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Abstract—Automatic Digital Modulation Recognition (ADMR) 

is a critical component in modern communication systems, 

enabling efficient and flexible data transmission. This paper 

investigates the challenges associated with ADMR in scenarios 

where the received signal has a phase offset. A set of features, 

extracted from the instantaneous amplitude and phase of the 

signal, is proposed for the implementation of ADMR algorithms. 

An artificial neural network (ANN) based recognition system is 

developed in the LabVIEW programming environment to classify 

four types of digital modulation: BPSK, QPSK, 16-QAM and 

64-QAM. The simulation results indicate that the developed

classifier can effectively operate in the presence of additive white

Gaussian noise (AWGN) and a phase offset in the signal. The

implemented ADMR algorithm achieves a recognition probability

of approximately 97-99% in the signal-to-noise ratio (SNR) range

of 7-30 dB for each phase offset value. The proposed ADMR

algorithms achieve high recognition accuracy using fewer

computational resources then other existing works.

  Index terms—automatic digital modulation recognition, 

feature extraction, phase offset, neural network. 

I. INTRODUCTION

In the real of modern communication systems, ADMR is a

fundamental task for various applications, such as radio signal 

monitoring, intelligent communication, cognitive radio, etc. 

Over the years, two typical approaches have dominated the 

sphere of automatic modulation recognition: decision-theoretic 

and pattern recognition. The decision-theoretic approach uses 

probabilistic or likelihood functions [1] while pattern 

recognition uses feature-based methods [2]. Although the 

decision-theoretic approach can provide optimal solutions, they 

often involve significant computations. In contrast, a properly 

designed feature-based method can achieve performance 

similar to decision-theoretic method with significantly reduced 

computational complexity. The pattern recognition method 

divides the classification process into two components: the 

feature extraction subsystem and the pattern recognition 

subsystem. The role of feature extraction subsystem is to extract 
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key features from the received signal, thereby reducing the 

amount of data processed in the pattern recognition subsystem. 

In recent years, there have been many successful attempts to 

use an ANN in the pattern recognition subsystem [3],[4]. Asoke 

K. Nandi et al [5] proposed a three-stage recognition algorithm

implemented by three feed-forward ANNs. The key features,

used in the algorithm, were extracted from instantaneous

amplitude, phase, and frequency of the intercepted signal, as

well as from the spectrum of  RF signal.

M.L.D. Wong et al. [6] proposed a recognition algorithm

based on a set of spectral and statistical features and a feed-

forward ANN. Timothy J. O’Shea et al. [7] proposed a 

recognition algorithm based on a convolutional neural network 

(CNN), which directly uses the baseband complex signal as 

input and extracts the signal characteristics to determine the 

modulation type.  

The decision-theoretic and pattern recognition approaches 

have been extensively researched and have yielded valuable 

insights into the field. However, many existing studies and 

methods do not take into account the presence of phase offset 

in the received signals, which can lead to misclassification and 

reduced performance in case of real communication channels. 

Jie Shi et al. [8] proposed a CNN-based ADMR method for 

BPSK, QPSK, 8-PSK and 16-QAM modulation types 

considering the phase offset in signal. The network directly uses 

in-phase and quadrature (IQ) components as input, bypassing 

the process of extracting the signal feature set. The proposed 

algorithm provides high recognition accuracy at low SNR 

values and the presence of a phase offset in the signal (about 

92% at SNR = 5 dB). However, it  requires large computational 

resources as the network processes raw IQ data. 

Yang Liu et al. [9] proposed modulation recognition 

algorithm based on decision-theoretic approach for thirteen 

modulation signals: CW, AM, FM, LSB, USB, 2-ASK, 4-ASK, 

BPSK, QPSK, 8-PSK, 2-FSK, 4-FSK, and 16-QAM. 

