware detection framework for windows based
on api calls and deep learning techniques,” Journal of Network and
Computer Applications, vol. 218, p. 103704, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804523001236

[12] (2014) Tracking malware with import hashing. Online. Available
from: https://cloud.google.com/blog/topics/threat-intelligence/tracking-
malware-import-hashing/. (Accessed 2024-07-23).

[13] T. Chen, H. Zeng, M. Lv, and T. Zhu, “Ctimd: Cyber threat intelligence
enhanced malware detection using api call sequences with parameters,”
Computers & Security, vol. 136, p. 103518, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404823004285

[14] E. Amer, I. Zelinka, and S. El-Sappagh, “A multi-perspective malware
detection approach through behavioral fusion of api call sequence,”
Computers & Security, vol. 110, p. 102449, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016740482100273X

[15] A. G. Kakisim, S. Gulmez, and I. Sogukpinar, “Sequential
opcode embedding-based malware detection method,” Computers &
Electrical Engineering, vol. 98, p. 107703, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790622000210

[16] S. Jeon and J. Moon, “Malware-detection method with a
convolutional recurrent neural network using opcode sequences,”
Information Sciences, vol. 535, pp. 1–15, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025520304217

[17] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Information Sciences, vol. 231, pp.
64–82, 2013, data Mining for Information Security. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025511004336

[18] A. Pektaş and T. Acarman, “Learning to detect
android malware via opcode sequences,” Neurocomput-
ing, vol. 396, pp. 599–608, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231219304850

[19] S. Saha, S. Afroz, and A. H. Rahman, “Malign: Explainable static raw-
byte based malware family classification using sequence alignment,”
Computers & Security, vol. 139, p. 103714, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404824000154

[20] T. Rezaei, F. Manavi, and A. Hamzeh, “A pe header-
based method for malware detection using clustering and deep
embedding techniques,” Journal of Information Security and
Applications, vol. 60, p. 102876, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212621001046

[21] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” in AAAI
Workshops, 10 2017. doi: 10.48550/arXiv.1710.09435

[22] Q. Li, B. Zhang, D. Tian, X. Jia, and C. Hu,
“Mdgraph: A novel malware detection method based on
memory dump and graph neural network,” Expert Systems with
Applications, vol. 255, p. 124776, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417424016439

[23] D. Tian, Q. Ying, X. Jia, R. Ma, C. Hu, and
W. Liu, “Mdchd: A novel malware detection method in
cloud using hardware trace and deep learning,” Computer
Networks, vol. 198, p. 108394, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128621003728

[24] T. Panker and N. Nissim, “Leveraging malicious behavior traces
from volatile memory using machine learning methods for trusted
unknown malware detection in linux cloud environments,” Knowledge-
Based Systems, vol. 226, p. 107095, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705121003580

[25] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
From a survey towards an established taxonomy,” Journal in Computer
Virology, vol. 4, pp. 251–266, 08 2008.

[26] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, and B. A. Saleh Al-
rimy, “Toward an ensemble behavioral-based early evasive mal-
ware detection framework,” in 2021 International Conference
on Data Science and Its Applications (ICoDSA), 2021. doi:
10.1109/ICoDSA53588.2021.9617489 pp. 181–186.

[27] A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of
malware on mobile handsets,” in Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, ser. MobiSys
’08. New York, NY, USA: Association for Computing Machinery, 2008.
doi: 10.1145/1378600.1378626. ISBN 9781605581392 p. 225–238.
[Online]. Available: https://doi.org/10.1145/1378600.1378626

[28] M. R. Amin, M. Zaman, M. S. Hossain, and M. Atiquzzaman,
“Behavioral malware detection approaches for android,” in 2016
IEEE International Conference on Communications (ICC), 2016. doi:
10.1109/ICC.2016.7511573 pp. 1–6.

[29] W. Liu, P. Ren, K. Liu, and H.-x. Duan, “Behavior-based malware anal-
ysis and detection,” in 2011 First International Workshop on Complexity
and Data Mining, 2011. doi: 10.1109/IWCDM.2011.17 pp. 39–42.

