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Abstract—The 3G Partnership Project (3GPP) defined network
slicing as a set of resources that could be scaled up and down to
cover users’ requirements. Machine learning and network slicing
will be used together to manage and optimize resources efficiently.
Sharing resources across multiple operators, such as towers,
spectrum and infrastructure, can reduce the cost of 5G resources.
In the proposed prototype, the end-user is connected to more than
eight inter and intra-slices according to the demands. A set of
slices is implemented over the 5G networks to provide an efficient
service to the end-user using softwarization and virtualization
technologies. Traffic is generated over multiple scenarios then
End-to-End slicing traffic was analyzed after generating real-
time traffic over the 5G networks. Also, all the features extracted
from the traffic based on the flow behaviours and a set of
elements selected from the datasets according to machine learning
behaviours. Multiple machine learning algorithms are applied
to our datasets using MATLAB classification application. After
that, the best model is chosen to train and predict the slices
using less CPU and training time to reduce the computational
power in future networks and build a sustainable environment.
Furthermore, the regression application predicts the slice type
on the third dataset with the minimum squared error.

Index Terms—5G, NFV, Network Slicing, Future Network,
Inter-Slice, Machine Learning, Network Services, Intra-Slice,
Resources Allocation, E2E.

I. INTRODUCTION

ND-to-End slicing is a new technology that promises

to provide flexibility, more sustainability, better perfor-
mance and lower costs in mobile networks. Network slicing
enables operators to create multiple virtual networks on a
single physical network, allowing for more flexibility and
customizability using Software-Defined Networks (SDN) and
Network Function Virtualization (NFV). In [1], the authors
reviewed all the slicing issues and focused on employing a
real-time management algorithm to regulate and manage the
virtual network’s resource distribution. In addition, network
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slicing benefits are highlighted with their advantages in future
networks. The 5G End-to-End slicing (SGE2ES) also supports
using unlicensed spectrum, which could help reduce costs and
improve efficiency [2]. The SGE2ES significantly improves
the performance of mobile networks by reducing latency, jitter,
and packet loss. It also enables sharing resources among differ-
ent types of traffic, resulting in more efficient use of network
resources [3]. The main idea of using the NFV in future
telecommunications networks is to optimize the functions and
services built for future networks. While using the SDN is used
to optimize the fundamental system [4]. In future networks, all
functions will be implemented and reconfigured on top of the
virtual networks to provide scalability and reduce energy. Re-
garding scalability, the network resources such as computing
and storage will be scaled up and down dynamically according
to the Service Level Agreement (SLA) between the customers
and the service provider [5]. The network slicing concept and
Network Slice Subnet Instance (NSSI) function are explained
in the 3GPP TS 28.801. Also, the QoS standard values with
the priority level are highlighted in 3GPP TS 28.801. Based on
the 3GPP TS, there are different types of services: enhanced
Mobile Broadband (eMBB), ultra-Reliable Low Latency Com-
munications (URLLC) and Massive IoT (MIoT). In addition,
inter-slice mobility management in 5G networks is identified
in [6] by reviewing the 3GPP TS 23.501 and 23.502 which
discussed mobility management for different types of traffic
that have different service requirements. In [6], the authors
highlighted that in the 3GPP TS, the continuity between the
services was not explained clearly. In [7], authors worked with
different types of services to improve the performance of these
services on 5G systems and beyond for numerous industrial
applications.

Our state-of-the-art research in [1] identified future research
directions in this area. The main advantage of using a slicing
technique for resource allocation in SGE2ES is reducing costs
and enhancing performance. The performance was evaluated
and enhanced in [3] after sending traffic over different slice
scenarios. All traffic flows are collected from the system and
saved as a dataset. This paper will continue the work by
reducing the cost and energy usage in the SGE2ES model.
Moreover, this paper is an extended version of the work
initially published in SoftCOM 2022 [3].

The main contribution of this research is to create green
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networks on top of the SGE2ES networks. In addition, to
allocate the resources for the inter and intra slice in the
5GE2ES will employ multiple machine learning algorithms
and choose the best model that fits our datasets with less
energy usage and less training time to reduce the energy
consumption.

The future telecommunication networks will support various
services with different Quality of Service (QoS) demands,
such as lower latency, higher data rates, and higher capacity.
However, machine learning techniques need to be used to
predict traffic patterns. In [8], supervised learning is used to
predict 5G non-standalone coverage and the performance of
the networks. Their model was trained with a labelled dataset
using a Support Vector Regression (SVR) model in different
scenarios. Their future prediction depends on past learning
experiences. Supervised learning [9] is proposed to predict
the traffic resources to ensure the QoS of the 5G services.

The research structure is organized as follows: Section
II summarises the literature review on the 5G resources
allocation and the related works that used machine learning
algorithms to classify and analyse the traffic over the slices.
In Section III, we propose our slicing prototype to implement
and send traffic over the SGE2ES systems. In Section IV, we
highlight our slicing scenarios. In Section V, we clean our
dataset for analysis and training. In Section VI, classification
and regression analysis are present in our datasets. After that,
In Section VII, we explain and evaluate our results. Finally,
Section VIII concludes this paper and highlights future works.