For the recognition algorithm, the authors reused eight signal 

key features from [5]. These are: the maximum value of the 

spectral power density of the normalized-centered 

instantaneous amplitude (𝛾𝑚𝑎𝑥), the standard deviation of the

direct value of the nonlinear component of the instantaneous 

phase (𝜎𝑑𝑝), the standard deviation of the direct value of

normalized instantaneous frequency (𝜎𝑑𝑓), the standard

deviation of the absolute value of the nonlinear component of 

the instantaneous phase (𝜎𝑎𝑝), the standard deviation of the
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absolute value of the normalized instantaneous frequency (𝜎𝑎𝑓),

the standard deviation of the absolute value of the normalized 

centered instantaneous amplitude (𝜎𝑎𝑎), the kurtosis of the

normalized instantaneous amplitude (𝜇42
𝑎 ), and the ratio 𝑃

which measures the spectrum symmetry of the RF signal. The 

authors determined that the 8-PSK signal could not be 

recognized by 𝜎𝑎𝑝, so they proposed a new key feature, 𝜎𝑎𝑐𝑎𝑝,

which was calculated by further zero-centering 𝜎𝑎𝑝. The

average accuracy of recognition results for thirteen signals is 

about 90% at the SNR = 8 dB. The influence of signal phase 

offset on the recognition accuracy has not been studied. 

Yihui Wang et al. [10] proposed ANN based modulation 

recognition algorithm for the analog, digital, pulse and spread 

spectrum modulation types. Five frequency domain features 

and three high order cumulants were used in the recognition 

algorithm. Even though the recognition algorithm covers many 

modulation schemes, the recognition accuracy is low at 

SNR = 15 dB and below (about 92% at SNR = 15 dB). The 

influence of signal phase offset on the recognition accuracy has 

not been studied. 

Mingqian Liu et al. [11] proposed ADMR algorithm that uses 

decision thresholds for the recognition of BPSK, QPSK and 8-

PSK modulation types. The decision thresholds were calculated 

based on analysis of the cyclostationarity and cyclic spectrum 

of signal. The proposed method achieves a prediction accuracy 

of about 88-95% at SNR = 7 dB, across various phase offset 

values. The research focused only on the intra-class recognition 

(M-PSK modulation). 

Kai Liu et al. [12] proposed a multiscale convolution-based 

network model (MSNet-SF) for the recognition of eight digital 

modulation schemes: BPSK, QPSK, 8-PSK, 4-PAM, 16-QAM, 

64-QAM, GFSK, CPFSK. The input of the network is 4096x2

IQ data, 𝐶40, 𝐶42, 𝐶63, 𝐶80 high order cumulants and the kurtosis

of the normalized instantaneous amplitude 𝜇42
𝑎 . The proposed

ADMR method gives prediction accuracy of about 95%, 90%, 

75%, 85% at SNR = 7 dB for BPSK, QPSK, 

16-QAM, 64-QAM modulation types, respectively. The

influence of signal phase offset on the recognition accuracy has

not been studied and the proposed method requires large

computational resources

In this paper, an ADMR system is proposed that can operate 

effectively in the presence of AWGN and phase offset in the 

signal. It requires less computational resources compared to the 

other methods. The pattern recognition approach was chosen, 

and a set of seven instantaneous time-domain features was 

proposed for implementing automatic recognition algorithms 

for four types of digital modulations: BPSK, QPSK, 16-QAM 

and 64-QAM. A multilayer perceptron or feed-forward 

backpropagation neural network was used as a classifier in the 

pattern recognition subsystem. 

The paper is organized as follows. This introduction is 

followed by section II, which details the architecture and 

hyperparameters of proposed ANN used for the ADMR. Next, 

section III describes the signal model used for the investigation 

of the ADMR problem. Section IV describes the extraction of 

the signal features set used for the training of the ANN and 

recognition of four digital modulation types. Section V is 

dedicated to presenting the test results and is followed by the 

conclusion. 

II. ANN ARCHITECTURE AND HYPERPARAMETERS

Each ANN consists of input, output and hidden layers. The 

proposed signal feature set is used as input to the ANN. Since 

the set contains seven features, the input layer of the ANN must 

contain seven neurons. The output layer of the ANN is 

determined based on the number of modulation types that need 

to be classified. Accordingly, the output layer of the network 

contains four neurons, each of which represents one of the 

modulation types examined in this paper. The optimal number 

of hidden layers and neurons was determined during the 

experiments. 

