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Abstract—This paper presents a newly developed framework
for federated learning adapted to crisis management applications
on the Android platform. This framework focuses on solving
client communication problems during the federated learning
process. KiFramework introduces an innovative communication
protocol and framework that enhances data exchange reliability
and supports efficient collaboration in multi-server environments,
addressing key challenges in traditional centralized server ar-
chitectures. Our research provides a comprehensive solution
to optimize communication and ensure seamless collaboration
among multiple servers, improving applications’ efficiency using
federated learning.

Index Terms—Android, communication protocol, federated
learning, framework, machine learning.

I. INTRODUCTION

In recent years, there has been an unprecedented increase
in the use of technologies related to artificial intelligence and
machine learning across all industries, and it appears that this
trend will continue to proliferate upwards in the foreseeable
future [1], [2]. Traditional machine learning paradigms in the
case of collaborations between multiple distributed entities
may pose some threats in terms of privacy, data ownership, or
data protection violations, as the movement of this data from
one location to another, as well as its centralization, may pose
some security risks [3]. In recent years, the use of Federated
Learning [4], [5] has emerged as a promising technique to
address the challenges to improve security.

Critical infrastructure applications play a vital role in safe-
guarding the essential services that modern society relies
on. These tools enable real-time monitoring, threat detection,
incident response, and compliance tracking to maintain the
security and reliability of key systems. Leveraging advanced
algorithms, federated learning, and machine learning, they can
proactively identify risks, autonomously respond to cyberat-
tacks or physical threats, and optimize resource distribution.
Built with resilience, these applications support backup system
deployment and enhance infrastructure’s ability to endure and
recover from unexpected events, ensuring the uninterrupted
delivery of critical services to millions of people [6].
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Federated learning [7] offers a cutting-edge approach to data
processing, allowing models to be trained on decentralized
data sources without transferring data to a central server.
This approach significantly enhances privacy by ensuring data
remains on the devices where it is generated. However, the
use of federated learning in crisis management on Android
platforms has yet to be explored.

This paper introduces KiFramework, an innovative frame-
work for implementing federated learning techniques on An-
droid devices. It addresses key challenges such as limited
computational power, data heterogeneity, and stringent security
requirements for mobile platforms.

KiFramework addresses key challenges of centralized ar-
chitectures, such as mitigating server overload from excessive
client requests and reducing the risk of Single Point of Fail-
ure (SPOF). It provides secure communication and efficient
data exchange between system components through a custom
communication protocol and ensures the resulting models are
accurate and effective for real-world crisis scenarios.

This research advances the application of federated learning
in critical infrastructure by offering a secure and practical so-
lution specifically designed for Android platform. The frame-
work paves the way for improved performance and security of
these systems, enhancing their reliability and resilience during
critical operations. This paper is an extended version of our
conference paper [8] in which we focus on improving and
modifying the communication protocol, and the final concept
is presented here.

The main contributions of this work are:

• We introduce KiFramework, a federated learning platform
specifically designed for crisis management applications
on Android devices. Our framework prioritizes reliable
communication between clients and servers, supporting
decentralized model training in critical infrastructure sys-
tems with limited computational resources.

• We present a novel communication protocol optimized
for federated learning, ensuring secure and efficient data
exchange. This protocol supports multi-server deploy-
ments and addresses key challenges such as the SPOF,
improving system reliability.

• We integrate Firebase Realtime Database for real-time
synchronization with Apache Kafka for backup commu-
nication. This dual integration ensures uninterrupted data
flow, providing real-time updates and resilience against
data loss during network disruptions.

• We extend the use of the traditional Federated Averaging
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(FedAvg) algorithm by implementing Weighted FedAvg,
which incorporates local model losses to prioritize clients
with more accurate models in the global aggregation
process, enhancing overall model performance.

Section II summarizes the current knowledge regarding
existing frameworks and tools used in federated learning.
Following this, Section III introduces the Developed frame-
work for federated learning on the Android platform for
critical infrastructure systems, focusing mainly on the indi-
vidual components of the framework and their contribution to
reliable communication during the federated learning process.
The principles of the developed communication protocol are
presented in section IV, followed by the results of the frame-
work’s implementation and discussion in section V. Finally,
the paper concludes with section VI.

II. THE STATE OF THE ART

Frameworks provide essential tools for developers and
researchers to implement federated learning algorithms and
conduct experiments in this rapidly evolving field. A compre-
hensive review of the most prominent open-source federated
learning frameworks was presented in [9], outlining the foun-
dational concepts of federated learning.