II. LITERATURE REVIEW

All telecommunication systems will be programmed and
virtualized with one network that fits all services to enhance
the performance of the services, reduce the cost and consume
energy in future networks. Network slicing will provide flex-
ibility and scalability to all network layers, from the radio
access to the core layer. The slices will be selected from
programmable services according to the users’ needs. The
service providers can share the same physical infrastructure
with multiple isolated logical networks. Moreover, each logical
network will have different QoS, priority and cost. In this sec-
tion, we will discuss all the related work on slice management
and resource allocation for future work.

Learning-based energy-efficient proposed in [10] for re-
source allocation in the radio access network and NFV in
the 5G networks and beyond. The proposed algorithm can
jointly optimize the radio and NFV resources to minimize
the network’s energy consumption while meeting the users’
QoS requirements. Moreover, manage the 5G resource dy-
namically proposed in [11] based on reinforcement learning.
Their scheme is designed to optimize the resource utilization
of network slices using a Markov Decision Process (MDP),
while Q-learning is used to guarantee the QoS of each slice.
Further, End-to-End resource allocation is proposed in [12]
for heterogeneous networks. Their study aimed to optimize
energy efficiency to reduce operational expenditure. Integer
linear programming was used to manage the allocation of
5G resources. Additionally, there were fewer physical lines

between the source and the destination, which reduced latency
for their End-to-End networks [13]. Additionally, authors in
[14] designed particular resource blocks for each slice to meet
QoS requirements and increase long-term throughput. Future
telecommunication systems offer a centralised and distributed
learning using reinforcement algorithm to meet user requests
in the ground and satellite networks as explained in [15]. The
radio access network’s services would function better with
time scaling, as proposed in [16].

The idea of generating distinct, isolated networks inside
a single 5G network is called the isolation concept in 5G
network slicing. This can help to increase performance and
security and gives users more flexibility and control over how
different areas of the network are used. In network slicing
for future networks, many problems and difficulties were dis-
cussed in [17] to enhance the continuity and scalability of the
user experience. A new solution for managing mobility should
be created to provide seamless changeover for 5G new radio
in network slicing. The management of mobility is divided
into two levels of mode: idle mode for user reachability and
connected mode for handover, making mobility one of the
major concerns in a service level for future networks [18].
According to the explanation of the mobility management
architecture in [19] based on network slicing, each slice main-
tains its users across various radio access technologies. The
slice configuration and service characteristics for each slice
in this architecture regulate several requirements, including
latency and speed. The full potential of 5G End-to-End slicing
will only be realized when used with other complementary
technologies such as edge computing, which can provide low-
latency access to data and applications closer to users [20].
While 5G End-to-End slicing presents many potential benefits,
some challenges need to be addressed, such as the need for
new standards and protocols, ensuring interoperability between
different network elements, and ensuring the security and
privacy of user data [21].

With a real-time application, the relationship between these
connections could be one-to-one or one-to-many. A model
optimization approach is applied in [22] using mixed-linear
integer programming (MILP). In the end, the authors were able
to replicate the 5G core network and slice request, and their
simulation result was adequate but still needed improvement.
The complexity of the 5G network is addressed in [23], which
comprises two Service Function Chains (SFCs) for each user
within a slice. Traffic is sent over the slices in the 5G networks
and classified and predicted using supervised learning algo-
rithms. Real-time dynamic service allocation occurs for 5G
services to programme and predicts the slice decisions; authors
used an open-source code in their work [24]. After capturing
real-time traffic, the Markov decision procedure was built to
anticipate the slice resources and the time for each service
in the heterogeneous networks [25]. In End-to-End slicing
networks to maximise the heterogeneous needs, the same
technique is presented in [26] to govern multi-agent slices.
Additionally, Markov chain algorithms proposed in [27] on
Vehicle-to-Road slice to deal with video application scenarios
to improve multimedia services during video transmission to
improve QoS, Quality of Experience (QoE), the efficiency
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and safety for the 5G slices while the vehicle is moving
from one location to another. In addition, feedback from 5G
users was gathered via an online survey platform to identify
potential tactics for SG-VINNI stakeholders’ experimentation-
as-a-service [28]. To forecast DDoS attacks on 5G systems,
machine learning algorithms were developed in [29]. Their
model’s accuracy was 98% during training and 96% during
testing. On the other hand, authors in [30] applied Support
Vector Machine (SVM) and Random Forest to accurately fore-
cast antenna selection in MIMO channels and detect various
attacks, and their accuracy was almost 100%. The K-nearest
neighbour (KNN) technique was proposed in [31] with multi-
slice scenarios to estimate the slice boundary from their graph
datasets based on two parameters: cost and error to deliver the
slice resources on time.

