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Abstract—Bursty traffic patterns require precise classification,
modeling, and comprehension to ensure adequate resource allo-
cation, improved network security, and Quality of Service (QoS)
assurance. This study introduces a methodology integrating
three critical correlation metrics with scheduler algorithms,
demonstrating adaptability and improved network performance.
Our approach highlights the handling of irregular patterns,
contributing to the development of systems that can quickly adapt
to changes, significantly enhancing network performance in the
context of scheduler algorithms, resource allocation, correlation
metrics, and bursty traffic.

Index Terms—Quality of Service (QoS), scheduler algorithms,
resource allocation, correlation metrics, bursty traffic.

I. INTRODUCTION

THE aggregate traffic in computer and telecommunications
networks comprises various packet flows with different

requirements for quality where some packets must be sent
immediately, and others can wait longer. Most current com-
munication protocols include a specific field within the packet
header, like the class of service (CoS) field in the Ethernet
frame header or the DiffServ code point (DSCP) in the IP
header; DSCP is used to classify and prioritize network traffic
for QoS in a 6-bit field in IP networks, which signifies the
packet’s class membership. To guarantee the necessary service
level, packet schedulers in networking equipment, including
switches and routers, are required to consider the data in
these fields. Approaching a complicated mixture of network
and application traffic from many perspectives is necessary
to achieve optimal results, even if the traffic uses the same
network path or session [1]. Concerning network functioning,
for instance, a mathematical formula or framework for overall
network performance, which includes all relevant network
attributes, is developed [2].

The paper discusses the need for precise classification and
modeling of network traffic to optimize resource allocation.
It highlights scheduling algorithm Weighted Fair Queuing
(WFQ), focusing on their impact on QoS aspects such as
jitter, latency, and packet loss probability. The WFQ service
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is a widely used multi-class scheduling discipline. Before
broadcasting, packets from various traffic classes in these
systems are kept in separate queues.

The WFQ schedulers preserve work among the active
classes, they consistently divide the entire service capacity.
This allocation system allows for a flexible representation
of the weights of different traffic classes [3]. WFQ was
chosen over other scheduler algorithms due to its unique
ability to balance, fairness, flexibility, and effective use of
network resources. The primary purpose of WFQ is to improve
bandwidth availability for several applications; this makes it
ideal for settings with diverse traffic and QoS requirements
[4].

In the next paragraphs, we will state some essential theo-
retical concepts:

A. Traffic Model Definition

Network traffic includes transferring several kinds of data
between nodes, impacting overall performance, efficiency, and
reliability. Different types of networks, such as Metropolitan,
wide-area, and local area networks, require routers to imple-
ment queue scheduling algorithms to handle congestion and
ensure fair resource allocation [5]. Routers forward traffic to
external networks established on destination IP addresses [6].
Figure 1 shows the router’s queuing scheme. Conceptually,
multiple resources send packets to routers so they are placed
in the queue depending on the policy of the network device,
packets scheduling in the network device based on queuing
algorithm, and then departure from queue [7].

Fig. 1. Router queue scheduling.
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Fig. 2. Router congestion results in lost packets.

As shown in Figure 2, Congestion results in lost packets,
congestion occurs when a router cannot handle the volume
of network traffic when too many data packets compete for
the limited space (router capacity) [8]. In allocating resources,
routers must implement queue scheduling algorithms, which
control the most efficient method for transmitting packets
stored in the buffer. Many studies utilize scheduling algorithms
to achieve appropriate QoS and guarantee fair resource allo-
cation in network performance [9].

B. Network Traffic Characteristics

Quality of Service (QoS) is an approach by which networks
offer different classes of service for various types of traffic.
Providing parameters such as throughput, latency, jitter, and
packet loss is essential. Affecting the efficiency of priority
systems as (WFQ) [10]. The research can use metrics like
throughput, average queue length, average waiting time, and
utilization to compare the system’s performance [11]. Mean
bandwidth allocation was accomplished by looking at the
WFQ scheduler and developing a reduplicated mathematical
model. These metrics may be monitored throughout this pro-
cess: the ratio of packet arrival, average throughput, average
delay, and packet loss ratio [12].

C. Queueing System and Scheduler algorithms

A queuing system models the process of elements queuing
for processing or service. Scheduling algorithms like WFQ
are essential for fair and effective distribution of network
resources. The following are terms and components of a
queueing system: Arrival and service procedures, queuing
systems arranging incoming jobs, and scheduler algorithms
intelligently controlling their processing. Figure 3 represents
a basic queue model containing arrivals packets and queues
where waiting for position and service after service completes
the packet departure [13].

The classical queuing models that are most widely rec-
ognized include the M/M/1 and M/M/c models [14]. Packet
scheduling algorithms handle bandwidth allocation per flow to
guarantee QoS and effective congestion-fair resource alloca-
tion mitigation across different traffic classes [15].

D. The Role of WFQ in Network Traffic Modeling

Zhang, Demers, Keshav, and Schenke presented this algo-
rithm in 1989 [16]. This algorithm offers fair output bandwidth
allocation regarding the assigned weights. It is different from

Fig. 3. A basic queue model.

fair queueing prepared with a weighted bandwidth allocation.
Figure 4 represents a WFQ scheduling, which guarantees fair-
ness in bandwidth allocation among known flows. Bandwidths
allocated to each flows based on its weights [15].

