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Abstract—Fog computing has become an attractive computing
method for different IoT (Internet of Things) applications that
require low latency and location awareness. It provides low
latency by bringing computational power closer to the network
edge, working as a complement to cloud computing. Despite its
advantages, fog computing faces challenges due to the limited
resources (CPU processing capacity, network bandwidth, mem-
ory, and power backup) of fog nodes. This work introduces a
novel optimization model for a cooperative fog-cloud environment
dealing with dynamic traffic. We analyze how different arrival
rates impact bandwidth costs, link utilization, and server resource
utilization. Our results show that fog resource utilization is
greater than cloud resource utilization under varying traffic
conditions, with blocking rates remaining within an acceptable
range (0-15%). The key contributions include the formulation
of an optimization model that optimizes resource allocation,
addresses blocking factors in fog networks, and offers valuable
insights for managing dynamic traffic in fog computing networks.

Index Terms—Fog Computing, Dynamic Traffic Engineering,
IoT, Resource Utilization, Blocking Rates.

I. INTRODUCTION

In the current era of overwhelming Internet access, the
Internet of Things (IoT) has become an important part of our
daily lives. It enables seamless interaction between devices
and humans, without the need for manual intervention. IoT
is demonstrating its potential in home automation, smart
cities, industrial automation, agriculture, healthcare, education,
transportation systems, and various other smart applications
[1], [2]. With time, the number of connected IoT devices is
increasing, and the number is projected to be 500 billion by
2030 [3], [4]. A white paper by Cisco Systems Inc. reveals
that intranet and Internet traffic is doubling every 100 days
[5].

Conventionally, IoT traffic is routed to the remote cloud
for processing, and after processing, the result is sent back to
the edge or stored at the cloud. This conventional technique
is considered costly and time-consuming. Additionally, cloud
computing suffers from a lack of mobility support, location
awareness, and sometimes, a concern for privacy [6]. For

Manuscript received August 26, 2024; revised September 10, 2024. Date
of publication October 10, 2024. Date of current version October 10, 2024.
The associate editor prof. Claudia Canali has been coordinating the review of
this manuscript and approved it for publication.

Authors are with the KUET, Bangladesh (e-mails: shahriar@ece.kuet.ac.bd,
rahinur2k11@gmail.com.)

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0061

latency-sensitive applications, it is necessary to process IoT
traffic closer to avoid long-distance communication among
IoT devices and the cloud. This can be achieved through
fog computing, which works in conjunction with cloud com-
puting [7]. Fog nodes provide the data processing facility
in a decentralized way. Fog nodes are low-to-moderately
resourceful devices such as set-top boxes, smart gateways,
switches, routers, and base stations, and resourceful appliances
like cloudlets or dedicated fog devices [8], [9]. Collaboration
among these fog nodes plays a vital role in making the
fog computing paradigm more successful. For the effective
utilization of fog resources, server-level and link-level load
balancing is important. Cooperative fog computing can provide
better load distribution and avoid over and under-utilization of
fog nodes.

Our goal is to adopt the fog cloud computing model to
facilitate novel applications of fog computing, such as real-
time tracking of vehicles and patients, smart homes, smart
cities, smart agriculture, and more. According to fog We
formulated our model as an abstraction of fog layer-1, fog
layer-2, and cloud layers with realistic resource capacities
to give a clear idea to fog service providers. We have kept
the provision for fog service providers to introduce dedicated
fog analytics devices in this model, which would facilitate
deploying real fog computing services.

The main contributions of our works are as follows:

• Development of a Mixed Integer Linear Programming
(MILP)-based optimization model for dynamic traffic in fog-
cloud environments.

• Comprehensive analysis of fog and cloud layer resource
utilization (bandwidth, link, and server capacity) under varying
traffic loads.

• Introduction of blocking rate analysis to evaluate system
performance under resource constraints, which has not been
explored for fog computing in the existing literature.

The rest of this paper is organized as follows: Section II
reviews related works on fog computing applications, opti-
mization models, and cooperative traffic management. Section
III covers system assumptions, problem formulation, and the
cooperative fog computing architecture. Section IV discusses
simulation procedures and analyzes results on bandwidth costs,
resource utilization, and blocking rates. Section V concludes
this work and outlines our future research directions.
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II. RELATED WORK

Researchers from various fields, including Cloud Comput-
ing (CC), Mobile Cloud Computing (MCC), Mobile Edge
Computing (MEC), Content Delivery Network (CDN), and
IoT, are advancing fog computing through new architectures
and frameworks to optimize fog resource utilization [10]. In
[11], authors propose novel applications of fog computing for
healthcare systems, where fog computing is employed for on-
site analysis of wearable devices and environmental sensor
data. Fog computing shows significant potential for multi-
media applications by enabling low-latency, high-throughput
experiences [12], [13]. Additionally, it plays a crucial role in
big data processing within smart grids, facilitating tasks such
as real-time monitoring and load balancing [14].