Fig. 1.  The proposed ANN architecture for the ADMR problem. 

Based on the experimental results, the ANN architecture with 

two hidden layers was chosen, with each layer containing 

fourteen neurons. Given that the training duration of the ANN 

with this architecture was relatively short (approximately 10 

minutes) compared to more complex architectures with 

additional hidden layers or neurons, and considering its 

comparable recognition accuracy, it was identified as optimal 

for the ADMR problem under consideration. The proposed 

ANN architecture also contains bias neurons in each layer 

except the output one (Fig. 1). This is a special type of neuron 

that has a constant value and is not connected to the neurons of 

the previous layer. The inclusion of bias neurons enables the 

adjustment of the activation function by shifting it to the left or 

right. 

In this paper, the backpropagation method [13] was chosen 

to train the ANN. This method propagates the error value from 

the network outputs to its inputs to adjust the weights of the 

neurons: 

𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗   (1) 

where 𝑤𝑖,𝑗 is the weight of the synapse connecting the neurons

𝑖 and 𝑗, and ∆𝑤𝑖,𝑗 is the value with which the synapse weight

needs to be updated. 

The backpropagation algorithm uses the gradient descent 

method to update the weights of the neurons [14]. The ∆𝑤𝑖,𝑗  is

defined as follows: 
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∆𝑤𝑖,𝑗 =  𝜂𝛿𝑗

𝑑𝑓(𝑆𝑗)

𝑑𝑆
𝑓(𝑆𝑖)                         (2) 

 

where 𝜂 is the learning rate, 𝛿𝑗 is the loss value of the 𝑗-th 

neuron, 𝑆𝑗 is the state of the 𝑗-th neuron, 𝑓(𝑆𝑗) is the value of 

the activation function of the 𝑗-th neuron and 𝑓(𝑆𝑖) is the value 

of the activation function of the 𝑖-th neuron. 

The sigmoid function is used as the activation function of 

neurons in the network: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
                                 (3) 

 

Equation (2) clarifies that the learning rate is associated with 

the magnitude of the gradient step that is used to update the 

weights of the network. 
 

 

Fig. 2.  The influence of learning rate on network loss. 

a) learning rate is much too high, b) learning rate is too low, c) learning rate is 

high, d) learning rate is optimal 

 

The choice of the learning rate is crucial for the performance 

of the neural network. Inappropriate selection of this 

hyperparameter can result in extended training time or in 

extreme cases make it impossible to train the network (Fig. 2). 

There are many different methods for learning rate value 

control. In this paper, the cyclic change method [15] is chosen 

to control the learning rate during network training. In this 

method, the learning rate graph varies between the low and high 

thresholds. During these variations in the learning rate, the error 

value has the potential to move away from the sharp minima in 

the network loss graph. Although this might result in a 

temporary increase in network loss, it could eventually facilitate 

convergence towards more desirable minima of the network 

loss graph [16]. 

Various adaptations of this method exist. For example, during 

one cycle, the learning rate can decrease and increase linearly 

or exponentially. In addition, after each cycle, also the value of 

the upper threshold can decrease linearly or exponentially (Fig. 

3). 

 

Fig. 3.  Example of a cyclic learning rate with exponential decay 

 

III.  SIGNAL MODEL 

 

To build up a working model of the system, we assume that 

the carrier frequency and symbol timing of the signal are known 

apriori, the transmitted signal has passed through the AWGN 

channel and phase offset has been added to the signal as the 

effect of non-ideal synchronization. 

In accordance with this, the received signal model can be 

represented by the following equation: 
 

𝑠(𝑡) = 𝑚(𝑡) + 𝑔(𝑡)                                (4) 
 

where, 𝑚(𝑡) is considered as the modulated signal and 𝑔(𝑡) is 

an AWGN. 