One of the most notable frameworks is TensorFlow Fed-
erated (TFF) [10], developed by Google for federated learn-
ing applications, particularly for tasks like mobile keyboard
prediction on distributed mobile data. TFF offers two Ap-
plication Programming Interface (API) layers and includes
implementations of popular algorithms such as FedAvg [11]
and Federated Stochastic Gradient Descent (FedSGD), along
with the ability to create custom algorithms. TFF offers robust
tools for simulation-based federated learning.

Another framework is Federated Artificial Intelligence
Technology Enabler (FATE) [12], created by WeBank. FATE
offers extensive customization for federated learning algo-
rithms and supports vertical and horizontal data partitioning.
A key advantage of FATE over TFF is its ability to be tested
in simulated and real-world environments.

PySyft [13] is a framework that prioritizes security in
federated learning, integrating privacy-preserving techniques.
It supports static and dynamic computations and is compatible
with popular deep-learning libraries like PyTorch [14] and
TensorFlow [15]. PySyft stands out for its emphasis on secure,
privacy-aware, federated learning workflows.

The Flower framework [16] is another significant player,
known for its flexibility in deploying federated learning across
a wide range of edge devices. Flower is designed for hetero-
geneous environments and directly supports federated learning
algorithms on devices, making it highly suitable for large-
scale, decentralized operations.

Among these frameworks, PySyft and Flower are partic-
ularly well-suited for implementing federated learning on
mobile devices [17]. KiFramework introduces innovative so-
lutions based on the strengths of the mentioned frameworks
and is specifically designed to address the unique challenges
of crisis management on mobile platforms. By combining the
best practices of simulation-oriented frameworks like TFF,

enterprise-focused solutions like FATE, and privacy-preserving
techniques inspired by PySyft, KiFramework addresses the
unique challenges of federated learning in mobile environ-
ments. By focusing on communication reliability, adaptive
learning, and real-time deployment, KiFramework [18] deliv-
ers an optimized approach to improving critical infrastructure
systems’ performance, security, and resilience. A detailed
description of our novel communication protocol and the full
KiFramework implementation is provided in the following
sections.

III. THE DEVELOPED FRAMEWORK

The KiFramework is a specialized framework designed to
facilitate the implementation of federated learning on Android
mobile devices with multi-server deployment. The framework
strongly emphasizes ensuring reliable communication between
mobile clients and servers involved in the federated learning
process. This reliable communication is achieved through a
custom communication protocol that defines the structure,
types, and sequence of messages. This protocol is primarily
used for transmitting control messages during the learning
process and transferring loss values and weight updates for
individual machine learning models. A detailed description of
the communication protocol is provided in Chapter IV.

The framework is built around three key components: the
server, mobile client devices, and real-time database services.
KiFramework simplifies implementation, requiring minimal
configuration on both server and client sides, making it a
practical choice for real-world federated learning deployments.
This simplicity allows developers to focus on customizing
machine learning models and aggregation techniques while the
underlying infrastructure handles communication and synchro-
nization seamlessly.

The framework also supports multiple servers deployment
to train a global model during federated learning. This feature
reduces the risk of model aggregation failure if one of the
servers becomes unreachable, allowing clients to continue con-
tributing to improving the global data model. The conceptual
connection between the servers and clients via the Firebase

Training devices

Mobile Client GenericCar

Deployment devices

Mobile Client Mobile Client

Servers

Kafka Broker

Firebase
Machine learning

Storage for data model

Firebase
Realtime database Application

Load Balancer

Fig. 1. The conceptual scheme of the framework.
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Realtime Database [19] and Apache Kafka [20] is illustrated
in Figure 1, which also shows the Firebase Datastore used for
storing and distributing global models.

A. The Server Component

The server is a critical component of the framework, respon-
sible for aggregating local weights from clients into a global
data model. The server is divided into two parts: the backend
and the frontend.

The backend, written in Python, forms the core of the
federated learning system. It encompasses the overall system
logic, including orchestration, processing, and communication
with mobile client devices enabled through Firebase services
accessed by the backend. Additionally, it handles requests
from the frontend via the application interface, providing real-
time updates on the system’s operations and status, as well as
the condition of individual clients.

The backend collects local weight updates and aggregates
them using the Weighted FedAvg algorithm, which enhances
the traditional FedAvg [11] by incorporating local model
losses into the averaging process. The key process performed
by the backend for federated learning is the collection of
local weight updates and their aggregation using the Weighted
FedAvg algorithm. The formula for updating the global model
is:

wt+1 =
K∑

k=1

1
Lk∑K

j=1
1
Lj

wt+1
k

where:
• wt+1 are the updated weights of the global model at

round t+ 1,
• wt+1

k are the model weights from client k after local
training at round t+ 1,

• Lk is the loss of the local model for client k,
• K is the total number of clients participating in the

training process.
This algorithm ensures that clients with lower losses signif-

icantly influence the global model update, resulting in a more
robust and accurate global model. The algorithm is imple-
mented on the server using the TensorFlow framework [15].