For fog computing systems, data acquisition and its mod-
eling are important [15]. In [16], authors demonstrated that
the nature of aggregated IoT traffic can be modeled as a
Poisson distribution. In [17], authors proposed constrained
programming to solve the service placement problem, where
application arrivals follow a Poisson distribution. In [18],
authors discuss how traffic patterns in fog networks are
constantly changing, i.e., the dynamic nature of traffic, and
suggest an algorithm for placing virtual machines optimally to
reduce latency and maximize resource use. In [19], the author
developed a dynamic traffic engineering model with linear
programming to improve network resource utilization for
integrated services networks. The dynamic traffic engineering
method is used in [20] for maintaining effective quality of
service (QoS) for software-defined overlay networks. In the
case of QoS improvement for dynamic traffic engineering,
resource shortages are common, so identifying the type of
shortage is necessary.

Depending on the nature of IoT traffic and computing
effectiveness, authors are proposing cooperative and non-
cooperative fog computing frameworks. Cooperative fog com-
puting is a powerful computing paradigm for resource-
constrained environments [21]. To handle dynamic traffic
from different regions, cooperative fog computing is more
effective than non-cooperative fog computing. To address the
performance of any fog computing architecture, fog-to-fog
collaboration is desired [22]. Cooperative fog computing has
the ability to maximize network throughput and efficiently
utilize resources [23], [24]. Task offloading in the case of
fog computing uses different approaches depending on the
collaboration strategy. In [25], authors proposed a hierarchical
architecture for vehicular fog computing and utilized a task
offloading strategy to improve computing efficiency.

Balancing loads in cooperative fog computing is also vital
for avoiding overutilization of any servers or links [26].
Researchers use a variety of load-balancing techniques to
increase service quality and resource utilization. For continu-
ous monitoring of fog computing nodes, links, and allocation
of resources for incoming requests in an efficient manner,
a central monitoring system is required [26]. Software or
hardware equipment is utilized as a manager to distribute loads
among various resourceful nodes [27]. Also, consideration of
fog resources for serving as the central controller for balancing

loads in any fog computing system is beneficial in terms of
capital cost. Balancing loads in edge computing is analyzed
in [28]; they use intermediary nodes as a central controller.
In [29], authors proposed a dynamic load balancing technique
considering the dynamic nature of cooperative fog computing
systems. As there are more and more fog nodes’ involvement
in this processing, server-level load balancing could speed up
the processing scheme.

Also, bandwidth cost, delay, and energy cost minimization
for cooperative fog computing have become attractive research
topics in recent times for making this computing suitable for
IoT applications [30], [31]. In [3] and [32], authors accom-
plished delay and energy minimization for edge computing
and fog computing. In [33], authors proposed an efficient
scheduling algorithm to minimize delay and energy cost in
fog computing. Their scheduling algorithm performed well to
reduce delay and energy consumption compared to the non-
preemptive algorithm FCFS. The task scheduling problem also
gets attention in [34]. In this work, authors propose modified
artificial ecosystem-based optimization in fog cloud environ-
ments for effective IoT task scheduling. Their alternative
task scheduling algorithm improved the system’s performance.
Also, in [35] authors have utilized fog computing for smart
farming with energy, delay, and resource consumption anal-
ysis. In our previous work [36] we accomplished bandwidth
cost minimization, link-level load balancing, and server-level
load balancing for three layer fog cloud computing.

Maintaining Quality of Service (QoS) for fog computing
is another significant challenge [37]. Fog service disruption
due to resource unavailability can occur, especially during
periods of burst traffic. The vehicular network environment
poses traffic congestion due to the bursty nature of vehicular
traffic data [38]. In this work, authors propose a clustering-
based computation method for reducing cloud traffic on the
network. In [39], authors proposed a model for managing
local traffic in vehicular fog computing and demonstrated
traffic congestion mitigation through simulation. Due to the
heavy involvement of local nodes, effective resource-level load
balancing and service blocking analysis are essential. Service
occlusion in geo-distributed cloud data centers is discussed
in [40], [41]. Fog computing faces greater resource shortages
than diversified data centers, necessitating a robust frame-
work for maintaining service availability. Studies [42], [43]
covered service availability and reliability, and [44] proposed
an optimization model for reliability and QoS, focusing on
reducing bandwidth waste and energy consumption. However,
the impact of server and network resource shortages on user
requests remains unexplored.