[30] Y. Yang, Y. Lin, Z. Li, L. Zhao, M. Yao, Y. Lai, and
P. Li, “Goosebt: A programmable malware detection framework
based on process, file, registry, and com monitoring,” Computer
Communications, vol. 204, pp. 24–32, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366423000907

[31] O. Pluskal, “Behavioural malware detection using efficient svm
implementation,” in Proceedings of the 2015 Conference on Research
in Adaptive and Convergent Systems, ser. RACS ’15. New
York, NY, USA: Association for Computing Machinery, 2015. doi:
10.1145/2811411.2811516. ISBN 9781450337380 p. 296–301. [Online].
Available: https://doi.org/10.1145/2811411.2811516

[32] J. Stiborek, T. Pevný, and M. Rehák, “Multiple instance
learning for malware classification,” Expert Systems with
Applications, vol. 93, pp. 346–357, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417417307170

[33] J. Singh and J. Singh, “Detection of malicious software by analyzing the
behavioral artifacts using machine learning algorithms,” Information and
Software Technology, vol. 121, p. 106273, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584920300239

[34] A. Boukhtouta, N.-E. Lakhdari, S. A. Mokhov, and M. Debbabi,
“Towards fingerprinting malicious traffic,” Procedia Computer
Science, vol. 19, pp. 548–555, 2013, the 4th International
Conference on Ambient Systems, Networks and Technologies
(ANT 2013), the 3rd International Conference on Sustainable
Energy Information Technology (SEIT-2013). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050913006819

[35] L. Deri and F. Fusco, “Using deep packet inspection in cybertraffic
analysis,” in 2021 IEEE International Conference on Cyber Security

P. NOVAK et al.: TRANSFORMING WEAKNESS INTO STRENGTH: IMPROVING UNRELIABLE MALWARE DETECTION 327

and Resilience (CSR), 2021. doi: 10.1109/CSR51186.2021.9527976 pp.
89–94.

[36] (2022) Ja3 fingerprints database. Online. Available from:
https://sslbl.abuse.ch/ja3-fingerprints/. (Accessed 2024-07-20).

[37] Mitre att&ck. Online. Available from:
https://attack.mitre.org/techniques/enterprise/. (Accessed 2024-07-
23).

[38] Sigma - generic signature format for siem systems. Online. Available
from: https://github.com/SigmaHQ/sigma. (Accessed 2024-10-26).

[39] S. Chan, A. K. Wong, and D. K. Chiu, “A survey of multiple sequence
comparison methods,” Bulletin of mathematical biology, vol. 54, pp.
563–598, 1992.

[40] E. Paxinou, D. Kalles, C. T. Panagiotakopoulos, and V. S. Verykios,
“Analyzing sequence data with markov chain models in scientific
experiments,” SN Computer Science, vol. 2, no. 5, p. 385, 2021.

[41] X. Liu and T. Cheng, “Video-based face recognition using adaptive
hidden markov models,” in 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1.
IEEE, 2003, pp. I–I.

[42] S. Perdikaris, “A markov chain model in teachers’ decision making,”
International Journal of Mathematical Education in Science and Tech-
nology, vol. 23, no. 3, pp. 473–477, 1992.

[43] A. K. Saw, B. C. Tripathy, and S. Nandi, “Alignment-free similarity
analysis for protein sequences based on fuzzy integral,” Scientific
reports, vol. 9, no. 1, p. 2775, 2019.

[44] K. Riesen, “Structural pattern recognition with graph edit distance,”
Advances in computer vision and pattern recognition, pp. 1–164, 2015.

[45] M. Tantardini, F. Ieva, L. Tajoli, and C. Piccardi, “Comparing methods
for comparing networks,” Scientific reports, vol. 9, no. 1, p. 17557, 2019.

[46] M. K. Gupta, G. Gouda, N. Rajesh, R. Donde, S. Sabarinathan, P. Pati,
S. K. Rathore, R. Vadde, and L. Behera, “Sequence alignment,” Bioinfor-
matics in Rice Research: Theories and Techniques, pp. 129–162, 2021.

[47] M. Chatzou, C. Magis, J.-M. Chang, C. Kemena, G. Bussotti, I. Erb, and
C. Notredame, “Multiple sequence alignment modeling: methods and
applications,” Briefings in Bioinformatics, vol. 17, no. 6, pp. 1009–1023,
11 2015. [Online]. Available: https://doi.org/10.1093/bib/bbv099

[48] K. Alotaibi, R. Rob, D. Nour, and D. Zamzami, “Detecting subspace
malicious vectors attack against smart grid using sequence-alignment
method,” in 2023 IEEE International Conference on Cyber Security
and Resilience (CSR), 2023. doi: 10.1109/CSR57506.2023.10224936 pp.
367–372.