The frontend is represented by a web application developed
using React. This application provides a user interface for
managing and monitoring server and client statuses, shown
in Figure 2.

Upon successful login, users are redirected to the dashboard
page, which displays comprehensive information about the
server, including the current version of the global model, the
number of training rounds completed, and the status of the
server and client devices involved in the federated learning
process. Additionally, the dashboard includes a button to
initiate the servers, allowing administrators to start the servers
directly from the interface.

B. The Client Component

The client component is designed to enable decentral-
ized model training on mobile devices. It supports client-

Algorithm 1: KeepAlive State Machine Mechanism
State:

RUN(value: Int) Action:
Send keep-alive signal to server every t seconds

STOP Action:
Terminate keep-alive signals

Algorithm 2: Client State Machine Mechanism
State:

INIT Action:
Trigger Alg. 1 + Retrieve configuration from the server;

Transition to CONFIGURATION

CONFIGURATION(data: ResponseConfiguration) Action:
Trigger Alg. 1 + Prepare client with server settings;

Transition to READY

READY Action:
Trigger Alg. 1 + Gather training data; Transition to DATA

DATA Action:
Trigger Alg. 1 + Verify data readiness; Transition to

TRAINING

TRAINING Action:
Trigger Alg. 1 + Trigger Alg. 3; Wait for completion;

Transition to FINISH

FINISH Action:
Trigger Alg. 1 + Wait for next round; Transition to INIT or

TERMINATE

ERROR(errorMessage: String) Action:
Trigger Alg. 1 + Handle error; Retry or Transition to

RESTORE

RESTORE Action:
Trigger Alg. 1 + Restore last saved state; Retry TRAINING

server communication, local model training, real-time synchro-
nization, and dynamic state management, ensuring a robust
federated learning process. The system integrates Firebase
for model download and server communication, TensorFlow
Lite [21] for on-device training, and Kotlin Coroutines for
handling asynchronous tasks.

The core functionality is driven by the three main state
machines, Algorithms [1 2 3], defined for managing the

Algorithm 3: Learning State Machine Mechanism
State:

INIT Action:
Initialize training session; Transition to WAITING

WAITING(data: LearningExchangeServerResponse) Action:
Receive global model update from server; Transition to

RESTORE or TRAINING

RESTORE(averageWeights: String) Action:
Apply global weights; Transition to TRAINING

TRAINING Action:
Train local model on received data; Transition to SEND

SEND Action:
Send local model weights to server; Transition to

WAITING or FINISH

FINISH Action:
End current training round; Transition to INIT or STOP,

Trigger Alg. 2.
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Fig. 2. Frontend view on the dashboard.

federated learning workflow and auxiliary processes like keep-
alive signaling using the Hybrid Automata Library (HAL)
state machine framework [22]. The training process follows
the proposed state machine architecture previously published
in [23].

The Algorithm 2 governs the primary lifecycle stages and
transitioning between states. It is integrated into the MainFrag-
ment class within the user interface package. This fragment
is responsible for handling User Interface (UI) events, client-
server communication, and state management.

The functionality of federated learning, Algorithm 3 is en-
capsulated in the KiClientTraining class, presented in simpli-
fied diagram in Figure 3, which manages the training lifecycle
on client devices. This class is responsible for download-

MainFragment
- clientFederated: KiClientTraining?

+ newInstance(): MainFragment
+ ...: void

KiClientTraining
- interpreter: Interpreter
- ...
+ stopTraining(): void
- startTraining(learningConfiguration:
...): suspend void
- train(numEpochs: Int,
numBatches: Int): suspend void
- setupModelOptions(listener: (Boolean)
→ Unit): void

Fig. 3. Simplified UML diagram.

ing models, conducting local training, and returning updated
model weights to the server. Initially, the system downloads
the custom machine learning model using Firebase Model
Downloader [24] to ensure the most up-to-date version is
deployed. TensorFlow Lite, optimized for mobile platforms,
runs and trains the model on the device. Local training is
performed through TensorFlow Lite’s Interpreter, which pro-
cesses batches of data over multiple epochs, and after training,
the updated model weights are exported and sent back to the
server for aggregation with the global model.