So far works we discussed here, no one analyzed how fog
computing resource usage varies for different arrival rates
of requests. In addition to analyzing a few metrics such as
bandwidth cost (cost-effectiveness), link utilization, and server
resource utilization, we also conducted an in-depth analysis of
the blocking rate due to the non-availability of fog resources in
fog computing environments. Notably, the analysis of blocking
was not explored in the existing literature we reviewed. This
is the key contribution of our work beyond the state-of-the-
art progress, and thus our work fills a significant gap in this
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TABLE I
COMPARISON OF RELATED WORKS FROM DIFFERENT PERSPECTIVES

Parameters

Reference Papers Optimization type Impact analysis
of arrival rate

Extraction of
layer-wise resource
utilization

Analysis of
blocking rate

Perception of service
disruption factors

[30] SP Singh et al. Energy cost and
delay No No No No

[45] G Shruthi et al. Server resource and
execution time No No No No

[46] LA Phan et al. Link and server
resource No No No No

[31] Kadhim et al. Network, server
resource, and Delay, No No No No

[47] S Bebortta et al. Energy cost and
delay No No No No

[48] Mukae et al. Energy cost and
delay No No No No

[49] Saif et al. Energy cost and
delay No No No No

[50] Singhal et al. Energy cost and
delay No No No No

[51] MB Kamal et al. Server resource No No No No

[52] N Villegas et al. Energy and monetary
cost Yes No No No

[36] MMS Maswood et
al.

Bandwidth cost,
link/network, and
server resource

No No No No

Our proposed
Bandwidth cost,
link/network, and
server resource

Yes Yes Yes Yes

area of research. Also, we believe our optimization model will
enable fog service providers to assess the fog architecture’s
responsiveness to dynamic traffic patterns.

III. SYSTEM ASSUMPTION AND PROBLEM FORMULATION

Figure 1 shows the fog computing architecture. According
to [53] and [36], while assuming a fog computing system for
the better utilization of fog resources, we considered three
layers, namely fog layer-1, fog layer-2, and cloud. Fog layer-
1 has less powerful computing resources than fog layer-2 and
cloud. According to [28] bandwidth of fog layer-1 is broader
than fog layer-2 and cloud. Given their proximity, we assume
the bandwidth cost of fog layer-1 is lower than that of fog
layer-2 and the cloud. The fog layer-1 is divided into four
regions, and in each region, there are many IoT devices. Each
region has a central gateway called a cluster point (CP). Sensor
nodes send their data to their regional CP, which needs further
processing and is denoted as a request. Each request consists
of two tuples: ⟨h, r⟩ where h is the bandwidth demand and
r is the server resource demand. Demands are aggregated at
CP, forming as Hi aggregated bandwidth demand and Ri as
aggregated resource demand. In our framework, we model
demand generation using a Poisson distribution, and arrival
rates influence the duration of demand.

In this work, we assume that cost-effective fog servers in a
CP’s own region primarily handle the requests. If the region’s
servers cannot meet the demand, the request is forwarded to
other regions within fog layer-1. If the fog layer-1 servers’
resources are not sufficient, then the request is placed at fog
layer-2 and finally at the cloud, which is the most costly

layer. A Software Defined Network (SDN) controller will
be used to solve our formulated MILP optimization model
and allocate resources in real time based on demand. The
controller can either be hosted on a dedicated server by fog
service providers or on layer-2 fog computing nodes with
sufficient resources. When any CPs have aggregated demand,
first the CP’s aggregated demand profile (which is a few KB
in size and can be neglected in bandwidth consumption) is
sent to the SDN controller. The SDN controller then decides
suitable servers and sends the data forwarding rules to the CP.
The CP updates its data forwarding table and sends requests
accordingly.

The meaning of the notations used to formulate the model
is explained in Table II.

A. Constraints

We consider Hi as the aggregate bandwidth demand gen-
erated from all sensor nodes in the region of cluster point i.
Therefore, Hi can be expressed mathematically as:

Hi(t) =
∑
n∈Ni

hni(t), i ∈ I (1)

Similarly, we denote the total resource demand generated
by all sensor nodes under cluster point i by Ri.

Ri(t) =
∑
n∈Ni

rni(t), i ∈ I (2)

The generated bandwidth demand from each zone i can be
satisfied by the available bandwidth of its own region, other
regions of fog layer 1, fog layer 2, or the cloud. It may appear
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Fig. 1. Fog computing architecture.

that at any review point, requests can experience blocking due
to a shortage of bandwidth resources to reach a server. In
this case, an artificial bandwidth resource allocation ỹi(t) is
considered.

