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Abstract—Blind spectrum sensing (BSS) is crucial for identify-
ing unknown signals in scenarios with limited prior knowledge.
Traditional methods face challenges with unknown and time-
varying signals, especially in the presence of noise interference.
This paper addresses these issues by introducing a statistical sig-
nal processing framework that extends the use of machine learn-
ing (ML) features. Our approach improves BSS by incorporating
cumulative distribution functions (CDFs) into unsupervised ML,
enabling effective clustering of diverse transmission states with-
out assumptions about specific noise distributions. Additionally,
we introduce a temporal decomposition technique using shorter
Fast Fourier Transforms (FFTs), enhancing the learning process,
reducing system inertia, and minimizing data requirements for
retraining under dynamic conditions. We evaluate our method,
focusing on various features/approaches for incorporating CDFs
into ML, including centroid, linear approximation, and low-order
statistics. Simulation results demonstrate robust detection in a
standard transmission scenario with a Gaussian pulse amidst
additive white Gaussian noise, maintaining a consistently low
false alarm rate. These findings highlight our BSS approach’s
effectiveness and practical potential in handling unknown signals
in challenging environments. This research provides valuable
insights, laying the groundwork for practical implementation in
real-world scenarios.

Index Terms—Blind detection, cumulative distribution func-
tion, machine learning, spectrum sensing, unknown signals.

I. INTRODUCTION

BLIND spectrum sensing (BSS) is a well-known ap-
proach for detecting unknown signals in scenarios where

prior knowledge about the signal is minimal, inaccessible,
or missing. Conventional detection methods often encounter
operational deficiencies when faced with unknown, dynamic
signals immersed in significant noise and interference levels.
A primary challenge of blind detection lies in the demand for
extensive datasets, high computational costs, and less precision
compared to methods equipped with prior signal knowledge.
Nonetheless, the capability to detect unknown signals holds
significant value across diverse applications.

In domains such as wireless communications and cognitive
radio networks, detecting and tracking signals from multiple
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sources is crucial to avert disruptive interference [1]. In radio
astronomy, detecting signals from distant, unknown sources is
an everyday necessity [2]. Passive radar systems, for instance,
rely on naturally occurring signals like TV or FM broadcasts
as sources of reflection rather than active transmitters [3]. In
medical imaging, the task often involves detecting and locating
subtle signals within vast datasets. These challenges are not
confined to a single field but have broader relevance.

Various advanced and well-established techniques have
found application across this interdisciplinary domain. Among
them, subspace methods, notably Principal Component Anal-
ysis (PCA) and Independent Component Analysis (ICA) are
popular choices for blind spectrum sensing. These techniques
seek to identify a lower-dimensional subspace that captures the
most critical signal features [4]. Although subspace methods
excel at disentangling mixed or correlated signals and are
relatively straightforward to implement, they demand substan-
tial data and can be sensitive to noise and outliers. Cyclo-
stationary feature detection, on the other hand, leverages the
cyclostationarity property of signals, which denotes statistical
dependencies between a signal and its time-shifted versions.
This approach is robust to noise and interference but applies
primarily to narrowband signals [5]. In recent times, sparse
representations, including compressive sensing, have emerged
as a BSS technique that aims to represent signals as sparse
linear combinations of basis functions. This method excels at
extracting meaningful signal information, even in the presence
of noise and interference; however, its effectiveness is condi-
tional upon the availability of substantial data and the selection
of appropriate basis functions [6].

In recent years, BSS has witnessed a surge in interest, re-
sulting in the developing of novel algorithms and techniques to
enhance signal detection performance and robustness. Notably,
machine learning (ML) approaches have garnered substantial
attention [7], [8], [9], [10], [11]. These methods deploy ML
algorithms capable of adapting to the characteristics of signals
and noise. However, two significant challenges persist in ML-
based BSS research:

• The development of versatile ML features that can han-
dle non-stationary and non-linear signals, independent
of their characteristics, is of pivotal importance. These
features should facilitate the detection of unknown signals
without prior knowledge of their frequency, modulation,
or structure, and they should adapt to signals with varying
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characteristics over time.
• The substantial data requirements for achieving high

accuracy using machine learning-based methods can pose
significant limitations, especially in scenarios with limited
data or computationally intensive detection tasks.