Fig. 4. WFQ scheduling.

In Cisco routers, the WFQ prioritizes traffic according to the
specified weights. Every flow in WFQ is given a weight, and
the scheduler allots bandwidth to these weights. The most con-
siderable bandwidth is allocated to flows with greater weights
to ensure that various traffic streams are treated equally. The
essential purpose of WFQ is to increase bandwidth availability
for several applications [17]. Figure 5 represents the WFQ
algorithm of Cisco routers where every queue has a specific
weight for allocated bandwidth fairly [18].

Fig. 5. The WFQ algorithm of Cisco routers.

Technical Details:
• This algorithm can characterize the statistical features

of bursts, such as duration and volume, by analyzing
the technical elements necessary to explain how burst
patterns are exhibited in network traffic.

• It can indicate the flaws of traditional scheduling algo-
rithms in confronting highly irregular and random traffic.
Additionally, it emphasizes the possibility of failure of
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these methods in allocating optimal resources and de-
fending Quality of Service (QoS).

• It extends the technical need to develop scheduling algo-
rithms that can dynamically adapt to the varying nature
of network traffic. It also inspects the likelihood of these
methods to improve bandwidth utilization and network
throughput.

• It is essential to effectively integrate scheduling algo-
rithms with correlation metrics and investigate the tech-
nical situations. Furthermore, it observed the possible
computational and experimental challenges to overwhelm
them. It also emphasizes the importance of this integra-
tion in reaching more knowledgeable scheduling conclu-
sions that lead to optimizing network performance.

• It is worth noting that this algorithm can improve network
performance metrics like maximizing throughput, mini-
mizing latency, and improving reliability by applying the
integrated scheduling solution.

The main contributions of this study are listed below:

• Integration of scheduling algorithms with correlation met-
rics: This is a new strategy for examining network traffic
by integrating sophisticated scheduling algorithms with
correlation measures. It was improved to resolve a gap in
existing research approaches: patterns, especially bursty
traffic, and their ambiguous effects on bandwidth use and
network performance.

• Through analysis of bursty traffic patterns: Analyzing er-
ratic internet traffic patterns comprehensively, especially
bursty traffic, bursty traffic on network traffic is charac-
terized by sudden, unpredictable surges in data transmis-
sion, often followed by periods of low activity. Network
performance is affected by This variability, which can
significantly lead to congestion, increased latency, packet
loss, and decreased overall throughput. Network admin-
istrators can only expect these bursts by analyzing traffic
and understanding its patterns, resulting in inefficient
resource allocation (bandwidth) and performance of the
network. Failure to manage burst traffic effectively can
degrade the quality of service (QoS), affecting real-
time applications like video streaming. Analyzing traffic
patterns helps in proactive management, ensuring a highly
efficient network process.

• Introduction of a coordinated scheduling system: Partici-
pating in presenting a more practical method for control-
ling network traffic. A novel integrated scheduler solution
that uses both scheduling algorithms and experimental
data analysis was suggested. Such an approach enhanced
QoS. By reviewing previous studies, It becomes neces-
sary to analyze real data. Understanding network traffic
can help manage congestion more efficiently and ensure
fair resource allocation. In our approach, we analyze
simulated data using the same pattern of tracing data of
Ethernet packets.

• Discoveries into network traffic dynamics: Suggesting
new viewpoints on irregular traffic’s fundamental patterns
and dynamics and improving comprehension of maximiz-
ing network efficiency in different traffic situations.

• Improvement of network management strategies: The
findings extend to more flexible and effective network
management techniques, which may promote bandwidth
usage and overall network performance.

• Empirical validation of the theoretical models: Empiri-
cal analysis indicated the advantage of this integrated
approach for scheduling. Furthermore, one of the most
significant aspects of this study is ending the gap between
theoretical models and real network traffic behavior.

This study is arranged as follows: Section II discusses
related work. Section III presents the problem statement. Sec-
tion IV involves bursty traffic measures based on correlation
metrics. Section V includes results and analysis. Section VI
indicates discussion. Section VII exhibits the conclusion.