ỹi(t) +
∑
s∈S

ysi (t) = Hi(t), i ∈ I (3)

A binary variable f̃i(t) is considered to indicate the artificial
allocation of bandwidth resources.

ỹi(t) ≤ Mf̃i(t), i ∈ I (4)

Additionally, we can serve a request from a cluster point
using either real or artificial allocation of bandwidth resources,
but these two options are mutually exclusive.

f̃i(t) + qi(t) = 1, i ∈ I (5)

For a real allocation of bandwidth resources, the total amount
of links’ bandwidth required to serve a request can be ex-
pressed as:

∑
s∈S

ysi (t) = Hi(t)qi(t), i ∈ I (6)

Path flow variables are used to establish paths from the
source cluster points to destination servers. The bandwidth
demand allocated over the path from cluster point i to desti-
nation server s is denoted as xs

ip:

∑
p∈P s

ip

xs
ip(t) = ysi (t), i ∈ I, s ∈ S (7)

Links that form a path must carry the fraction of demand
Hi if any bandwidth is allotted to that path p. Therefore, by
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TABLE II
NOTATIONS USED IN FORMULATION

Constants:
S = Set of servers.
I = Set of cluster points (CP).
Ni = Set of sensor nodes under cluster point i.
L = Set of links.
P s
ip(t) = Set of paths from CP i to server s at review point t.

hni(t) = Bandwidth demand generated by sensor node n at CP i at review
point t.
rni(t) = Resource demand generated by sensor node n from CP i at
review point t.
Hi(t) = Aggregated bandwidth demand generated by all sensor nodes
from CP i at review point t.
Ri(t) = Aggregated Resource demand generated by all sensor nodes from
CP i at review point t.
cl(t) = Available capacity on link l at review point t.
as(t) = Capacity of server s at review point t.
δsipl(t) = Link-path indicator: 1 if path p which is set up from CP i to
server s uses link l in order to satisfy demand of CP i by server s at
review point t, 0 otherwise.
α, β, γ = Weight parameters related to three optimization objectives.
Variables:
ysi (t) = Bandwidth allocation for traffic from CP i to server s at review
point t.
ỹi(t) = Artificial bandwidth allocation for traffic from CP i if request can
not be served due to bandwidth shortage at review point t.
f̃i(t) =Binary variable to indicate artificial bandwidth allocation.
qi(t) =Binary variable to indicate real bandwidth allocation.
xs
ip(t) = Bandwidth allocation in path p, if traffic from CP i to server s

uses path p at review point t.
zsil(t) = Total bandwidth demand from link l for requests generated from
CP i and served by server s at review point t.
u(t) = Maximum utilization of all links at review point t.
gsi (t) = Resource allocation for traffic from CP i to server s at review
point t.
g̃i(t) = Artificial bandwidth allocation for traffic from CP i if request can
not be served due to server resource shortage at review point t.
j̃i(t) = Binary variable to indicate artificial server resource allocation.
di(t) =Binary variable to indicate real server resource allocation.
b̃i(t) = A binary variable to indicate artificial allocation for both band-
width and server resource shortages.
k(t) = Maximum utilization of all servers at review point t.

considering every path from i to s, we can determine the flow
on each link l:∑

p∈P s
ip

δsipl(t)x
s
ip(t) = zsil(t), l ∈ L, i ∈ I, s ∈ S (8)

We need to assign another constraint to maintain link-level
load balancing and prevent overuse of any links. The whole
bandwidth allocated from any link cannot exceed the maxi-
mum link utilization times its capacity.∑

i∈I

∑
s∈S

zsil(t) ≤ cl(t)u(t), l ∈ L (9)

Note that the maximum utilization of any link cannot be
greater than 1 at any point.

0 ≤ u(t) ≤ 1. (10)

Similar to Equation 11, we satisfy the resource demand
generated from region i using the available resources from
its own region, other regions in fog layer-1, fog layer-2,
or the cloud. Similar to bandwidth shortages, situations of

server resource shortages may occur. In the case of server
resource shortages, we consider an artificial allocation of
server resources denoted as g̃i(t).

g̃i(t) +
∑
s∈S

gsi (t) = Ri(t), i ∈ I (11)

To keep track of the artificial allocation of server resource
shortages, a binary variable j̃i(t) is also considered.

g̃i(t) ≤ Mj̃i(t), i ∈ I (12)

As real and artificial allocation of server resources for a request
is mutually exclusive, we can express it as eqn. 5.

j̃i(t) + di(t) = 1, i ∈ I (13)

So, for the real allocation of server resources, the total server
resource allocation can be expressed as:∑

s∈S

gsi (t) = Ri(t)di(t), i ∈ I (14)

We use constraint (15) to maintain proportionality between
bandwidth allocation and server resource allocation. If more
bandwidth is allocated to a path from cluster point i to server
s, then more computational capacity will be used from that
server s.