To ensure resilience in the case of interruptions, the system
supports checkpoint management, allowing the model to re-
sume training from the last saved state. Federated learning is
conducted over multiple rounds, with each client participating
in several training rounds before sending updated weights
back to the server. This process is configured through the
learningConfiguration value, which dictates the number of
training rounds and other settings.

Firebase’s real-time database synchronizes the client’s states
with the server, ensuring proper alignment during learning.
The fragment listens for server commands and triggers actions
such as data gathering, model training, or error handling. The
user interface is dynamically updated based on the client’s
current state in the federated learning process, with messages
displayed through a RecyclerView, Figure 4, which logs essen-
tial events such as the number of training rounds and server
selections.

Additionally, the system includes a developed Keep-Alive
mechanism, Algorithm 1, implemented by using view model
architecture, which sends periodic signals to the server to
maintain active communication during the learning process.
This ensures that the client remains responsive during long
training or data-gathering phases. The federated client is
instantiated within the fragment, and it directly controls the
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Fig. 4. The output from the KiClient mobile application during one training
round.

lifecycle of the learning process, triggering local training
sessions and managing communication with the server once
the training is complete.

The federated learning system also handles model version-
ing and server selection, ensuring that the client is connected
to the appropriate federated learning server. Server selection
is based on the client’s unique Identifier (ID), and the system
includes safeguards against waiting indefinitely for server
responses by using timeouts. If errors occur during training or
communication, the system transitions into an error state, and
the user is notified. The MainFragment also includes a reset
button, allowing the user to reinitialize the training process
and reset the client state. The federated learning process starts
with the INIT state, where the client synchronizes local data
(such as the user ID) with the server. The client then transitions
to the CONFIGURATION state, where it retrieves necessary
settings from the server, such as the number of training
rounds and the model version. After this, the client enters
the SERVER SELECTION state, listening for server selection
instructions and ensuring it is connected to the appropriate
server node.

The client gathers training data on the device in the DATA
state and enters the TRAINING state. During training, the
client runs local training sessions using TensorFlow Lite, after
which the updated model weights are exported and sent back
to the federated server for aggregation. The process concludes

with the FINISH state, signaling the end of the training
round and preparing the client for the next cycle of federated
learning, if necessary.

C. The Firebase Component

The framework utilizes two key Firebase services: the real-
time database and cloud storage. The real-time database serves
as a communication channel between clients and servers,
with its main advantage being the ability to synchronize data
instantly across all clients. Any change made by one client is
automatically propagated to others. Additionally, the database
is optimized for cases of connection loss—data is temporarily
stored in the client’s local cache and synchronized upon
reconnection, which minimizes the risk of losing local model
weights and allows for the seamless continuation of training.
A detailed description of message exchange, structure, and
meaning is provided in Section IV, which discusses the
communication protocol.

Firebase cloud storage stores and distributes global models,
which are generated by aggregating local weights on the server
side. Its advantage lies in its ease of access for all clients
through a single authentication process and a high level of
security that ensures access is restricted to authenticated users
only. Global models are then integrated into Firebase Machine
Learning and deployed as custom models, ensuring that mobile
clients always utilize the most up-to-date version of the global
model.

IV. THE DEVELOPED COMMUNICATION PROTOCOL

The communication protocol serves as a fundamental frame-
work component, defining message formats, sequences, and
interactions between clients and servers. Its design prioritizes
reliability and efficient data exchange, focusing on transmitting
model weights and loss metrics critical for federated learning.
Additionally, it defines control messages to coordinate the
training process and monitor system components. The protocol
is compatible with both Firebase Realtime Database, which
serves as the primary communication medium, and Apache
Kafka [20], a secondary option designed to take over in
case of primary channel failure. All messages are structured
using JavaScript Object Notation (JSON) to support both
communication platforms.

A key feature of the protocol is its seamless operation in
environments with multiple server instances. This multi-server
architecture mitigates the risk of overloading a single server
by distributing client communications across available servers,
ensuring continued operation even under high demand. Each
client and server in the system is assigned a unique identifier,
which facilitates correct message routing by allowing senders
to target specific recipients and recipients to process only
messages addressed to them. This enhanced protocol version
builds on the initial design, detailed in [23], with improve-
ments derived from extensive testing and simulations.

The protocol defines four types of messages:
configuration, server selection, status
keepalive, and learning exchange. The structure of
these messages is illustrated in Figure 5.
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The configuration message sets the configuration pa-
rameters for servers and clients. This message is always stored
in the Firebase Realtime Database. It contains information
about the current version of the global model stored in the
Firebase database and the number of training rounds to be
completed during federated learning.