The modulated signal 𝑚(𝑡) can be written as: 

 

𝑚(𝑡) = 𝑅𝑒{𝛼�̇�𝑒(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡𝑒𝑗𝜑𝑐}                     (5) 
 

where,  �̇�𝑒(𝑡) is the complex envelope of the modulated signal, 

𝛼 is the channel attenuation factor, 𝑓𝑐 is the carrier frequency, 

𝜑𝑐 is the phase offset and 𝑅𝑒{. } denotes the real part. It is 

considered that phase offset, and the attenuation factor are 

constant at the same observation period. 

The complex envelope �̇�𝑒(𝑡) can be written as: 
 

�̇�𝑒(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡) = 𝑎(𝑡)𝑒𝑗𝜑(𝑡)                  (6) 
 

where, 𝐼(𝑡) is the in-phase component, 𝑄(𝑡) is the quadrature 

component, 𝑎(𝑡) is the amplitude and 𝜑(𝑡) is the phase of the 

baseband signal. 

For the future feature extraction, we will use a simulated 

baseband signal that is affected by AWGN and phase offset. 

Considering the fact that the amplitude of the baseband signal 

may vary in different channels due to the attenuation factor of 

the channel, it is necessary to normalize the amplitude of the 

signal. Since the signal contains a zero mean AWGN, 
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normalization should be performed using the mean of the signal 

amplitude: 

𝑎𝑛(𝑡) = 𝑎(𝑡) 𝜇𝑎(𝑡)⁄                                 (7) 

 

where, 𝜇𝑎(𝑡) is the mean of the signal amplitude. 

 

IV.  FEATURE EXTRACTION 
 

The most commonly used signal features in the ADMR can 

be divided into two types: instantaneous time domain [17],[18] 

and statistical [19], [20], [21]. Instantaneous time domain 

features are calculated based on the instantaneous amplitude, 

phase, and frequency of the signal. Statistical features are 

extracted using higher-order moments, higher-order cumulants, 

and higher-order cyclic cumulants. Some studies also use these 

two types of features together for ADMR algorithms [22]. 

The feature set, used in this paper, was calculated based on 

the instantaneous amplitude and instantaneous phase of the 

simulated signal. The feature set proposed in [5] serves as the 

foundation for many studies that utilize instantaneous time 

domain features for the ADMR algorithms. In this paper, one 

feature is reused and two others are modified from the key 

feature set proposed in [5]. The reused feature is the standard 

deviation of the absolute value of the centered non-linear 

component of the instantaneous phase (𝜎𝑝𝑐𝑛𝑙). The two other 

features represent modified versions of the 𝜎𝑎𝑎 and 𝜇42
𝑎  features. 

In addition to these three features, four new features are 

proposed. The complete feature set proposed for the recognition 

of BPSK, QPSK, 16-QAM, and 64-QAM modulations consists 

of seven key features. 

The proposed features, that are calculated based on the 

instantaneous amplitude, are defined as follows: 

The standard deviation of the normalized instantaneous 

amplitude: 

 𝜎𝑎𝑛 = √
∑(𝑎𝑛(𝑖) − 𝜇𝑎𝑛)2

𝑛 − 1
                          (8) 

 

where 𝑛 is the number of samples and 𝜇𝑎𝑛 is the mean of the 

normalized instantaneous amplitude (equal to 1). 

The skewness of the normalized instantaneous amplitude: 

 

𝑆𝑎𝑛 =
∑(𝑎𝑛(𝑖) − 𝜇𝑎𝑛)3

𝑛 𝜎𝑎𝑛
3                            (9) 

 

The mean of the absolute value of the normalized centered 

instantaneous amplitude: 

𝜇𝑎𝑛𝑐 =
1

𝑛
∑|𝑎𝑛𝑐(𝑖)|                               (10) 

 

where 𝑎𝑛𝑐(𝑖) is the normalized centered instantaneous 

amplitude and is defined as follows: 
 

𝑎𝑛𝑐(𝑖) =  𝑎𝑛(𝑖) − 1                               (11) 

 

The skewness of the absolute value of the normalized 

centered instantaneous amplitude: 

 

𝑆𝑎𝑛𝑐 =
∑(|𝑎𝑛𝑐(𝑖)| − 𝜇𝑎𝑛𝑐)3

𝑛 𝜎𝑎𝑛𝑐
3                         (12) 

 

where 𝜎𝑎𝑛𝑐 is the standard deviation of the absolute value of the 

normalized centred instantaneous amplitude. 