Hi(t)g
s
i (t) = Riy

s
i (t), i ∈ I, s ∈ S (15)

Similar to constraint (9) to maintain server-level load bal-
ancing and prevent overutilization of any servers, another
constraint is required. The total amount of server resource
allocation from any server cannot exceed the maximum server
utilization times its capacity.

∑
i∈I

gsi (t) ≤ as(t)k(t), s ∈ S (16)

Since the maximum utilization of any server s cannot
exceed 1.

0 ≤ k(t) ≤ 1 (17)

To keep track of blocking that happens in the system due to
a shortage of bandwidth and server resources, we introduce
another binary variable, b̃i(t) as:

b̃i(t) = f̃i(t)j̃i(t), i ∈ I (18)

B. Objective Function

There are three goals of this work: minimizing the band-
width cost of routing, maximizing link utilization, and maxi-
mizing server resource utilization. These goals are presented
with the composite objective function as given in eqn. 19. By
varying the three weight factors α, β, and γ we can adjust the
priority associated with each part. Thus, the objective function
can be written as:

minα
∑
s∈S

∑
i∈I

∑
l∈L

zsil(t) + βu(t) + γk(t)

+M
∑
i∈I

(f̃i(t) + j̃i(t)) (19)
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In summary, the goal of the optimization problem is to
minimize eqn. 19 subject to the constraints 3 - 18.

C. Dynamic Traffic Engineering

Dynamic traffic engineering with a software-defined net-
work is employed to manage traffic loads and enhance overall
network performance. In the fog computing environment,
traffic from the cluster points arrives randomly. In dynamic
traffic engineering, resource allocation and release occur at
each review point t, as shown in Fig.2. Review points t ∈ T
where T represents a temporal window for dynamic traffic en-
gineering. In the figure, the notation s c n and e c n denotes
the start and end of the nth request from cluster point c. At
each review point, the model is solved for incoming requests
from the cluster points. With the help of the SDN controller
our framework can be adopted to handle the real traffic as
well. In case of real traffic, the optimization model will run
at each review point inside the SDN controller as mentioned
above. Then the resource will be allocated optimally to satisfy
real traffic generated in fog computing.

IV. SIMULATION SETUP AND RESULT ANALYSIS

In our work, we formulated a MILP-based optimization
problem and evaluated it using AMPL/CPLEX 12.10.0.0.
Topology-related values used in our simulation are shown in
Table III. According to [28], we have considered the fog layer-
1 links’ capacity as 100 Mbps, the fog layer-2 links’ capacity
as 70 Mbps, and 50 Mbps for the cloud. We considered
dynamic traffic demand from different cluster points. Table IV
shows values of different traffic demand from cluster points.
Here, we considered a heterogeneous demand profile from four
cluster points. For creating the maximum level of heterogene-
ity, we considered four demand profiles ⟨h1 , r1⟩ to ⟨h4 , r4⟩.
The sum of bandwidth demand and server resource demand
differs between sets by 12 Mbps and 3 GHz, respectively. We
simulated the ⟨h , r⟩ tuple considering arrival rates from 0.75 to
2 with an increment of.25. The requests from different cluster
points followed a Poisson distribution model. A lower arrival
rate results in a larger time window, while a higher arrival
rate indicates greater resource demand within a moderate time
window. For our fog-cloud optimization model, selecting an
arrival rate below 0.75 allows for observing significant findings
over a longer time window. We began the simulation with an
arrival rate of 0.75 and increased it to 2. Arrival rates above 2
led to a high blocking rate due to the simultaneous arrival of
requests from different cluster points within a short time. We
used five seeds for every arrival rate to justify our framework.
Using shell scripting and the AWK programming language,
we did our simulation and post-result analysis. We simulated
our problem on a personal computer with a Linux operating
system running on an Intel Core i5-8250U processor and 16
GB of memory.

We observed the change in bandwidth cost and average
resource utilization with time for different arrival rates, while
priority was given to bandwidth cost minimization, link-level
load balancing, and server-level load balancing. We changed

demands according to table IV and observed different varia-
tions in results. By accumulating all demand sets’ results for
different arrival rates, we formulated arrival rate-wise result
variations. Due to the bursty nature of IoT traffic and shortage
of resources at fog nodes, blocking happens in fog computing,
so we have also figured out the blocking probability for
different arrival rates and resource shortage types.