Compared to the original version, only minor adjustments
have been made. Since the model is stored on Firebase, the
ipv4AddressServer, previously used for storing the model, is
no longer needed. However, ModelVersion remains due to
the need for synchronization, and a new field specifying the
number of training rounds has been added. The newly designed
version of the message is shown in Listing 1.

The server selection message is responsible for regi-
stering clients with a specific available server. It is divided into
two sub-nodes: clients and servers. In the clients
sub-node, clients signal to the servers that they are ready for
the training process. Each client is identified by its unique
ID and a timestamp, which informs the server whether the
registration is still valid. The servers sub-node contains
messages from servers responding to clients who have ex-
pressed interest in joining the learning process. Each entry
is identified by a unique commonUID, a combination of the
server and client IDs, which allows the client to identify
the message addressed to it and the server with which it
should communicate during training. Additionally, each entry

CONFIGURATION

modelVersion
rounds

LEARNING EXCHANGE

clients:
    serverID_clientID

loss
priority
timestamp
weights

servers:
    serverID
        averageWeights

loss
        timestamp

SERVER SELECTION

clients:
    clientID
        timestamp
servers:
    serverID_clientID
        commonUID
        timestamp
        type

Server Client

KEEPALIVE

clients:
    serverID_clientID

type
timestamp

servers:
    serverID
        type
        timestamp

Fig. 5. Messages of the communication protocol.

{
"configuration": {
"modelVersion": ...,
"rounds": ...

},
... //other protocol nodes

}

Listing 1. JSON format of the Firebase Realtime Database with the
Configuration node.

includes a type field, where the server instructs the client
to wait until sufficient clients are gathered for training. The
newly designed structure and message types are illustrated in
Listing 2.

An essential message of the protocol is learning
exchange, which is pivotal for the exchange of local model
weights and losses between clients and the server and for
sending aggregated global model weights back to the clients.

{
"serverSelection": {
"clients": {

"<clientID-1>": {
"timestamp": ...

},
"<clientID-2>": ...,
...

},
"servers": {

"<serverID-1>_<clientID-1>": {
"commonUID": ...,
"timestamp": ...,
"type": ...

},
"<serverID-1>_<clientID-2>": ...,
...

}
},
... //other protocol nodes

}

Listing 2. JSON format of the Firebase Realtime Database with the Server
Selection node.

"learningExchange": {
"clients": {

"<serverID-1>_<clientID-1>": {
"loss": ...,
"priority": ...,
"timestamp": ...,
"weights": ...,

},
"<serverID-1>_<clientID-2>": ...,
...

},
"servers": {

"<serverID-1>": {
"averageWeights": ...,
"loss": ...,
"timestamp": ...

},
"<serverID-2>": ...,
...

}
}, ... //other protocol nodes

Listing 3. JSON format of the Firebase Realtime Database with the Learning
Exchange node.
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This message is divided into two sub-nodes.
The clients node contains the local model weights and

their loss, as well as a priority value, which accounts for
the priority of individual clients, determined, for instance,
by the amount of data each client uses to train its local
model. The servers node includes information that notifies
all clients of a given server about the training results per-
formed on the aggregated set of client weights. Specifically,
it contains the global weights clients utilize to update their
local models. The newly designed structure and message types
are shown in Listing 3. The final type of message is the
status keepalive (SKA), which is used for regularly
updating the database about clients’ and servers’ current state,
availability, and system control purposes. The newly designed
structure and message types are shown in Listing 4.

The mechanism of periodic updates from clients and servers
aids in system monitoring, maintaining stability, and ensuring
quick response times. This message is also divided into two
sub-nodes. The clients node contains records of individual
clients that report their status and ongoing processes through
the type parameter. These parameters’ values and expla-
nations are listed in Table I. The servers node contains
records that inform about the status and processes of individual
servers, also using the type parameter, as shown in Table II.

A critical factor is the scalability and efficiency of the
protocol, which is tied to the communication overhead. Com-
munication overhead refers to the total amount of data that
needs to be exchanged between the clients and the server
during the training rounds in a federated learning setup. This
overhead impacts the overall performance and feasibility of
federated learning, especially in environments with limited
bandwidth or network reliability. The most straightforward
formula for the communication cost, which often depends on
the size of the messages, the number of rounds, and number
of clients, can be approximated as follows:

C = 2R ·K · size(w)

{
"statusKeepAlive": {
"clients": {
"<serverID-1>_<clientID-1>": {

"timestamp": ...,
"type": ...,

},
"<serverID-1>_<clientID-2>": ...,
...

},
"servers": {
"<serverID-1>": {

"timestamp": ...,
"type": ...,

},
"<serverID-2>": ...,
...