The kurtosis of the absolute value of the normalized centered 

instantaneous amplitude: 
 

𝐾𝑎𝑛𝑐 =
∑(|𝑎𝑛𝑐(𝑖)| − 𝜇𝑎𝑛𝑐

)
4

𝑛 𝜎𝑎𝑛𝑐
4                       (13) 

 

The proposed features, that are calculated based on the 

instantaneous phase, are defined as follows: 

The mean of the absolute value of the centered non-linear 

component of the instantaneous phase: 
 

𝜇𝑝𝑐𝑛𝑙 =
1

𝑛
∑|𝜑𝑐𝑛𝑙(𝑖)|                            (14) 

 

where 𝜑𝑐𝑛𝑙(𝑖) is the centered non-linear component of the 

instantaneous phase. 

The standard deviation of the absolute value of the centered 

non-linear component of the instantaneous phase: 
 

𝜎𝑝𝑐𝑛𝑙 =  √
1

𝑛
[∑ 𝜑𝑐𝑛𝑙

2 (𝑖)] − [
1

𝑛
∑|𝜑𝑐𝑛𝑙(𝑖)|]

2

      (15) 

 

In order to evaluate the proposed signal key features, a set of 

100 signals for each modulation type was simulated using the 

LabVIEW programming environment. Each simulated signal 

contained 4096 random symbols, with each symbol containing 

8 samples. The instantaneous amplitude and phase of these 

signals were subsequently extracted. Based on these 

parameters, the values of signal key features were calculated. 

The key feature values for an SNR of 7 dB are shown in  

Figs. 4-10. 

The features calculated from the instantaneous amplitude of 

the signal can be used to classify 16-QAM and 64-QAM 

modulation types. 

From Figs. 4-8, it is clear that 16-QAM and 64-QAM 

modulations can be differentiated from each other by the set of 

features 𝜎𝑎𝑛, 𝑆𝑎𝑛, 𝜇𝑎𝑛𝑐, 𝑆𝑎𝑛𝑐  and 𝐾𝑎𝑛𝑐 . In M-QAM 

modulations, both the phase and amplitude of the signal are 

being changed. As the number of possible amplitude values for 

16-QAM differs from that of 64-QAM modulation, the values 

of key features, calculated based on the instantaneous amplitude 

of the signal, remain in different regions. However, the 

classification of the QPSK and BPSK modulation types cannot 

be achieved with these five features. In these modulations, only 

the phase of the signal changes and they each have only one 

absolute amplitude value. That amplitude value is identical for 

both QPSK and BPSK. 
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Fig. 4.  The value of 𝜎𝑎𝑛 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 

simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 

 

 

Fig. 5.  The value of  𝑆𝑎𝑛 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 

simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 

 

From Figs. 4-8, it is clear that 16-QAM and 64-QAM 

modulations can be differentiated from each other by the set of 

features 𝜎𝑎𝑛, 𝑆𝑎𝑛, 𝜇𝑎𝑛𝑐, 𝑆𝑎𝑛𝑐  and 𝐾𝑎𝑛𝑐 . In M-QAM 

modulations, both the phase and amplitude of the signal are 

being changed. As the number of possible amplitude values for 

16-QAM differs from that of 64-QAM modulation, the values 

of key features, calculated based on the instantaneous amplitude 

of the signal, remain in different regions. However, the 

classification of the QPSK and BPSK modulation types cannot 

be achieved with these five features. In these modulations, only 

the phase of the signal changes and they each have only one 

absolute amplitude value. That amplitude value is identical for 

both QPSK and BPSK. 

The features calculated from the instantaneous phase of the 

signal (𝜇𝑝𝑐𝑛𝑙 and 𝜎𝑝𝑐𝑛𝑙) can be used to classify QPSK and 

BPSK modulation types (Figs. 9-10). 

However, the classification of the 16-QAM and 64-QAM 

modulation types cannot be achieved with these two features. 