Addressing these challenges is vital for advancing BSS with
ML techniques.

This paper presents a significant advancement in the field of
blind spectrum sensing. Building upon the research presented
in [12], our work investigates a novel statistical signal process-
ing method that incorporates cumulative distribution functions
(CDFs) into the ML process and employs unsupervised ML.
The model effectively discriminates between statistically dis-
tinct states without making specific assumptions about noise
distribution. The temporal decomposition technique enhances
learning by utilizing multiple shorter Fast Fourier Transforms
(FFTs) within a single time frame, reducing system iner-
tia and minimizing data requirements for model retraining
under changing propagation conditions. This study extends
prior work by streamlining the procedure’s most intricate
step/node—simplifying the complex centroid determination in
CDF assessment and offering considerations for alternative
approaches.

The remainder of this paper is structured as follows: Section
II introduces the ML-based Blind Spectrum Sensing (BSS)
system, offering an overview of the commonly used measure-
ments and features. Section III introduces the system model
and the statistical basis for CDF-based detection. Section IV
presents the CDF-based approaches to ML-based detection,
including simulation results on CDF measurements in BSS
and a discussion of the improvements achieved through var-
ious CDF-processing techniques. Finally, in Section VI, we
summarize the findings and outline potential trajectories for
future research.

II. MACHINE LEARNING IN BSS

Machine learning (ML) has emerged as a potent tool for
signal detection in recent years [7], [8], [9], [10], [11]. Its
ability to extract meaningful information from signals, even in
noisy environments, without prior knowledge of the signal’s
characteristics, has become a focal element. ML employs
various features to classify the presence of unknown sig-
nals in the noise. Common features for spectrum sensing
in ML encompass power spectral density, autocorrelation,
and cyclostationary features like cyclic correlation and cyclic
spectral density. Additional features derive from signal statis-
tics, such as mean, variance, skewness, and kurtosis. Time-
domain features, such as energy, entropy, and correlation
coefficients between subcarriers, are also applied, contingent
on the specific application and signal characteristics [8]. In
some instances, a combination of multiple features enhances
the algorithm’s accuracy, especially when dealing with non-
stationary and non-linear signals.

ML algorithms enhance detectors’ decision-making capa-
bilities through efficient information inference. Zhang et al.
in [9] combined unsupervised and supervised learning for
spectrum sensing under varying transmit powers. The method

learns transmission patterns and statistics through a modified
K-means algorithm during a learning phase, subsequently
distinguishing energy feature vectors with support vector
machines (SVM). Xiao et al. in [11] introduced a random
forest spectrum sensing algorithm for signal recognition in
low signal-to-noise ratio (SNR) settings. Awe et al. in [10]
developed supervised and semi-supervised learning algorithms
using the eigenvalues of the received signal covariance matrix
as features. Vyas et al. in [13] adopted a binary classification-
based artificial neural network (ANN) with received signal
energy and likelihood ratio test statistics at different SNRs. In
the work of Tian et al. [14], received signal power and cyclic
prefix-induced correlation are used as features. Khalfi et al.
in [15] proposed a wideband detection scheme that leverages
regression and compressive sampling techniques for improved
detection performance.

To further enhance ML-based detection, three approaches
are considered:

• In the study by Mikaeil et al. [16], a cooperative sensing
algorithm utilizes ML. The classifier undergoes initial
training with a dataset containing energy test statistics
and their corresponding decisions on signal presence or
absence. It is then used to predict new decisions based
on new energy test statistics. Li et al. in [17] introduced
an SVM-based model for cooperative sensing, optimiz-
ing signal grouping to reduce cooperation overhead and
improve spectrum sensing performance.

• Hybrid models combine various modeling approaches,
such as physical models, data-driven models, or rule-
based models, to leverage the strengths of each. This
leads to a more profound understanding of the system
and more precise decision-making. An example of a
hybrid solution is the energy/entropy-based model in
[18], which combines physical-driven detection and data-
driven entropy. These feature as vectors for the classifier.