II. RELATED WORK

In the work introduced by [19], the burst method has
been utilized as a key factor for assessing certain scheduling
algorithms and the characteristics of internet traffic. These
scheduling algorithms, aimed primarily at fair service distri-
bution, take into account only the guaranteed service rate in
their scheduling decisions. Work by [20] aims to offer compre-
hensive insights into enhancing QoS, utilizing networks, and
calculating the effects of packet scheduling in relation to traffic
intensities (TI). For this purpose, the Traffic Intensity-based
Packet Scheduling (TIPS) algorithm was employed for packet
scheduling in a simulated network environment. The research
measured factors such as throughput, end-to-end latency, and
jitter. The results indicated that TIPS achieved superior QoS
performance in terms of network utilization. As per [21],
a prioritized Traffic Intensity-based Media Access Control
(PTI MAC) protocol has been effective in ensuring the on-
time delivery of high-priority packets while also boosting
throughput. In addition, the study looked at the link between
traffic intensity and network load and divided the priority
threshold based on the different degrees of traffic intensity. The
results showed that the proposed protocol met the capacity and
end-to-end total latency requirements. Wrok in [22] proposed
comparing the most popular burstiness measures with various
traffic kinds generated by a variety of traffic models in order
to investigate their use. The obtained results indicate that first-
order metrics like the squared coefficient of variations and the
ratio of peak-to-mean cannot effectively describe the promi-
nent bursty feature under several scenarios. The indices of
dispersion derived from the second-order measurements were
discovered to be highly practical and valuable. The research
in [13] focused on modeling and evaluating various services
by investigating traffic shaping mechanisms within the WFQ
framework, implementing QoS in packet networks, assessing
the performance of these modeled systems, and validating
the traffic shaping approaches. The findings highlighted the
impact of the number of high-priority flows on average waiting
times and queue length, which is crucial for calculating delay,
jitter, and packet loss. Possibility with QoS metrics for FQ,
CQ, PQ, WFQ, and FIFO algorithms. Work in [17] con-
ducted a comprehensive analysis of traffic scheduling in IPv4
and IPv6 networks, particularly for multimedia applications.
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This study explored the performance of different scheduling
algorithms across various traffic types, including FTP and
HTTP. It was observed that among the queuing techniques
(WFQ, FIFO, PQ), WFQ emerged as the superior choice,
offering enhanced performance in comparison to the other
algorithms. While FIFO did not result in as much end-to-end
jitter, lost packets, or latency for audio and video conferencing
applications, it did produce better performance than PQ for
HTTP applications. In order to prevent network congestion
and enhance performance, [23] developed a packet-scheduling
method that blends PQ with WFQ. As opposed to situations in
which packet scheduling was not used, the method effectively
reduced latency, greatly enhancing network performance. [12]
intended to improve a convenient simulation algorithm model
to identify queue formation and loading control by investi-
gating many types of flows. The findings illustrated that the
PQ algorithm is designed primarily for high-priority flows. In
contrast, the FIFO algorithm serves more as a benchmark for
comparison than for actual service data. The WFQ algorithm
demonstrated the most consistent optimal modeling results,
as all its factors stayed included in the established limitation
states across all examined kinds of data streams. Work in [24]
looked into queuing systems with a range of arrival rates
to consider periodic patterns and long-term correlations. A
practical model that allows for the separate analysis of the
effects of periodic and stochastic components was used in
the study. Furthermore, the authors proposed an approximate
analytical method to do this. The proposed model took into
account the additional waiting times brought on by arrival rate
fluctuations, which reduced the estimation error. Approaching
a complicated mixture of network and application traffic from
many perspectives is necessary to achieve optimally, even if
the traffic uses the same network path or session [1]. The
challenges must be addressed by redefining the performance
of the network. Concerning network functioning, for instance,
it developed a mathematical formula or framework for overall
network performance [2], which includes all relevant network
attributes.

III. PROBLEM STATEMENT

This study aims to bridge the knowledge gaps in the
literature regarding the advantages of integrating scheduling
algorithms with correlation metrics. It addresses the challenge
posed by bursty traffic, characterized by irregular bursts of data
transmission, which traditional scheduling techniques need
help managing.

Irregular internet traffic is one of the most critical factors
that is overlooked. Bursty traffic from Mobile users generates
variability in latency; this irregular nature of many forms of In-
ternet communication might have different effects on network
performance and bandwidth use. As user needs change and
modern networks become more complicated, new approaches
to network management are needed. Bursty traffic, charac-
terized by irregular bursts of rapid data transmission, offers
a remarkable challenge to traditional scheduling techniques.
To address this challenge, we provide an integrated scheduler
solution incorporating advanced scheduling methods and cor-
relation measurements. By building on and extending previous

research, this work can offer a comprehensive analysis of
the relationship between the scheduling method and empirical
measurement data. By employing this inclusive approach, we
hope to obtain insight into the underlying patterns of bursty
traffic; comprehending traffic behavior patterns assists in opti-
mizing network performance, effectively managing resources,
maintaining high QoS, avoiding congestion, and ensuring a
robust network environment. which will offer more effective
and adaptable network management strategies.

The mathematical model in this paper includes the follow-
ing:

1) Correlation Metrics:
• Squared Coefficient of Variation (CV²) is a mea-

sure of burstiness about a Poisson process. It is
defined using a mathematical formula. The Squared
Coefficient of Variation is computed as indicated in
formula equation (7) illustrated in section IV.

• Inter-Departure Interval (IDI) is a mathematical
modeling of IDI that may have an important role
in offering awareness about the temporal features
of burst traffic. It is utilized to quantify the time
intervals between packet arrivals. This index is
estimated by equation (8) indicated in section IV.

• Inter-Departure Correlation (IDC) is known for its
ability to capture the correlation between packet
inter-arrival times over different delays via autocor-
relation functions. equation (10) can be applied as
shown in Section IV.

In summary, correlation refers to the connection between
packet arrival times in network inter arrivals. It indicates
how the arrival time of one packet is related to the
arrival times of subsequent packets, which can affect
congestion and network performance. Correlation met-
rics provide practical insights into different aspects of
traffic patterns, allowing network operators to predict,
manage, and optimize network performance effectively.
Understanding these metrics helps address congestion,
optimize resource allocation, and ensure a stable and
efficient network operation.

2) Scheduling Algorithm and Network Performance:
• According to this algorithm, mathematical equa-

tions will be produced through network performance
measurements like latency and packet loss through-
put to clarify the interaction between scheduling
algorithms and them.