TABLE III
TOPOLOGY RELATED PARAMETERS

# of CPs 4 (1 in each region)

Maximum # of available
servers in each layer

Fog Layer-1 4 (each region)
Fog Layer-2 8
Cloud 40

# of links/hops required
to establish path from each CP

Fog Layer-2 10
Cloud 20

Per unit cost of bandwidth
consumed from each link, εsl

εf1
l

1
εf2
l

2
εcl 5

Links’ capacity (in Mbps)
Fog Layer-1 100
Fog Layer-2 70
Cloud 50

Capacity of each
server (in GHz)

2.5

TABLE IV
BANDWIDTH AND RESOURCE DEMAND

Bandwidth Demand (Mbps)

Notation CP1 CP2 CP3 CP4

h1 1 3 5 7

h2 10 8 6 4

h3 7 9 11 13

h4 16 14 12 10

Resource Demand (GHz)

Notation CP1 CP2 CP3 CP4

r1 0.25 0.75 1.25 1.75

r2 2.5 2 1.5 1

r3 1.75 2.25 2.75 3.25

r4 4 3.5 3 2.5

A. Changes in Bandwidth Cost and Resource Utilization for
Different Arrival Rates

Fig. 3 shows the changes in bandwidth costs with time for
different arrival rates, while priority is given to bandwidth cost
minimization. From the figure, for higher arrival rates, the
bandwidth costs are higher than for lower arrival rates. The
figure is drawn except for the arrival rate of .75 which has a
very long duration compared to other arrival rates.

In cases of lower arrival rates, requests persist for longer
than at higher arrival rates. The arrival of requests per unit
time is proportional to the arrival rates. At the high arrival rate,
the request arrival time is short, so the generation of the same
number of requests occurs in a short time as compared to the
low arrival rate. In the event of lower arrival rates, bandwidth
demands are mostly satisfied by the two fog layers, where the
per-unit bandwidth cost for each link is low. As the two low-
cost layers are heavily used, the bandwidth costs are low for
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Fig. 2. Dynamic traffic engineering framework in fog computing environment
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lower arrival rates. From the different arrival rate curves, the
lowest arrival rate of 1.00 has the lowest bandwidth cost of
all the arrival rate curves.

For higher arrival rates, the resources of fog layer-1 and
fog layer-2 are consumed very quickly, meaning the loads are
transferred to the cloud within less time than for lower arrival
rates. There is less scope for higher arrival rates to avoid the
cloud layer. Due to the maximum usage of the costly cloud
layer, bandwidth costs for higher arrival rates increase. Here,
the maximum arrival rate of 2.00, which uses the cloud layer,
mostly depicts the maximum bandwidth cost.

So, for designing a realistic fog computing architecture,
the necessity of increasing the link bandwidth can be easily
realised from the above discussions.

Fig.4 shows the changes in average link utilization over time
for different arrival rates, with priority given to link-level load
balancing. In this case, we emphasize the weight factor β.
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From the figure, it is clear that as the arrival rates increase,
the values of average link utilization also increase.

For high arrival rates, all the requests arrive in a very short
time compared to lower arrival rates. The involvement of links
or usage of link resources is the highest. For the lowest arrival
rate of 1.00 the maximum average link resource utilization is
18.50%. On the other hand, for the highest arrival rate, the
value of maximum average link utilization is 35.20%.

Request arrival and mitigation make huge transition points
on the curves. As the link capacity varies more than the per-
link bandwidth cost for different layers, the transitions in the
curves are more noticeable than the bandwidth cost curves.

Fig. 5 depicts the changes in average server utilization with
time when priority is given to server-level load balancing.
In this case, we emphasize the weight factor γ. The figure
shows that as the arrival rates of requests increase, the servers’
resource utilization also increases.

Server-level load balancing is performed to avoid over-
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Fig. 5. Average server utilization with time for different arrival rates

utilization of any servers so that demands are distributed
among possible destinations, resulting in fair resource utiliza-
tion. For a lower arrival rate of 1.00, the maximum average
server utilization is 31.00%. On the other hand, for the highest
arrival rate of 2.00, the maximum average server utilization is
60.00%.

The average server utilization curves have fewer zigzag
transition patterns than the average link utilization curves. The
zigzag transition pattern depends on the differences in capacity
of server resources among different layers. Server capacity
is assumed to be the same across different layers and only
varies the number of servers within each layer. As a result,
the average server resource utilization curves are smoother
than the time versus link utilization curves.

B. Layer-wise Resource Utilization with Time for Different
Arrival Rates

From the previous discussion, the fog architecture has three
layers: fog layer-1, fog layer-2, and cloud/layer-3. Different
layers’ resources are used differently according to the opti-
mization objectives.