• Decision functions play a vital role in hybrid modeling.
Nikonowicz et al. in [19] underscore the importance of in-
tegrating decision-making into the modeling process. This
involves identifying optimal solutions based on model
outputs and considering factors like cost, feasibility, and
environmental impact. In [20], various ML techniques,
including SVM, random forest, decision tree, K-NN,
logistic regression, and NBC, are trained, validated, and
tested.

It is crucial to note that while integrating ML into hybrid
solutions with traditional spectrum sensing features can signif-
icantly enhance spectrum sensing performance, it may lead to
increased processing time and implementation complexity. The
trade-off between model accuracy and processing efficiency
becomes a key consideration. Furthermore, dimensionality
reduction techniques, as discussed in [21], can offer substantial
benefits by reducing data complexity without compromising
accuracy, which is an important aspect to consider in optimiz-
ing data utilization.

III. SYSTEM MODEL

Incorporating domain-specific knowledge into detection
models is a challenging task, particularly in the face of com-
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plex spectral signals influenced by various factors like ever-
changing environmental conditions and frequency-dependent
propagation and attenuation. The presence of non-uniform
signal sources further adds complexity to the detection pro-
cess. Statistical feature analysis has emerged as a promising
research direction to tackle these intricacies. This approach
avoids the need for pre-determined signal parameterization,
opting to identify external signals as anomalies or rare occur-
rences within what is initially assumed to be a homogenous
noise environment. The efficacy of this methodology has been
affirmed in prior investigations [22], [12].

Furthermore, Scheers et al. in [23] illustrate integrating
a Goodness-Of-Fit-based spectrum sensing approach into a
conventional wideband spectrum sensing framework. Their
work highlights a precise technique with a short sensing
time, providing empirical evidence for the credibility of the
statistical approach in the context of wideband signals.

Additive white Gaussian noise (AWGN) is a prevalent
choice for modeling channel distortion in radio environ-
ments, and numerous motivations can justify this prefer-
ence. First and foremost, practical radio channels contend
with a wide range of noise sources, ranging from thermal
to atmospheric and man-made distortions. The central limit
theorem, a cornerstone of statistics, posits that the collective
sum of numerous independent random variables converges
toward a Gaussian distribution. In radio environments, the
independence of multiple noise sources, treated as random
variables, collectively contributes to the overall noise on a
channel. This, in turn, establishes AWGN as a fitting model for
encapsulating the combined noise in a radio channel. Secondly,
AWGN aligns with well-defined statistical parameters that
closely approximate the characteristics of various real-world
noise sources [24]. With its characteristic bell-shaped curve,
the Gaussian distribution lends itself to easy mathematical
analysis. Its property of closure under convolution simplifies
the assessment of noise’s impact on a signal. Furthermore,
it is worth noting that Gaussian noise represents a worst-
case scenario for many radio systems. If a communication
system can effectively operate in the presence of AWGN, it
will likely demonstrate robust performance when confronted
with other, potentially more complex noise sources. Therefore,
investigating the effects of AWGN provides valuable insights
for designing communication systems that exhibit resilience
against a diverse array of noise sources [25], [26].

In the system model under consideration, we introduce the
following key variables:

• L: the number of sampling points.
• sn: the signal under investigation.
• xn: the deterministic signal targeted for detection.
• zn: complex Gaussian noise, comprising independent and

identically distributed (iid) samples with zero mean and
a variance of σ2.

Furthermore, we establish two critical hypotheses:

• H0: Corresponding to the scenario where no signal is
transmitted.

• H1: Corresponding to the scenario where a signal is
indeed transmitted.

The signal, which is a composite of the actual signal and
Gaussian noise, can be expressed as follows:

sn =

{
zn, if H0

xn + zn, if H1

(1)

In order to ascertain the single-sided spectrum S(k) of the
signal s(n), the initial step entails applying a Fourier transform
to the incoming signal

S(k) =
L−1∑
n=0

s(n)e−j2π k
L , k = 0, 1, 2...