}
},
... //other protocol nodes

}

Listing 4. JSON format of the Firebase Realtime Database with the Status
Keep Alive node.

TABLE I
TYPES OF CLIENT Status Keep Alive MESSAGES AND EXPLANATIONS OF

THEIR VALUES.

Value Type Explanation

1 O SERVER ACKNOWLEDGE – confirmation that the
client has accepted registration by the server.

2 P DATA – the client informs about its availability during
data collection.

3 O DATA COLLECTED – the client reports the completion
of data collection.

4 P TRAINING – the client informs about its availability
during training. This message is sent even when the
client is waiting for the server to finish training.

5 P READY – the client reports its availability and waits for
instructions from the server.

O – one-time message. P – periodic message.

TABLE II
TYPES OF SERVER Status Keep Alive MESSAGES AND EXPLANATIONS OF

THEIR VALUES.

Value Type Explanation

1 O DATA – the server issues a command to start data
collection.

4 O TRAINING – the server instructs clients to start training.
5 P ALIVE – the server reports its availability during client

data collection and training.
7 O CANCELLED – the server informs clients to stop the

current process and search for a new server.

O – one-time message. P – periodic message.

where R is the number of communication rounds, K is the
number of participating clients, and size(w) is the size of the
messages. The 2 is the factor. Each round of federated learning
involves two-way communication. The communication over-
head is defined for the learning exchange message. In
the case of the keep alive messages, for the keep-alive
mechanism respectively, if the message is expected every τ
seconds, then the total number of messages exchanged during
the training period T is M = T/τ . Figure 6 combines the
communication overhead for weight exchanges and keep-alive
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Fig. 6. Combined communication overhead of the protocol.
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Server Client
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SKA SERVER_ACKNOWLEDGE

SKA READY

SKA DATA
SKA ALIVE

SKA DATA

SKA DATA_COLLECTED

SKA TRAINING

SKA TRAINING

SKA ALIVE

LE

LE

Gathering clients

Waiting for clients
 to collect data

Waiting for clients 
to train model

Training global 
model

SS type=0

Fig. 7. Scenario of successful communication between client and server
during the training process.

messages. It includes different intervals (τ ) for keep-alive
messages and various communication rounds (R). The total
communication overhead is displayed in B, considering both
the size of the weight updates and the periodic keep-alive
signals.

A. Training Process

The training process for one round between the client and
server is illustrated in Figure 7 and is described from the
server’s perspective, which oversees federated learning.

Before initiating the federated learning process, both the
client and server load the initial configuration from the Fire-
base database, which includes the current version of the model
stored in the database and the number of rounds for training
the data model on the client’s data. Both client and server
check whether they have the current version of the model,
and if not, they download it from Firebase storage. The server
then transitions to the GATHERING CLIENTS state, which
is used for selecting clients for the federated learning process.
The client sends a server selection message with its
ID to the Firebase database and waits for a response from
the server. If the server has available space for the client, it
responds with a server selection message with a value
of 0. The client then confirms acceptance of the registration
by sending an SKA SERVER_ACKNOWLEDGE message. The
server selects clients until a sufficient number of them are
reached to start federated learning.

After selecting clients, the server moves to the COLLECT
DATA state. The server sends a SKA DATA message to all
its clients, informing them to start collecting data required
for training. During data collection, clients continuously send

SKA DATA messages to the server, and once they have
sufficient data for training, they inform the server with a
SKA DATA_COLLECTED message. After receiving this mes-
sage from all selected clients, the server transitions to the
TRAIN_MODEL state.

In the TRAIN_MODEL state, the server sends a SKA
TRAINING message to clients, instructing them to start train-
ing the current model on their data. During training, clients
inform the server of progress with SKA TRAINING mes-
sages. After completing training, the client sends a learning
exchange message to the server containing the weights of
the newly trained model and its loss.

The final state of the server is TRAIN_GLOBAL_MODEL,
which the server transitions to once it receives learning
exchange messages from all clients. In this state, the server
aggregates local model weights with consideration of their
losses using the Weighted FedAvg algorithm. The follow-
ing steps are determined after aggregating the weights, and
whether or not it is the last round of federated learning is
determined. If not, the server returns the aggregated weights
to the clients for further training rounds. If it is the final round,
the server creates a new global model from the aggregated
weights, stores it in Firebase storage, and updates the current
model version in the configuration message. This step com-
pletes the federated learning process, and the cycle starts a
new one.