Fig. 6 shows the usage of different layers’ link resources
for different arrival rates, while priority is given to bandwidth
cost minimization. From the figure, fog layer-1 link utilization
is higher than the other two layers. For bandwidth cost
minimization, demands are mitigated within the lower fog
layers rather than forwarding to the costly cloud layer.

From the figure, for lower arrival rates, the usage of the
cloud layer is minimal and increases with arrival rates. Due to
the nature of traffic at greater arrival rates, the use of the cloud
layer is unavoidable. For the value of the highest arrival rate
of 2.00 Layer-1 link resource utilization is 27.00%, layer-2
utilization is 11.00%, but layer-3 utilization is only 4.00%.

Fig.7 depicts the usage of different layers’ server resources
while priority is given to bandwidth cost minimization. In this
case, layer-1 servers’ resources are used more than the other
two layers for all arrival rates.
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Fig. 6. Arrival rate versus link utilization for bandwidth cost minimization
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Fig. 7. arrival rate versus server resource utilization for bandwidth cost
minimization

Bandwidth cost minimization aims to mitigate bandwidth
demand from lower fog layers. Server resource utilization
during bandwidth cost minimization maintains rationality in
bandwidth allocation. According to the assumptions, network
bandwidth resources are greater than server resources. From
Fig. 6 and Fig. 7 for every arrival rate, it can be observed that
servers’ resource utilization percentages are higher than links’
bandwidth utilization percentages.

Fig. 8 illustrates layer-wise link resource usage at various
arrival rates with link-level load balancing. At lower arrival
rates, link utilization is nearly equal across layers due to
effective load distribution. At higher arrival rates, utilization
varies because of the heterogeneity in link capacities and bursts
of incoming requests.

Fig. 9 shows layer-wise server resource utilization for
different arrival rates, while priority was given to link-level
load balancing. The figure indicates proportionate resource
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balancing
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Fig. 9. Arrival rate versus layer-wise server resource utilization for link-level
load balancing

allocation. During link-level load balancing, a proportionate
resource allocation occurs. Layer-1 fog server resources are
very low, so the proportionate bandwidth and server resource
allocation show that layer-1 server resource utilization percent-
age is higher than the other two layers.

Fig. 10 depicts the changes of layer-wise server resource
utilization for different arrival rates, while priority was given
to server-level load balancing. From the figure, for lower and
higher arrival rates, layer-wise server resource utilization is the
same. Layer-1 and layer-2 server resource utilization curves
coincide with each other. This happens because the purpose
of server-level load balancing is to distribute loads among all
servers to avoid overutilization of servers.

Fig. 11 depicts the changes of layer-wise link resource
utilization for different arrival rates, while priority was given
to server-level load balancing. The figure shows that the per-
centage of layer-1 link utilization is higher than the other two
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Fig. 10. Arrival rate versus layer-wise server resource utilization for server-
level load balancing
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Fig. 11. Arrival rate versus layer-wise link utilization for server-level load
balancing

layers for every arrival rate. For server-level load balancing,
priority is given to balancing loads among servers. So the three
layers’ server resource utilization is the same. Layer-wise link
resource utilization is not equal due to the heterogeneity of
links’ capacity.

C. Optimization and blocking rates

Blocking occurs when a request is rejected upon arrival due
to insufficient bandwidth or server resources. In the formulated
framework, blocking may happen in cases of resource short-
ages (network or server).

Fig. 12 shows the arrival rate versus blocking percentage,
while priorities are given to bandwidth cost minimization, link-
level load balancing, and server-level load balancing. From the
figure, it can be observed that, as the arrival rate increases, the
blocking percentage also increases.
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When priority is given to bandwidth cost minimization,
the blocking percentage is higher than for the other two
optimization objectives for every arrival rate. The second
most blocking happens for link-level load balancing, and the
blocking percentage is the minimum for server-level load
balancing.
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Fig. 13. Arrival rate versus blocking rate for bandwidth cost minimization.

Fig. 13 depicts the blocking percentage for various arrival
rates when bandwidth cost minimization is prioritized. The
figure also shows that for bandwidth cost minimization, block-
ing due to server resource shortage is higher than the link’s
bandwidth shortage.

Fig. 14 depicts the blocking percentage at different arrival
rates while link-level load balancing is prioritized. Most of
the blocking happens due to link bandwidth shortages, but
blocking due to server resource shortages is also prominent.
Link-level load balancing distributes loads among all possible
links to avoid maximum or overutilization of any link. As a
result, after a few times, new requests may experience blocking
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Fig. 14. Arrival rate versus blocking rate for link-level load balancing.

due to a link’s bandwidth shortage. Blocking due to insufficient
server resources is also common for higher arrival rates, as
server-level load balancing is not prioritized during this link-
level load balancing. The percentages are less than 2.00% for
the highest arrival rate of 2.00.
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Fig. 15. Arrival rate versus blocking rate for server-level load balancing.