L

2
− 1, (2)

subsequently, leveraging the inherent nature of s(n) as a
composite of x(n) and z(n), in conjunction with the properties
of the Fourier transform, allows us to compose the following

S(k) = X(k) + Z(k), (3)

where X(k) and Z(k) denote the Fourier transforms of x(n)
and z(n), respectively. Consequently, the expression for the
kth bin in the power spectrum manifests as

P (k) =
1

L

(
(XR(k) + ZR(k))

2 + (XI(k) + ZI(k))
2
)
. (4)

The notations XR(k) and XI(k) refer to the real and imagi-
nary components of the signal, respectively. Similarly, ZR(k)
and ZI(k) represent the real and imaginary parts of the
noise. The probability distribution of spectrum bins within
the states H0 and H1 can be ascertained by investigating the
statistical characteristics of the received signal s(n) under each
hypothesis. This analysis allows for determining how spectral
bins are distributed under different signal and noise conditions.

Drawing from the insights provided by [23], we delve into
analyzing Fourier coefficients’ distribution in the presence
of AWGN. As a weighted summation of Gaussian random
variables, the Fourier coefficient Z(k) for a specific frequency
bin k follows a Gaussian distribution. Consequently, a complex
Gaussian noise process, denoted as z(n) and characterized
by z(n) ∼ N (0, σ2), results in complex Gaussian Fourier
coefficients Z(k). Given that z(n) has a zero mean, it naturally
follows that the mean of Z(k) is also zero. In probability the-
ory, it is well-established that when two independent random
variables, Z(i) and Z(j), each possess variances of σ2i and
σ2j respectively, the random variable Z(i) + Z(j) exhibits
a variance equal to the sum of their individual variances,
i.e., σ2i + σ2j. Consequently, the variance of Z(k) can be
calculated as expounded in [23].

var(Z(k)) =
L−1∑
n=0

|e−j2π kn
L |σ2 = Lσ2, (5)

where L represents the length of the DFT. Consequently, we
can deduce that the Fourier coefficients follow a Gaussian dis-
tribution ∼ N (0, Lσ2). Furthermore, this information leads us
to an important observation regarding the k-th power spectrum
coefficient P (k). It follows a Chi-squared distribution with
two degrees of freedom, as supported by [27], [28], [23], given
by

2|Z(k)|2

Lσ2
∼ χ2

2. (6)
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This distribution is defined as the summation of the squares
of independent standard normal variables, and the factor
2/Lσ2 arises from the normalization of the real and imaginary
components of the coefficients Z(k) ∼ N (0, 1), following
[23].

Under the hypothesis H1, the received signal comprises
a composite of the signal x(n) and the noise z(n). Since
x(n) and z(n) are mutually independent, their respective
Fourier transforms also remain independent. Consequently,
under H1, the power spectrum bin adheres to a non-central
Chi-squared distribution, denoted as P (k) ∼ χ2

2(λk). This
distribution possesses two degrees of freedom and a non-
centrality parameter, as elaborated in [27], [28], [23].

λk =
1

σ2
|X(k) + Z(k)|2 . (7)

The central chi-squared distribution arises from the sum of
squared independent standard normal distributions, while the
noncentral chi-squared distribution extends this concept to
include normal distributions with any mean and variance. This
property enables the incorporation of deterministic narrow or
wideband signals in noise, resulting in non-centrality. The
presence of non-centrality is a crucial foundation for the
detection mechanism, as outlined in the subsequent section.

IV. PROPOSED SOLUTION

Integrating new features into the array of machine learning
parameters may not pose a substantial challenge. However,
ensuring that each processing step remains as straightforward
as possible and effectively handling the surging data volumes
demands thoughtful consideration.

Our solution tackles the former by examining the optimal
conversion of CDFs into data that is manageable for learning
purposes. Simultaneously, we address the latter by departing
from the previous approaches, which involved aggregating data
from multiple FFT measurement campaigns. Instead, we min-
imize the data requirement for empirical distribution analysis
by constructing an FFT matrix based on decimated signals.
This approach streamlines data management and enhances the
efficiency of our analysis.

The detection is based on a single capture of the signal time
frame and three assumptions:

1) Adjacent noise samples, as iid, can be arbitrarily com-
bined without changing the statistical parameters.