During communication between the server and client, peri-
odic availability messages are also sent to inform both parties
that the counterpart is active. The server sends SKA ALIVE
messages, and the client sends SKA READY messages. If any
error occurs during training, the server informs clients with
a SKA CANCELLED message. Upon receiving this message,
clients terminate the current activity and return to searching
for a server for training.

V. RESULTS AND DISCUSSION

All components of the framework were tested locally during
the development phase. For the final testing, the complete
implementation was deployed in a real-world environment,
with the server hosted within the infrastructure of the Brno
University of Technology. This deployment enabled us to
observe the system’s behavior under real conditions, providing
opportunities for further development, testing, optimization,
and fine-tuning communication protocol when interacting with
mobile clients. Testing in a real-world environment verifies the
framework’s functionality. It is a foundation for monitoring
system operations, tracking communication between frame-
work components, analyzing resource utilization, and enabling
potential optimization.

The testing aimed to verify the functionality of both the
server and clients from various perspectives. For the server,
the reliability of communication between the backend and
frontend was tested, along with the security of its components
against misuse and the restriction of access to sensitive data
for unauthorized users. Additionally, the correct display of
information about the status of individual system components
and the ability to reliably shut down and restart the server
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were verified. A crucial part of the testing involved validating
communication functionality using the protocol, specifically
whether the server could correctly receive client messages and
respond appropriately. The ability to aggregate received local
weights using the FedAvg algorithm into global weights and
subsequently create and upload the global model to Firebase
storage was also verified.

Simultaneously with the server, the mobile application Ki-
Client was tested on real mobile devices. The application was
evaluated for its reliability in handling state changes during
communication with the server, correct implementation of the
communication protocol, and the ability to retrieve the global
model from Firebase storage and improve it using local data.

Testing confirmed the process’s correctness, from client
collection to model training. The server reliably registered
clients, responded to their messages, executed required ac-
tions, and sent appropriate responses. Combining Apache
Kafka and Firebase Realtime Database creates a versatile
and reliable communication channel that addresses potential
data loss. KiFramework’s integration with TensorFlow and
Firebase ensures seamless performance within the Android
ecosystem while highlighting opportunities for future cross-
platform adaptability. This setup is optimized for the Android
ecosystem, offering a robust solution for organizations lever-
aging Google technologies while paving the way for broader
compatibility in future iterations.

In future revisions or expansions of the communication
protocol, it is important to remember that using the Firebase
Realtime Database has certain constraints. These constraints
relate to the maximum depth of nesting and characters for
node names and values. The database allows nesting data up
to 32 levels deep. However, deeply nested structures can lead
to inefficiencies, as fetching data from a parent node retrieves
all child nodes. It is recommended to keep data structure as flat
as possible. Other constraints related to naming conventions
in the Firebase Realtime Database were encountered during
implementation. Ensuring compatibility requires adherence to
the prescribed naming conventions for weights and biases
(keys and values).

Each key can be up to 768 bytes in size and must be UTF-
8 encoded and cannot contain certain characters. Individual
string values can be up to 10 MB in size. Storing excessively
large strings can impact performance and increase latency. In
case of the size of data downloaded from the database at a
single location, it should be less than 256 MB for each read
operation [25]. Following these conventions helps manage the
limitations and ensures the smooth operation of the communi-
cation protocol. As a mitigation strategy, KiFramework can al-
leviate data structure limitations by designing flatter and more
efficient JSON structures. A middleware layer could take care
of data transformation and validation, ensuring compatibility
while optimizing database performance. To ensure compat-
ibility, proper database functionality, and communication, it
is essential to adhere to the prescribed naming conventions,
assign appropriate values, and structure the data accordingly.

Simulation results validate the communication protocol’s
effectiveness in controlled environments, though real-world
deployments may bring additional complexities requiring on-

going evaluation and refinement. TensorFlow Lite is a pow-
erful tool for deploying machine learning models on Android
devices, offering optimized performance and a smaller foot-
print. However, its design prioritizes efficiency and mobile
compatibility, which introduces specific considerations. These
considerations are opportunities for adaptation and optimiza-
tion to align with mobile constraints.

TensorFlow Lite is tailored for mobile and edge devices,
which means it may not natively support all TensorFlow
models and operations, particularly those that are complex
or resource-intensive. It encourages the creation of models
that are efficient and well-suited to the limitations of mobile
hardware, ensuring smoother deployment and runtime perfor-
mance.

Further, TensorFlow Lite is designed with model size re-
strictions to accommodate the memory and storage constraints
typical of mobile devices. While this may limit the types
and sizes of models that can be directly deployed, it also
inspires innovation in model compression and optimization
techniques. Techniques such as quantization, pruning, and
knowledge distillation can be employed to significantly reduce
model size while maintaining performance.