Fig. 15 shows blocking percentages for different arrival
rates when priority was given to server-level load balancing.
Here, most of the blocking happens due to servers’ resource
shortages rather than links’ bandwidth shortages.Like link-
level load balancing, a situation may occur where demands
from any of the cluster points are discarded due to the non-
availability of server resources.

D. Comparison Analysis: Prioritized Objectives vs. Baseline
Framework

Table V compares prioritized bandwidth cost minimization
with the baseline framework, where no specific objective
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TABLE V
COMPARISON OF FOG COMPUTING OPTIMIZATION WITH PRIORITIZED

BANDWIDTH COST MINIMIZATION VS. BASELINE FRAMEWORK.

Arrival Rate Bandwidth Cost Blocking
Rate Priority Type

0.75 377.3 0

Baseline
Framework

1 566.71 0.18
1.25 984.36 0.32
1.5 1084.01 1.61
1.75 1427.67 2.74
2 2169.62 5.27
0.75 253.14 0

Bandwidth Cost
Minimization

1 389.32 0.04
1.25 704.44 0.21
1.5 878.12 1.2
1.75 1227.05 2.98
2 1762.35 5.98

is prioritized. The prioritized bandwidth cost minimization
consistently yields lower average bandwidth costs across all
arrival rates compared to the baseline framework. Overall,
the prioritized approach results in a reduction of 24.07% in
bandwidth costs. At higher arrival rates, we observe a slight
increase in blocking rates. For bandwidth cost minimization,
blocking due to server resource shortages increases at higher
arrival rates.

Table VI illustrates the changes in link resource utilization
between prioritized link-level resource utilization and the base-
line framework. The baseline framework minimally utilizes the
cloud layer, whereas it heavily relies on fog layer-1 in contrast
to fog layer-2 and the cloud layer. Such unbalanced utilization
typically leads to increased queuing delays in any network.
The prioritized approach effectively distributes loads across
various layers, contrasting with the baseline setup. Notably,
at the lowest arrival rate of 0.75, the average fog layer link
resource utilization has doubled, increasing from 3.64% to
7.71%. For the highest arrival rate of 2, the fog layer link
utilization has increased by approximately 65%. The link-
level load balancing has efficiently utilized both fog layer
and cloud layer links. This balanced distribution among the
available links across the three layers has significantly reduced
the blocking rate.

A comparison between prioritized server-level load balanc-
ing and the baseline framework is presented in Table VII.
The difference between fog layer and cloud layer resource
utilization is notable in the baseline framework. As the arrival
rate increases, cloud layer resource usage rises, leading to a
reduction in the difference between fog layer and cloud layer
server resource utilization. Similar to the link utilization shown
in Table VI, the server resource utilization of fog layer-1 is
higher than that of fog layer-2 and the cloud layer. In contrast,
server-level load balancing maintains nearly uniform server
resource utilization across different layers. The data from the
table indicates that server-level load balancing has significantly
reduced the blocking rate among different layers.

After reviewing Table V, Table VI, and Table VII, it
becomes evident that server-level load balancing exhibits the
lowest blocking rate. These findings underscore the impor-

tance of proper utilization of server resources in resource-
constrained fog environments. Additionally, link-level load
balancing plays a crucial role in reducing the blocking rate.

V. CONCLUSION AND FUTURE WORK

A generalized three-layer fog computing system with dy-
namic traffic management techniques is proposed in this
paper. Bandwidth cost minimization, link-level, and server-
level load balancing are done here for the optimum usage of
fog resources in a cooperative manner. Along with optimum
utilization of fog resources, our proposed framework avoids
overutilization of any link or server. The use of different layers
for different optimization objectives is discussed with proper
visualization. Blocking percentages for different arrival rates
are shown in this paper, which is a significant factor for fog
computing systems. To avoid blocking in a fog computing
system, we also find out the remedy to combat blocking by
finding the underlying factors. From our work, fog service
providers can get a comprehensive idea about links’ bandwidth
and servers’ resource allocation while designing a fog com-
puting system to avoid unacceptable blocking in their system.
We plan to execute our dynamic traffic model by adopting
heuristics. Although our current work is simulation-based, the
proposed model can be adopted in real traffic conditions. Our
future work will involve testing with real IoT devices or traffic
data. Additionally, we intend to introduce a machine learning
algorithm for our proposed optimization model.
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