2) The temporal form of signals can be subsampled without
loss in average power.

3) The imperfect matching of the sampling frequency and
the frequency of the analyzed signal causes energy
leakage into adjacent FFT bins.

Up to this point, the singly captured sample vector s of
length L is transformed according to the following procedure:

1) We determine the decimation coefficient d.
2) We create a measurement matrix m with dimensions of

d× ⌊L/d⌋.
3) The rows of m are filled with samples of s in a non-

overlapping, interleaved pattern:

m(i, j) = S ((j − 1)d+ i) . (8)

4) Proceed the ⌊L/d⌋-point FFT for each row of the matrix
m.

5) For row-oriented FFTs matrix, determine the column-
oriented empirical CDFs.

6) Resolve manageable representation for each CDF curve:
a) centroid of a polyfigure,
b) amplitude of 0.5 probability,
c) length and deviation,
d) slope coefficient and length.

7) Evaluate the 2D points representing the CDFs with
respect to the demarcation of the points clustered in the
ML procedure.

The method expounded in this discourse holds several
significant advantages. Primarily, it integrates a direct incor-
poration of CDF into the ML process. Unlike the previous
solution [23] that evaluated goodness-of-fit against expected
distribution patterns, our approach introduces ML without
assuming specific distributions. Instead, it rests on the premise
that the two states are statistically discernible, leveraging
unsupervised clustering performed by ML. Moreover, temporal
decomposition facilitates the handling of multiple notably
shorter FFTs, thereby enabling the acquisition of a compre-
hensive CDF representation for both H0 and H1 states from a
single measurement capture. This methodology reduces system
inertia and diminishes the data required for model relearning
in response to changing propagation conditions that necessitate
algorithmic adjustments.

V. SIMULATION

To evaluate the performance of our proposed algorithm,
we established a simulation framework designed to generate
random instances of a deterministic signal within a com-
plex AWGN environment. Our analysis is centered on non-
overlapping time intervals, each comprising 4096 samples of
complex noise. In this simulation, there is a 50% probability of
introducing a complex Gaussian-modulated sinusoidal Radio
Frequency (RF) pulse into the frame, as illustrated in Fig-
ure 1a. The transmitted signal, denoted as Tx, remains clear,
while the received signal in the presence of noise is represented
as Rx, with its real and imaginary parts representing the in-
phase and quadrature-phase components, respectively. Key pa-
rameters include a receiver (Rx) bandwidth (BW) of 120 MHz,
RF pulse fractional bandwidth following a normal distribution
∼ N (0.5, 0.1), and center frequency ∼ N (0.15, 0.1) of the
bandwidth. Additionally, the phase position of the pulse within
the frame is governed by a uniform distribution.

Considering SNR below 0 dB, as depicted in the full-scale
FFT (Figure 1b), there is no clear indication of signal presence.
However, our proposed solution employs a method where a
frame is subdivided into 32 subframes. As a consequence
of this approach, rather than computing a 4096-point FFT,
we calculate 128 instances of a row-oriented 32-point FFT
for a row-oriented time-decomposition matrix. Following this,
a column-oriented cumulative distribution function (CDF) is
generated, reflecting the empirical distributions for individual
spectral bins (Figure 2). The non-centrality (shift) of the CDFs
corresponding to spectral bands carrying the signal becomes
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Fig. 1. Single capture of a time frame (a) at the transmitter (Tx) and the
receiver (Rx); FFT of the received signal (b).
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Fig. 2. Column-oriented CDFs of 128 row-oriented 32-point FFTs.

distinctly observable. Subsequently, converting each curve into
a more manageable representation becomes imperative.

A. Centroid of a Polyfigure

The fundamental approach supported in [12] involves rep-
resenting each curve by redefining it as a polyfigure and then
finding the centroid (Fig. 3). Thus, each curve is represented
by a single point on a 2D amplitude-probability plane. The
resulting cloud of points, with an intensely concentrated group
representing noise, is readily amenable to clustering using
the k-means algorithm and a cosine-based distance criterion
(Fig. 4). Both groups can be well separated by a single
demarcation line, which adjustment through the tuning of a
constant coefficient allows for regulating the probability of
false alarms.