• It is also significant to identify the performance
quality of several scheduling strategies across mul-
tiple traffic scenarios. It may involve creating utility
functions.

IV. BURSTY TRAFFIC MEASURES BASED ON
CORRELATION METRICS

The study introduces several metrics to analyze bursty
traffic:

• Squared Coefficient of Variation (CV²): Measures varia-
tion in inter-arrival times between packets.
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• Inter-Departure Interval (IDI): Assesses the regularity of
traffic bursts.

• Inter-Departure Correlation (IDC): Evaluates the correla-
tion between inter-departure times of consecutive packets.

• Intensity: Measures the rate of data packet transmission.
• Stationary: Indicates the consistency of statistical proper-

ties over time.
• Correlation coefficient: Quantifies the linear relationship

between two variables.
This study used the tracing data of Ethernet packet arrivals;

the Ethernet traffic between Bellcore corporate add-in labo-
ratory hosts and all hosts outside Bellcore on the Internet
represented mainly as external traffic was collected. The
number of arrivals was a record one million. They collected
the data by observing the Ethernet, the key supplier of this
separate router. When managing these data, the entry between
Bellcore hosts and the external world was unlimited [25].

The simulated datasets were generated from the OMNeT++
simulation environment. In our simulation, the WFQ algo-
rithm was used in a network configuration with two sources,
one queue and one sink. In order to ensure equitable resource
allocation, they are then scheduled in the queue using the WFQ
algorithm based on their weight assignments. The number of
arrivals was generated by simulation, and it was one million.
To collect the data, they were gathered by observing the
Ethernet. According to [26], OMNeT++ incorporates C++
using message forwarding and the descriptive language NED
(Network Description Language) to define dynamic behavior.
OMNeT++ (Objective Modular Network Testbed in C++) has
several benefits, such as visualization tools for examining
simulation results, modularity, scalability, and extension. The
WFQ algorithm and network performance under many circum-
stances may be well understood using this simulation.

A. Performance Metrics

This model is important for representing the unpredictable
nature and variability of traffic bursts. It also supplies math-
ematical descriptions of bursty traffic using probability distri-
butions. Models may use high distributions to depict packet
sizes and inter-arrival periods.

An arrival process is defined by its sequence of inter-arrival
time random variables A1, Az, ..., which can be used to de-
scribe a basic queueing system. A frequent assumption is that
the inter-arrival time sequence is independent and uniformly
distributed, resulting in an-arrival process. E[A] = TA is the
average inter arrival time, while the average arrival rate λ is
its opposite [27].

λ =
1

T̄A
(1)

For the exponential interarrival time distribution, which is
commonly observed, the process of arrival corresponds to
the Poisson model. Additionally, it is crucial to define the
service times, B1, B2, ..., for the following tasks in sequence.
This sequence is typically considered as a set of independent
random variables that possess a shared distribution function.
TB denotes the average service time, symbolized as E[B], and
µ represents the inverse of TB [27].

µ =
1

T̄B
(2)

• Intensity: Traffic intensity refers to the count of ac-
tive sources at a given moment, specifically when the
instantaneous traffic intensity falls within a specified
range of sources. This range is associated with various
lines, servers, trunks, circuits, channels, and computers.
The traffic intensity’s statistical instants (variance, mean
value) can be calculated over a specific T as a time.
Regarding the mean traffic intensity, we obtain [28]

Y (T ) = 1/T.

∫ T

0

n(t) dt (3)

• Stationary: This property can be identified as the possibil-
ity distributions illustrating the point method, which are
independent of the instant of the period. Traffic intensity
can also be defined as a random t2 > 0 and all of k values
≥ 0, the likelihood that there are k arrivals in t1, t1 + t
is independent of t1, i.e. that there are k arrivals. For all
values of t, k, there is [28]:

p(Nt1+t2 −Nt1 = k) = p(Nt1+t2+t −Nt1+t = k) (4)

• Squared Coefficient of Variation: To determine random
factors, the following parameters related to the initial
two moments are employed; the expected value, or mean
value, is E{T} in the first moment:

mi = E{T} (5)

Variance = standard deviation: 2nd central moment

σ2 = E{(T −m1)
2} (6)

Standard deviation: It is recognized as the square root of
the variance, equivalent to σ. The coefficient of variation
is a normalized measure for assessing distribution dis-
tortion. The ratio of the standard deviation to the mean
value is used to calculate it:

CV : standarddeviation = σ/m1 (7)

This quantity is also used to describe discrete distribution.
• Index of dispersion for intervals: For the sake of defining

second-order features for the interval illustration, (IDI)
is the index of dispersion that can be used for intervals,
and it is determined as:

IDI = V ar{Xi}/E{Xi}2 (8)

where V ar represents the variance, which equals to:

V ar =
1

n− 1

n∑
i=1

(xi − x̄)2 (9)

Xi is identified as the inter-arrival time, and x̄ is char-
acterized as the central evaluator of the unknown popu-
lation means value. The IDI is equivalent to one under
the Poisson approach, represented by exponentially dis-
tributed service times. Typically, IDI is more complected
to assess than IDC, especially in measuring accuracy and
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facilitating traffic processes. Digital technology is better
suited for monitoring IDC, whereas accurately observing
IDI presents more challenges [28].