16-QAM and 64-QAM modulations have many possible phase 

values, and the differences between these values are much 

smaller compared to those in BPSK and QPSK modulations.  

As a result, in the case of low SNR values, the key feature 

values calculated based on the instantaneous phase of the signal 

for 16-QAM and 64-QAM start to overlap in their respective 

regions. 
 

 

Fig. 6.  The value of  𝜇𝑎𝑛𝑐 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 
simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 
 

 

Fig. 7.  The value of  𝑆𝑎𝑛𝑐 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 

simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 

 

 

Fig. 8.  The value of  𝐾𝑎𝑛𝑐 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 

simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 
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Intra-class recognition of M-PSK modulations can be 

achieved through key features extracted from the instantaneous 

phase of the signal. Similarly, for M-QAM modulations, intra-

class recognition can be achieved by using key features 

calculated from the instantaneous amplitude of the signal. 

However, the inter-class recognition between M-PSK and  

M-QAM modulations can only be achieved by combining the 

seven key features described above. 
 

 

Fig. 9.  The value of  𝜇𝑝𝑐𝑛𝑙 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 
simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 

 

 

Fig. 10.  The value of  𝜎𝑝𝑐𝑛𝑙 for 100 simulated 64-QAM, 16-QAM, QPSK and 

BPSK signals at SNR = 7 dB; N = 1,2,…,100 represents the number of the 
simulated signal (e.g. when N = 20, it refers to the 20th simulated signal) 

 

The phase offset of the signal affects only two features from 

the set described above, 𝜇𝑝𝑐𝑛𝑙 and 𝜎𝑝𝑐𝑛𝑙. Despite this, these 

features are still applicable for ADMR. This is because the 

values of these features for QPSK and BPSK modulation types 

fall within distinct ranges (without any overlap) and can be 

differentiated throughout the complete cycle of the phase offset 

(Fig.11-12). As the phase offset doesn’t have an impact on the 

key features calculated from the instantaneous amplitude of the 

signal, the recognition of 16-QAM and 64-QAM modulations 

in the presence of phase offset in the signal can still be achieved 

by using key features 𝜎𝑎𝑛, 𝑆𝑎𝑛, 𝜇𝑎𝑛𝑐, 𝑆𝑎𝑛𝑐  and 𝐾𝑎𝑛𝑐 . 

 

 

Fig. 11.  The value of  𝜇𝑝𝑐𝑛𝑙 against phase offset 𝜑𝑐 for QPSK and BPSK 

signals at SNR=7 dB 
 

 

Fig. 12.  The value of  𝜎𝑝𝑐𝑛𝑙 against phase offset 𝜑𝑐 for QPSK and BPSK 

signals at SNR=7 dB 

 

V.  EXPERIMENTAL RESULTS 
 

Described ADMR algorithms were implemented in the 

LabVIEW programming environment. For each modulation 

type, 500 baseband signals were generated with a random SNR 

in the range of 6-30 dB and a random phase offset in the range 

of 0-45 degrees. 

Experiments have demonstrated that the network training 

process becomes significantly challenging when the lower limit 

of the SNR for the generated signals is 5 dB or less. Even if the 

network was trained on such data, classification of the 16-QAM 

and 64-QAM modulated signals with SNR = 5 dB or lower 

becomes impossible. The network treats them as the same 

modulation type and gives a recognition probability of about 

99% for one of them and a recognition probability of about  

0-1% for the other. This happens because the values of the key 

features, calculated to classify the 16-QAM and 64-QAM 

signals, start to overlap each other at the SNR value of 5 dB and 

lower (Fig.13). Because of this, the decision was made to train 

the network using signals with SNR in the range of 6-30 dB. 
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Fig. 13.  The value of  𝑆𝑎𝑛𝑐 for 100 simulated 64-QAM and 16-QAM signals 

at SNR = 5 dB 

 

The phase offset range was selected to be 0-45 degrees, as the 

value of 𝜇𝑝𝑐𝑛𝑙 within this range encompasses all the values 

present throughout a complete phase offset cycle (Fig.11). By 

training the ANN with this range, all phase offset values will be 

covered. 