Fig. 3. Transformation of a single CDF into the centroid of a polyfigure.
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Fig. 4. Allocation of clusters using the K-means method.
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Fig. 5. Detection rate in a CFAR scenario utilizing centroid classification.

The results of the exemplary detection scenario show that
the presented method can be effectively applied even for very
weak signals. The analysis for the constant false alarm rate
(CFAR) set to 0.075 shows that the detection rate (DR) keeps
above 90% to over -11 dB. However, the technique has its
challenges. We place a strong emphasis on the low complexity
of the proposed solution. Conversely, polyshape determination
and centroid calculation are complex operations that, while
yielding good detection results, conflict with the adopted
assumption. Therefore, in the following sections, we present
simplified approaches to representing CDF, their impact on
learning, and detection effectiveness.
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Fig. 6. Assignment of clusters using the K-means method.
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Fig. 7. Detection rate in a CFAR scenario using mean classification.

B. Mean

One of the most straightforward and intuitive approaches
to evaluating the centrality/non-centrality of a distribution is
through the assessment of the mean value. This reduces the
earlier 2D planeto to a one-dimensional amplitude criterion
for a probability of 0.5. The value is easily distinguishable
using k-means clustering with Euclidean distance criterion
(Fig. 6). In this case, the false alarm probability is adjusted
by adopting a threshold value for the observed amplitude. For
such a tailored method, the detection efficiency at a 90% level
in a scenario analogous to the previous one is -7 dB (Fig. 7).

C. Linear Approximation: Length and Deviation

A more intricate, yet still accessible, evaluation of CDFs
focuses on measuring curvature rather than mean-shift. In
this regard, the curve undergoes approximation through a
linear function, resulting in the length L as the first acquired
dimension. Subsequently, the evaluation involves assessing
the maximum deviation of the empirical CDF from the
approximation, yielding second dimension D (Fig.8). The
cloud of points in the D/L plane serves as the basis for
clustering in the ML process (Fig.9). The clustering utilizes
the DBSCAN algorithm, created on a density-based spatial
clustering (control parameters: a minimum of 10 points within
a distance of 0.02). The simplified 2D approach produces more
promising results than the 1D analysis of the mean, ensuring
a 90% detection accuracy at approximately -9 dB (Fig. 10).
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Fig. 8. Conversion of a single CDF into a length-difference (L/D) pair.
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Fig. 9. Cluster assignment using the DBSCAN method.
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Fig. 10. Detection rate in a CFAR scenario with L/D classification.

D. Linear Approximation: Slope Coefficient and Length

The third considerable factor that captures the distinctive-
ness of CDFs between ’noise-only’ and ’signal-with-noise’
states is the slope coefficient of the curve in its linear
approximation. In this context, we assess the length of the
curve, denoted as L, approximated based on the points
where the curve reaches probabilities of 0.1 and 0.9. For the
linear approximation, we determine the slope coefficient α
(Fig.11). These measurements enable the construction of a
two-dimensional space, denoted as α/L, where, once again,
a cloud of points undergoes clustering into two groups using
the DBSCAN strategy (control parameters: a minimum of 10
points within a distance of 0.01) (Fig.12). It’s important to
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Fig. 11. Conversion of a single CDF into a slope-length (α/L) pair.
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Fig. 12. Assignment of clusters using the DBSCAN method.

-25 -20 -15 -10 -5 0

Signal-to-noise ratio (dB)

0

0.2

0.4

0.6

0.8

1

D
e

te
c
ti
o

n
 r

a
te

CFAR 0.015

CFAR 0.020

CFAR 0.075

CFAR 0.125

CFAR 0.200

Fig. 13. Detection rate in a CFAR scenario with α/L classification.

highlight that the pivotal factor in partitioning the plane is not
the length but rather the determined slope coefficient. This 2D
approach yields a detection accuracy of approximately -7 dB
for a 90% detection rate when considering a 7.5% false alarm
rate (Fig. 13).