• Inter-Departure of correlation: To define the number illus-
tration’s second-order features, the dispersion index can
be used for counting the (IDC).This index characterizes
the differences in the arrival procedure throughout a time
interval t and is identified as [28]:

IDC = V ar{Ni}/E{Ni} (10)

where V ar refers to Variance, and E{Ni} refers to
expected mean. To calculate An IDC (t), divide the time
intervalt into x breaks of period t/x and note the numeral
of incidents through these periods. According to the
Poisson method, IDC gets comparable to one [28].

• Correlation: A statistical metric known as the correlation
coefficient is used to determine the degree and direction
of the linear relationship between two variables, which is
defined by [29]

γ =

∑n
i=1

∑n
j=1 aijbij√∑n

i=1

∑n
j=1 a

2
ij

∑n
i=1

∑n
j=1 b

2
ij

(11)

B. Scheduler Algorithms

All the output bandwidth will be distributed equitably in
the queue based on weight, according to the WFQ algorithm.
The available bandwidth is distributed across the service
classes based on their associated weights and wait times [30].
To guarantee equitable and effective distribution of network
resources between two flows or classes of traffic, our algorithm
(WFQ) leveraged networking. Each class has its arrival rate (λ)
by a traffic source in a given class per unit of time, the average
number of packets produced [31]. In the first case, two separate
arrival rates correspond to a different class and an equal band-
width distribution. We compared the analysis to tracing data
of Ethernet packet arrival. In the second case, we compared
the analysis of two datasets. The first dataset is generated
from two classes, each with the same weight. The second
dataset is generated from two classes with priority distribution.
The weight of the high-priority class is 0.9, and for the low-
priority class, it is 0.1. The rationale for researching the case
with equal weight allocation has been clarified to underscore
its crucial role in providing a baseline for comparison with
other weighting schemes. This comparison is instrumental in
demonstrating the proposed scheduling methodology’s relative
performance and benefits under different conditions.

C. Resource Allocation

In the network simulation we conducted, the total capacity
for data transfer was capped at 10,000,000 bits per second
(bps). In this network simulation, the data transfer rate peaks
at 10 million bits per second, representing the network’s total
capacity. The study introduces two distinct traffic classes; each
one emits packets to mimic various network traffic patterns
for different services. An exponential distribution shapes their
lengths. The WFQ algorithm manages bandwidth distribution

between these classes. The key to WFQ’s efficiency is the
allocation of weights to each traffic class, which impacts
network access priority. In the first case, both classes received
equal weights of one, ensuring a balanced bandwidth division
with Tracing data of Ethernet packet arrival. Both of them
had the same arrival rate. This equal weighting is crucial, as
it guarantees each class an equal share of the total capacity.
The WFQ algorithm is vital in maintaining resource fairness
and promoting equal distribution of network resources across
traffic classes. Considering the second case, the first dataset
generated from two classes ensures each class has equal
weights and that bandwidth is distributed evenly between the
two classes. The bandwidth distribution reflects these weight
ratios, as in the second dataset generated, 0.9 for class 1 and
0.1 for class 2.

D. Traffic Model

A powerful and feature-rich simulation tool, OMNeT++ can
simulate many networks. As a powerful simulation tool for
network modeling, OMNeT++ stands out due to its modular
and flexible architecture, which allows for the comfortable cus-
tomization and extension of simulation components. It features
a user-friendly graphic interface that encourages the design
and visualization of network models in real-time, improving
efficiency and effectiveness in simulation tasks. Its implemen-
tation and scalability drive it to be capable of running large-
scale simulations efficiently, including similar and distributed
simulations. Network behaviors and protocols’ capability to
provide detailed and accurate modeling makes it ideal for
academic research and educational purposes, enabling a deep
understanding. Figure 6 illustrates a diagram of the WFQ
scheduling simulation model. The traffic sources produce
packets for their appropriate classes based on predetermined
parameters (such as packet sizes and inter-arrival periods).
After that, a shared queue module uses a scheduling algorithm
to enqueue these packets (WFQ). As packets are dequeued
from the queue, the sink module acts as the endpoint, receiving
and processing them. The simulation simulates the behavior of
a network with distinct traffic classes by specifying the traffic
sources, queue, sink, and the appropriate scheduling algorithm.
That enables the examination of performance metrics. This
paper presents the scenarios of the weighted fair queue as a
queuing system.

Fig. 6. Illustration diagram of WFQ scheduling simulation model.
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Fig. 7. Traffic Intensity for simulated and real-world data.

V. RESULTS AND ANALYSIS

In this section, we proceed with the statistical analysis of
datasets. We used equation (1) to evaluate the arrival rate. The
results showed that there was practically no difference between
the arrival rate (λ) of the data generated and the tracing data
of Ethernet packet arrival to reflect and address bursty traffic
for real-world network management indicated bursty traffic.
This equation allowed us to accurately compare the datasets
and ensure the validity of our findings.