[49] M. S. Rosenberg, Sequence Alignment: Methods, Models, Concepts,
and Strategies, 1st ed., M. S. Rosenberg, Ed. University of
California Press, 2009. ISBN 9780520256972. [Online]. Available:
http://www.jstor.org/stable/10.1525/j.ctt1pps7t (Accessed 2024-10-23).

[50] D. Ofer, N. Brandes, and M. Linial, “The language of proteins: Nlp,
machine learning & protein sequences,” Computational and Structural
Biotechnology Journal, vol. 19, pp. 1750–1758, 2021.

[51] H. Li and B. Liu, “Bioseq-diabolo: biological sequence similarity
analysis using diabolo,” PLoS computational biology, vol. 19, no. 6,
p. e1011214, 2023.

[52] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang,
“Simgnn: A neural network approach to fast graph similarity
computation,” in Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, ser. WSDM ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
doi: 10.1145/3289600.3290967. ISBN 9781450359405 p. 384–392.
[Online]. Available: https://doi.org/10.1145/3289600.3290967

[53] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song,
“Neural network-based graph embedding for cross-platform binary
code similarity detection,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
doi: 10.1145/3133956.3134018. ISBN 9781450349468 p. 363–376.
[Online]. Available: https://doi.org/10.1145/3133956.3134018

[54] A. Nair, A. Roy, and K. Meinke, “funcgnn: A graph neural
network approach to program similarity,” in Proceedings of the
14th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), ser. ESEM ’20. New
York, NY, USA: Association for Computing Machinery, 2020. doi:
10.1145/3382494.3410675. ISBN 9781450375801. [Online]. Available:
https://doi.org/10.1145/3382494.3410675

[55] V. Likic, “The needleman-wunsch algorithm for sequence alignment,”
Lecture given at the 7th Melbourne Bioinformatics Course, Bi021
Molecular Science and Biotechnology Institute, University of Melbourne,
pp. 1–46, 2008.

[56] F. Zhang, X.-Z. Qiao, and Z.-Y. Liu, “A parallel smith-waterman
algorithm based on divide and conquer,” in Fifth International Con-
ference on Algorithms and Architectures for Parallel Processing, 2002.
Proceedings. IEEE, 2002, pp. 162–169.

[57] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-Rimy, T. A. E. Eisa,
and A. A. H. Elnour, “Malware detection issues, challenges, and future
directions: A survey,” Applied Sciences, vol. 12, no. 17, p. 8482, 2022.

[58] “Joe sandbox,” Online, available from: joesandbox.com.
[59] Gitlab fi muni - vsafe-experiments. Online. Available from:

https://gitlab.fi.muni.cz/xnovak7/vsafe-experiments/-/tree/main.
(Accessed 2024-10-26).

[60] Why is there’s so much spam coming from .xyz and other new top-level
domains? Online. Available from: https://blog.f-secure.com/why-is-
theres-so-much-spam-coming-from-xyz-and-other-new-top-level-
domains/. (Accessed 2024-07-23).

[61] A peek into top-level domains and cybercrime. Online. Available from:
https://unit42.paloaltonetworks.com/top-level-domains-cybercrime/.
(Accessed 2024-07-23).

Pavel Novak finished his master’s studies focusing
on cybersecurity in 2022 at the Faculty of Informat-
ics of Masaryk University in Brno. He is currently
a Ph.D. candidate at Masaryk University focusing
on early stage behavioral malware detection. He
contributes to various research projects, leads stu-
dent theses, and serves as a seminar tutor. He is
passionate about cyber threats and threat hunting.
He also participates in public relations contributions
regarding new web-based cyber threats.

Vaclav Oujezsky studied teleinformatics at the Brno
University of Technology. Between 2013 and 2017,
he completed a Ph.D. in the same field. He served
as a Researcher in the Department of Telecommuni-
cations at the Brno University of Technology. Since
2021, he has held the position of Associate Professor
at Masaryk University. Over the years, he has earned
several certifications, contributed to numerous grant
projects, and co-authored a wide range of scientific
articles and conference papers. He is recognized as
an expert in the field of modern information systems.

328 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