E. Complexity

The investigation into time complexity was conducted by
averaging the duration of 25,000 detection processes executed
serially on a 3 GHz CPU. According to previous consider-
ations, relinquishing the determination of the polyshape in
favor of other methods results in a significant decrease in the
detection time by order of magnitude (Fig. 14). In the case of
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Fig. 14. Time complexity comparison.

the centroid-based method, the total process of single detection
took 385 ms, with the shape determination itself accounting
for 304 ms. In comparison, for methods based on D/L and
α/L, taking 42 ms and 48.5 ms, respectively, the two most
complex operations were linear approximation at 16 ms and
building CDF matrices at 14.2 ms (common to all methods).
The most straightforward approach, i.e., assessing the mean
value, took 23 ms.

F. Comparison to other Methods

Referring to the study [29] is valuable to relate the results
obtained to other alternative methods. In a similar impulse
transmission scenario, the authors present the effectiveness
of detection based on statistical approaches and relate them
to the fundamental techniques of energy detection and its
modification, utilizing short windows. Table I provides a
comparison of methods in two scenarios: S1) the minimum
SNR at which the method achieves 90% detection rate with a
CFAR of 10% and 1024 samples per frame (for CDF-based
methods decimation coefficient d set to 16); S2) the detection
rate achieved for an SNR cutoff at -6 dB with a CFAR of 10%
and 4096 samples per frame.

TABLE I
PERFORMANCE COMPARISON OF DETECTION METHODS IN TWO

SIMULATION SCENARIOS

Detection SNR in S1 DR in S2

method (DR over 90%) (SNR at -6dB)
Conventional energy det. 0 dB 78%

Short windows energy det. -1 dB 80%
Jarque-Bera normality test 3 dB 81%
Higher-order-statistics test 3 dB 83%

Gaussianity testing -2 dB 88%
CDF mean-based det. -2 dB 92%
CDF α/L-based det. -2 dB 95%
CDF L/D-based det. -3 dB 99%

CDF centroid-based det. -5 dB 99%

Comparison with previously studied approaches shows that
the proposed solution, even with a short frame of 1024
samples, ensures better detectability than energy detection
or direct sample distribution analysis. Reference to results
obtained for 4096 samples in the frame indicates that statistical
methods significantly benefit from increased frame length
used to build the empirical distribution (for details, see [29]).
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Nonetheless, the approach based not on predefined patterns but
on a learned reference obtained through autonomous clustering
occurs superior in both cases, which seems intuitively justified
due to the better adaptation to the case achieved for learning
methods.

Regarding time complexity, we can draw insights from [30].
The results outlined in subsection V-E surpass the 1 ms thresh-
old observed in energy detection but bring the basic mean-
based approach close to 19.2 ms, as seen in normality testing
(adjusted for equal input size). It is noteworthy that, from the
detectors’ standpoint, the entire learning and establishment of
the appropriate demarcation function, crucial for detection,
occur independently of standalone detection. This process
occurs in the background or between detection campaigns.

VI. CONCLUSIONS

The presented research builds upon prior investigations into
the effective integration of time decomposition and distribu-
tion analysis with machine learning. The conducted survey
of methods showcases the diversity of solutions achievable
through these tools and underscores their practical implemen-
tation in an effective and straightforward manner.

The undertaken studies reveal that, despite a relatively
modest increment in the complexity of a singular detection
process, the utility of detection increases significantly. The
adaptability of these methods, enabled by effective learning
through autonomous clustering, positions them as efficient
solutions for blind signal detection applications, thereby out-
performing classical statistical approaches.

Moreover, it is worth noting that even a simple, two-
dimensional assessment of CDF curvature proves to enable
effective detection. However, exploring additional refinement
and optimization of CDF-based detection methods could en-
hance their efficiency and adaptability in more diverse signal
detection scenarios. This avenue of research would contribute
to ensuring the robustness and versatility of the proposed
methods, making them more applicable across various real-
world situations.
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University of Technology in 2010. In 2011, he was
employed at the Department of Telecommunica-
tions Systems and Optoelectronics at the Faculty of
Electronics and Telecommunications of the Poznań
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