To calculate the traffic intensity of data arrivals for datasets,
it should be noted that a 10-second length of the period was
employed in the traffic intensity calculation as stated in the
equation (3), which is expressed via the ratio of the number
of arrival to the length of period. In the first case, Tracing
data of Ethernet packet arrival with a simulated dataset has
equal weights with two classes, both of them having the
same arrival rate. The results, as seen in Figure 7, indicated
that the tracing data of Ethernet packet arrival irrigates more
than the simulated data, but overall, the traffic intensity of
the simulated data increases with time. The tracing data of
Ethernet packet arrival had clear peaks and valleys, and there
were several times when the traffic intensity levels were higher
than the simulated data. The pattern in the simulated data was
smoother, more constant, and had fewer sharp fluctuations in
traffic intensity. When comparing the simulated and tracing
data of Ethernet packet arrival, the tracing data of Ethernet
packet arrival shows a more noticeable bursty traffic pattern
and a substantially higher traffic intensity. In the simulated
data, the traffic flow is more uniform. It lacks burst-like
features, which contrast with the fluctuations in the tracing
data of Ethernet packet arrival and suggest a potential bursty
element.

To compute traffic intensity for the second case illustrated
in Figure 8, it is worth noting that the traffic intensity curves
for the two datasets are almost identical. The traffic intensity
values of the datasets generated from two classes with unequal
weights are marginally higher than those for the dataset
generated from two classes with equal weights. According
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Fig. 8. Traffic Intensity for two simulated data.
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Fig. 9. Stationary of inter-arrival times for simulated and real-world data.

to Stationary, it converts the arrival time of packets to inter-
arrival time for datasets as in equation (4). Figure 9 shows
the results of computing the stationary for the first case. Over
time, each curve is visually stationary. This indicates that their
statistical characteristics, such as mean, variance, and auto
correlation, stay primarily unchanged during the observed time
frame. Tracing data of Ethernet packet arrival oscillates at
a particular level, indicating that its statistical characteristics
vary slightly over time. Concerning the simulated data, it
has equal weight for two classes that show a slightly flat
trend, which confirms stationary. According to both datasets,
fluctuation has been reduced, and system behavior is more
stable and constant. As illustrated in Figure 10, the difference
in the stationary curves between datasets generated from two
classes with equal weights and unequal weights highlights the
impact of weight distribution. The stationary value of datasets
created from classes with equal weights tends to be barely
higher and slightly more variable than that of datasets with
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Fig. 10. Stationary of inter-arrival times for two simulated data.
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Fig. 11. Square coefficient of variations (CV²) for simulated and real-world
data.

unequal weights.
Regarding CV², datasets were computed in equation (7). The

variance of inter-arrivals was computed in equation (9) and
mean for inter-arrivals. After computing CV² for the first case,
as illustrated in Figure 11, A higher CV² indicated that the
tracing data of Ethernet packet arrival traffic arrival patterns
were more unpredictable and random. On the other hand, the
simulated data’s lower CV² indicates more regular, less chaotic
bursts with stable inter-arrival periods. The higher CV² notably
demonstrates more dispersion throughout the distribution in
the tracing data of Ethernet packet arrival or more variability
in bursts.

According to computing CV² for the second case with two
datasets, as shown in Figure 12. A higher CV² shows that the
dataset generated from classes of unequal weights had more
varied and unpredictable behavior. In contrast, the other dataset
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Fig. 12. Square coefficient of variations (CV²) for two simulated data.

appears to be more regular. The higher CV² notably exhibits
more dispersion throughout the distribution in the dataset with
unequal weights and more variability in bursts.

For the calculation of IDI, this study dealt with stationary as
inter-arrivals with 20 lag, expressed via the variance of inter-
arrivals as in equation (9) to the squared mean of inter-arrivals.
After performing the equation (8), the results are shown in
Figure 13. The IDI curves highlight the contrast between the
datasets having equal weights and the tracing data of Ethernet
packet arrivals. The simulated data curve shows a pattern
of increasing consistency, characterized by IDI values and a
flatter trajectory, indicating a smoother flow of arrival times
with less fluctuation. The minor variations in IDI values imply
a stable and predictable pattern. In contrast, the tracing data
of Ethernet packet arrival’s IDI curve exhibits more dynamic
and bursty tendencies. The presence of irregular, high IDI
peaks, quick changes, and overall higher IDI values point to
a traffic pattern with sporadic and unpredictable increases in
arrival times. The wider dispersion of arrival times is evident
from a much larger variance than the squared mean, which
further emphasizes the bursty nature of the simulated data. In
conclusion, the simulated data exhibits a more constant and
consistent flow. In contrast, the features of the IDI curves
suggest that the tracing data of Ethernet packet arrival has
a bursty traffic pattern.

The IDI curves, as shown in Figure 14, emphasize the
difference between datasets generated from classes with un-
equal weights and datasets having equal weights. About the
first dataset, the IDI curve displays more dynamic and bursty
trends. It appears irregular, with slightly high IDI peaks and
overall higher variability. IDI values point to a traffic pattern
with sporadic and unpredictable growths in arrival times. The
second dataset with equal weights for each class shows a
pattern of raising consistency, characterized by IDI values and
more balance, showing a smoother flow of arrival times with
less fluctuation. Here, the features of the higher IDI curves
indicate a bursty traffic pattern.