TensorFlow Lite provides a robust set of pre-defined oper-
ations, but its support for custom operations is limited [26].
When working with models that rely on specialized or less
common operations, this presents an opportunity to explore
alternatives, such as converting those operations into supported
equivalents or implementing custom operators.

Models with dynamic inputs or architectures may require
adjustments to work seamlessly with TensorFlow Lite, which
generally favors static computation graphs for improved ef-
ficiency. Developers can address this by restructuring their
models to use fixed input shapes where possible or leveraging
TensorFlow Lite’s flexibility to handle dynamic behavior with
appropriate configurations. Mitigation tactics also depend on
collaboration with Google developers and updates to the Ten-
sorFlow Lite used. There was a major update at the beginning
of the year 2024 and there is currently a new version called
LiteRT in the stable version that will need to be migrated
to [27].

To decrease the communication overhead, here are several
strategies that could be implemented without compromis-
ing the integrity of the federated learning process. These
modifications focus on reducing the size and frequency of
the data being exchanged and optimizing the communication
process. Instead of sending the entire set of weights after
each round, clients can send only the delta, the difference
between the current weights and the weights from the previous
round. This technique, called Model Delta Communication,
can drastically reduce the amount of data transferred, as only
the changes to the model parameters are transmitted. The other
option is to use the Hierarchical Federated Learning technique.
It introduces an intermediate aggregation layer between the
clients and the central servers. These intermediate nodes can
aggregate local updates from nearby clients, reducing the
number of updates the central servers must handle.

Regarding the comparison between the current solutions and
the solutions we have developed, we can compare in par-
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ticular the functional characteristics. Our solutions are based
on specific requirements. KiFramework improves scalability
by leveraging a multi-server architecture. It also improves
real-time communication by integrating Firebase for instant
synchronization and Apache Kafka as a backup communi-
cation channel, making it more resilient in the real world.
In addition, KiFramework is specifically designed for An-
droid devices, allowing real deployment beyond simulation.
KiFramework extends the capabilities of existing solutions
like Flower and KafkaFed by incorporating real-time database
integration through Firebase Realtime Database. While Flower
and KafkaFed excel in their respective domains, they do
not natively include real-time database capabilities. KiFrame-
work’s use of Firebase addresses this gap, enabling instant
synchronization of data across multiple mobile devices. This
feature is particularly valuable in scenarios requiring high re-
sponsiveness and consistency, such as emergency management
or collaborative mobile applications. It also provides a two-
layer communication approach, which increases reliability and
resilience, especially in environments where network outages
are common.

By using technologies as diverse as JSON, Firebase and
Kafka, the protocol provides a strong foundation for cross-
platform integration. Future enhancements such as protocol
abstraction and platform-specific software development kits
will further extend its usability. These include the transition
of the framework to a cross-platform solution, as well as the
use of the new LiteRT, which also supports cross-platform
solutions to a greater extent.

VI. CONCLUSION

This paper introduces KiFramework, a federated learning
platform specifically designed for crisis management applica-
tions on Android devices. The framework addresses critical
challenges in decentralized model training, such as limited
computational power, data heterogeneity, and strict security
requirements. By combining Apache Kafka and Firebase Re-
altime Database, KiFramework provides reliable communi-
cation, robust data exchange, and real-time synchronization
among distributed components. The inclusion of TensorFlow
Lite on client devices enables efficient model training. At
the same time, adaptive learning algorithms adjust updates in
response to infrastructure changes, ensuring models remain
relevant and accurate in dynamic environments.

Despite some considerations, such as TensorFlow Lite’s
constraints on model size and compatibility with complex
models, the framework demonstrates strong performance in
real-time operations. Simulation results confirm the efficacy
of the communication protocol, though real-world implemen-
tations may introduce complexities that require continuous
monitoring and adaptation.

KiFramework stands out by combining Firebase and Apache
Kafka, leveraging their strengths to provide seamless real-time
synchronization and resilient fallback communication, ensur-
ing uninterrupted operations. The structured communication
protocol, utilizing JSON, enhances clarity and interoperability,
making it suitable for Android’s ecosystem and real-time
decision-making scenarios.

The framework has been implemented and tested in con-
trolled and real-world environments, confirming its readiness
for deployment in critical infrastructure systems. Its ability
to ensure privacy, maintain reliable communication, and de-
liver efficient model updates makes it a valuable solution
for emergency management applications. Further development
will focus on improving the web-based management of server
configurations, enhancing monitoring capabilities for federated
learning processes, reducing communication overhead and
multi-platform migration.

to influence the work reported in this paper.
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