During the training process, the cyclic change control method 

with an exponential decay of epochs and cycles was used for 

the learning rate control (Fig. 3). 

After each epoch, the root mean square error of the network 

was calculated, and if it was less than 0.01, then the network 

was considered as trained: 

δ𝑅𝑀𝑆 =
√∑ (

∑ δ𝑚

𝑚
)

2

𝑛
                            (16) 

 

where 𝑚 is the count of output neurons, 𝛿𝑚 is the error value of 

the 𝑚-th output neuron and 𝑛 is the size of the training data. 
 

 

TABLE  I 

RECOGNITION RESULTS 
 

 6 dB 7 dB 10 dB 15 dB 20 dB 30 dB 

BPSK 97.94% 97.79% 97.35% 97.41% 98.15% 98.17% 

QPSK 91.51% 97.08% 99.44% 99.54% 99.55% 99.55% 

16-QAM 32.59% 99.03% 99.11% 99.14% 99.15% 99.15% 

64-QAM 99.1% 99.15% 99.17% 98.9% 98.81% 98.89% 

 

For the recognition test, 1000 signals were generated for each 

modulation type at the specified SNR value. The phase offset 

dynamically changed, starting from 0 degrees and increasing by 

one degree with each generated signal. Within the same 

observation period the phase offset remained constant. At the 

end, the average recognition probability was calculated. The 

results of the recognition test are presented in Table 1. 

At SNR = 6 dB, the recognition probability of 16-QAM 

modulation drops sharply to ~30%, but the network is still able 

to classify BPSK and QPSK modulations with high probability 

(Table I.). 

 

 

Fig. 14. The constellation of generated 16-QAM signal at  

SNR = 6 dB and 𝜑𝑐 = 35∘ 

 

 

Fig. 15.  The constellation of generated 64-QAM signal at  

SNR = 6 dB and 𝜑𝑐 = 35∘ 

 

The high recognition probability for 64-QAM modulation, 

coupled with the low recognition probability for 16-QAM 

modulation at SNR = 6 dB, indicates that the network is not able 

to classify 16-QAM and 64-QAM modulations at this SNR 

value (Fig.14, Fig.15). For the SNR values greater than 6 dB, 

the network classifies all examined modulation types with a 

high recognition probability, regardless of the phase offset 

value. 
 

VI.  CONCLUDING REMARKS 
 

In this paper, the automatic recognition of four types of 

digital modulation in the presence of both phase offset and 

AWGN was studied. A set of seven signal key features (𝜎𝑎𝑛, 

𝑆𝑎𝑛, 𝜇𝑎𝑛𝑐, 𝑆𝑎𝑛𝑐 , 𝐾𝑎𝑛𝑐 , 𝜇𝑝𝑐𝑛𝑙 and 𝜎𝑝𝑐𝑛𝑙) for the ADMR problem 

was proposed. It was shown that BPSK and QPSK modulation 

types can be classified using the features 𝜇𝑝𝑐𝑛𝑙 and 𝜎𝑝𝑐𝑛𝑙. 

Similarly, 16-QAM and 64-QAM can be classified using the 

features 𝜎𝑎𝑛, 𝑆𝑎𝑛, 𝜇𝑎𝑛𝑐, 𝑆𝑎𝑛𝑐  and 𝐾𝑎𝑛𝑐 . 
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To study the performance of this feature set, an ANN 

architecture was proposed and implemented in the LabVIEW 

programming environment. 

The proposed ADMR algorithms give ability to classify 

BPSK, QPSK, 16-QAM and 64-QAM modulation types with a 

high recognition probability (about 97-99%) at SNR range of 7-

30 dB and at all phase offset values. Compared to other existing 

works, the proposed ADMR algorithms achieve high 

recognition accuracy using fewer computational resources. 

In future studies, the key feature set could be expanded to 

enhance the network’s ability to classify additional modulation 

types. Additionally, the impact on recognition accuracy of both 

dynamically changing phase offset during the same observation 

period and frequency offset could be investigated. 
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