M. A. MAWLOOD et al.: PERFORMANCE ANALYSIS OF WEIGHTED FAIR QUEUING (WFQ) SCHEDULER ALGORITHM 273



0 5 10 15 20
0

2

4

6

8

(LAG)

I
n
te
r
−

D
ep
a
rt
u
re
I
n
te
rv
a
l(
I
D
I
)

λ = 568, Realistic
λ = 568, Simulation

Fig. 13. Inter-Departure Interval (IDI) for simulated and real-world data.
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Fig. 14. Inter-Departure Interval (IDI) for two simulated data.

IDC is known as a count of the arrival time of packets. To
assess the degree of dispersion or variability for count data,
the following equation (10) can be applied, which takes twenty
seconds for datasets when the lag is equal to 20. A 20-unit lag
indicates that a 20 (sec) time shift is used when comparing
the inter-departure periods in the IDC study. This enables
analysts to evaluate how well inter-departure timings at one-
time points correlate with those 20 sec later. This parameter
aids in comprehending patterns and temporal relationships in
network traffic behavior. As shown in Figure 15, the results
of the tracing data of Ethernet packet arrival indicate a small
value of correlation association within the inter-departure, and
it shows more fluctuations, randomly or irregularly inter-arrival
departure, which in turn displays septal cluttering of events.
The sudden increase in IDC may refer to bursts in arrivals in-
terspersed by depressive intervals. The inter-departure interval
association was evident in the simulated data generated from
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Fig. 15. Inter-Departure Correlation (IDC) for simulated and real-world data.
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Fig. 16. Inter-Departure Correlation (IDC) for two simulated data

two classes with equal weights due to a slight rise in IDC, and
arrivals are less grouped than in Ethernet packet arrival tracing
data. The gradual and continuous increase in IDC exhibits
a less unpredictable traffic flow than Ethernet packet arrival
tracing data. As shown in Figure 16, the results of the IDC
of the simulated dataset generated from two unequal classes
show a slight correlation association within the inter-departure,
which indicates more instabilities and irregular inter-arrival
departure. Potential bursty traffic patterns are consistent with
the growing trend toward bursty behavior. The IDC association
was apparent in the simulated data generated by two classes
with equal weights due to a slight increase in IDC, and arrivals
are less grouped than the irregular IDC curve of the dataset
generated from the unequal weight of the two classes.

To compute correlation, arrival time is translated to inter-
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Fig. 17. correlation for simulated and real-world data.

arrivals, then the copy of data will be shifted to one position,
and the correlation coefficient for datasets will be computed as
in equation (11). The results illustrated in Figure 17 showed
that the simulated data generated from equal weights had
a more robust overall correlation, characterized by its less
abrupt fluctuations and smoother trend, which indicated a more
stable relationship between successive datasets. Compared to
the simulated dataset, the Ethernet packet arrival tracing data
exhibits a more dynamic pattern in its correlation. The genuine
statistics clearly showed patterns of bursty traffic. Even if the
simulated data showed a smoother trend, some slight variations
might indicate a minor bursty component but less than the
tracing data of Ethernet packet arrival.

The correlation results illustrated in Figure 18 showed that
the simulated data generated from equal weights of two classes
had a more robust overall correlation, representing slight
abrupt fluctuations and smoother tendency, which showed a
more regular relationship between successive datasets. On
the other hand, the correlation of simulated data generated
from unequal weights of two classes shows a more dynamic
pattern in its correlation. The genuine statistics clearly showed
patterns of bursty traffic.

According to [32] and [33], their algorithm can be more
valuable in certain conditions. It insufficiently handles the
problems caused by bursty traffic, making it less effective
and less suitable for practical applications. Robust perfor-
mance and scalability in dynamic network conditions may
be achieved by including bursty traffic management consid-
erations in algorithm design and optimization. The study of
[34] included the traffic intensity distributions of traffic on
Internet networks by analyzing the traffic intensity over various
periods using statistical techniques. The findings demonstrate
the statistical significance of long-term patterns in traffic inten-
sity changes. This research must construct computer network
simulation models and propose ways to manage irregular and
bursty real-world traffic by reflecting the behavior of real-
world traffic in the scheduler algorithm and handling it in
dynamic network environments to provide robust performance
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Fig. 18. correlation for two simulated data.

and scalability. Our study proposes a new methodology that
combines the crucial correlation metrics, including Squared
Coefficient of Variations (CV²), Inter-Delay Interval (IDI),
Inter-Delay Correlation (IDC), stationary, traffic intensity, and
correlation with scheduler algorithms, which were not pre-
sented in the previous studies.

VI. DISCUSSION

This study used the tracing data of Ethernet packet arrivals,
the Ethernet traffic between Bellcore corporate add-in labo-
ratory hosts, and all hosts outside Bellcore on the Internet,
representing mainly the collected external traffic. The number
of arrivals was a record of one million. The data were collected
by observing the Ethernet, which is the key supplier of this
separate router. When managing these data, the entry between
Bellcore hosts and the external world was unlimited [25].
According to the first case, the statistical analysis included
both the tracing data of Ethernet packet arrivals and simulated
data arrivals generated from two sources, two queues (WFQ)
scheduling algorithms attain equitable bandwidth distribution
across various flows or queues. The number of arrivals was
one million. The total capacity for data transfer was capped
at 10,000,000 bits per second (bps) distributed equally to
sources. Each class in the scenario has its arrival rate (λ),
and both sources have equivalent weights. According to the
second case, the statistical analysis contains two simulated
datasets; first simulated data arrivals were generated from two
sources, two queues (WFQ) scheduling algorithms bandwidth
distribution; the first class assigns a higher weight of 0.9,
and the second class assigns a weight of 0.1, with lower
priority. Referring to the second dataset generated from two
sources, two queues (WFQ) scheduling algorithms have two
equal weights. For both datasets, the number of arrivals was
one million. The total capacity for data transfer was capped
at 10,000,000 bits per second (bps) distributed based on their
weights. However, all datasets have the same arrival rate (λ),
which was 568 (packets/sec), indicating bursty traffic, and
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the number of arrivals is one million. The results revealed
that the correlation measurements of the Ethernet packet
arrival tracing data had a bursty pattern. In the first case, the
traffic pattern of the simulated dataset exhibited less abrupt
fluctuations in traffic intensity over time and was smoother and
more constant. However, Ethernet packet arrival tracing data
displayed a more chaotic and dynamic traffic pattern with clear
peaks and valleys in traffic intensity. Stationary and correlation
for tracing data of Ethernet packet arrival indicated more
fluctuations in contrast to the simulated data. According to the
IDI of Ethernet packet arrival tracing data, a high IDI value
indicates more differences between inter-arrival times and
more stability in the simulated data. Referring to counting the
arrival of packets, there is more unpredictability for Ethernet
packet arrival tracing data. For the second case, the simulated
data generated from two classes with unequal weights has a
slightly high traffic intensity, barely high stationary variability,
and a more dynamic pattern in its correlation. However, the
second dataset is a smooth pattern. This is attributed to the
combination of simple network traffic modeling and bursty
traffic patterns, which leads to the following:

1) The scheduler algorithm is adaptive to make traffic
patterns more stable with no bandwidth wastage.

2) In the networks, the fairness introduced by WFQ made
scenarios of simulated data less irregular and more
predictable about the arrival time of packets.

3) Regarding the statistical analysis of the first case, we use
the tracing data of Ethernet packet arrivals and datasets
generated by the WFQ algorithm, which was standard
and had equal weights with the same arrival rate. It
enhances and effectively manages bandwidth allocation.

4) According to the second case, the first data set was gen-
erated from the WFQ algorithm with unequal weights
with priority, and the second dataset was generated
from the same algorithm with equal weights for each
class. The appropriately distributed (λ) significantly en-
hances the performance of the queues by providing bal-
anced load distribution corresponding to the configured
weights, decreasing queue variance, improving stability,
reducing delay, and optimizing throughput.

5) Referring to queue management, each source never
starves of service and ensures that the behavior of one
source does not affect the other.

In summary, the simulated datasets were represented as ab-
stract data from tracing data on Ethernet packet arrival. Tracing
data of Ethernet packet arrival was handled in queues router
without exploiting total bandwidth. On the other hand, in
the same case of the first analysis, equal weights ensure
fairness across all classes for balanced traffic handling. In
the second case, the study of datasets with equal weights
shows slightly more stability, descending variance, and better
balance in handling traffic compared to the analysis datasets
with unequal weights. The equal allocation of weights ensures
that both queues share the bandwidth evenly, leading to more
predictable and steady performance. Therefore, appropriately
distributing the weights and arrival rates is essential for achiev-
ing optimal performance and stability in the WFQ algorithm.

In scenarios where specific traffic needs prioritization, unequal
weights are effectively managed and allocated bandwidth to
accomplish the needs of higher-priority traffic, thus optimiz-
ing overall network performance. Additionally, the traffic of
classes allocates the whole bandwidth proportionate to their
weights. The WFQ algorithm ensures that each class is served
according to its assigned weight, holding fairness.

VII. CONCLUSIONS

A thorough statistical analysis was conducted to compre-
hend the different traffic patterns and traffic intensity char-
acteristics of the datasets used in this study—simulated and
tracing data of Ethernet packet arrival. The created data’s
arrival rate closely matched the tracing data of Ethernet packet
arrival, suggesting that real-world conditions were successfully
emulated. However, examining the datasets’ intensity trends
and bursty traffic patterns revealed clear distinctions.

A comparison analysis utilizing a 10-second window size
for traffic intensity calculation, as shown in Figure 7, sig-
nificantly highlighted higher overall average traffic intensity
in the tracing data of Ethernet packet arrival. In contrast
to the more consistent traffic flow shown in the simulated
data, the tracing data of Ethernet packet arrival’s bursty
traffic pattern—characterized by erratic bursts of fast data
transmission—was more prominent. Figure 8 shows almost
identical traffic intensity curves for the datasets. The traffic
intensity values of the datasets generated from two classes
with unequal weights are slightly higher than those for the
datasets generated from two classes with equal weights.

Our suggested analysis approach of data traffic generated
from two classes of the WFQ algorithm successfully overcame
real-world data problems represented by these data’s inherent
complexity and unpredictability. Consequently, our approach
is capable of enhancing network performance.

The results indicated that although some parts of real-
world situations were successfully recreated in the simulated
data, burst-like traits are absent from the simulated data. For
a more accurate depiction of network dynamics, capturing
irregular bursts of activity is crucial, as demonstrated by the
observed bursty element in the tracing data of Ethernet packet
arrival. Subsequent investigations could focus on improving
simulation models to include bursty components, resulting in
more thorough observations.
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