Utilizing Long Short-Term Memory proposed in [32] where
deep learning was used to regulate autonomous slices dynami-
cally in terms of slice isolation and sharing (LSTM). In a radio
portion, CNN-LSTM predicts the channel state for two types
of 5G services. Additionally, a mathematical model based on
deep Q-Networks was established for performance optimiza-
tion in energy efficiency [33]. To give an effective result for
IoT vertical slice, it was suggested in [34] to utilise machine
learning techniques to lower the cost of slice selection and
prediction. Based on past data, LSTM is utilised to estimate
the utilisation of the VMs over the short and long term. Scaling
slice resources and lowering SLA costs are accomplished
in [35] through forecasting algorithms. Furthermore, utilising
machine learning methods, it was proposed in [36] to save
computational power while forecasting user behaviour and
providing adequate resources for the users. To assess the
model’s performance, mean absolute error and mean absolute
percentage error was utilised in their research.

In recent years, both business and academia have paid close
attention to the development of 5GE2ES. With the help of
this technology, operators could offer various 5G services
with dedicated network resources, improving performance,
cost-effectiveness, and sustainability. By allocating specific
resources for various services, SGE2ES could enhance the ser-
vice performance and the user experience. For high-definition
video streaming, a different slice could be set to assure
buffer-free playback [37]. By sharing resources among various
services, SGE2ES could help service providers to reduce the
cost of their network infrastructure [38]. For instance, mobile
broadband and ultra-low latency services could be offered by a
single 5G base station. Using energy-saving technologies such
as network function virtualization and SGE2ES could assist
service providers in lowering their carbon footprint to create
sustainable environments [39]. In terms of complexity and
security, a single SDN controller will not be able to manage
the resources in the future network and meets the demands
for real-time traffic, especially with complex scenarios such
as virtual reality and augmented reality [40].

Different service providers’ planned primary slice in [41]
that combines sub-slices to deliver 5G services to users. The
5G data was also saved in a SQL database, and numerous
SDN controllers were bound together to provide flexible and
dynamic resources. The SDN networks produced dynamic

resource allocation for the inter and intra slices on the 5G
networks, and these resources were assigned to the slices
using the SDN controller [42]. To anticipate the optimum
choices for allocating the 5G resource for the sub-slice, the
neural network is used to analyse the network, including traffic
loads and resource availability [43]. The online lazy-migration
adaptive interference-aware algorithm was used to deploy
the 5G virtual functionalities. Resource migration also uses
the same algorithm. In [44], the reward was maximised for
the requested service when the user requested it. Multi-layer
slicing proposed in [45] on the edge cloud was managed by 5G
resources to deal with autonomous vehicles connected to End-
to-End slicing networks over the transport layer. Network as a
Service (NaaS) is also involved in slice management in [46] for
End-to-End 5G networks to separate the 5G slices belonging
to various service providers when those service providers
disseminate their services over the End-to-End networks. On
the other hand, in [47], multiple SGE2ES scenarios are used
to deal with diverse services connected with smart grids to
offer flexibility and individualised 5G services.

This study will discuss machine learning algorithms based
on supervised learning to categorise 5G traffic and forecast
the slices. The mathematical formula will be explained in
full when adding. The link between the number of accurate
forecasts and the overall number of predictions is viewed using
accuracy. The accuracy calculation below assesses how well
the predictive model works. Where the True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives
components of the accuracy formula (FN) [48].

A TP+TN 0
ceuracy =

YCTP+TN+FP+FN
Mean Square Error (MSE) [35] is the average square of the

difference between the value predicted and the value obtained:

1 n R
MSE ==Y (V; -Y;)? 7
- ; ) (7)
Root Mean Square Error (RMSE) [35] is the square root
of two of the differences between the forecast and the actual

value:

RMSE =vVMSE (®)

R2 [35] is between the actual value and the predicted value;
it is the coefficient of determination, which is the square of
the multiple correlation coefficients.

Z?:1(Yi — )};)2
Z?:1(Yi - Y;7)2

where Y,” is the mean value of Y at observation time, Y; is
the predicted value, and Y is the actual value.

RP=1-

©))

Network slicing faced numerous difficulties in SGE2ES
systems, particularly in resource management and virtualiza-
tion. The requirement to handle numerous distinct services
with various requirements in a single, shared infrastructure
is one of the significant issues. Resource management and
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Fig. 1. System Framework

coordination are necessary to avoid conflict and guarantee
service quality. Adding, reducing operating expenses (OPEX)
as much as possible and increasing the income. Furthermore,
troubleshooting and diagnosing issues may be challenging
with 5G systems due to their high level of virtualization and
abstraction. According to the authors’ knowledge, none of
the aforementioned research papers addresses how 5G could
address unresolved research problems, including resource al-
location, mobility, and slice management. We will send and
gather the traffic to solve one of these issues, then anticipate
the 5G slices using the best machine learning model that
fits our dataset. We will propose a collection of slices on
top of the 5G core using open-source code. The user’s QoS
and QoE must be improved when more services are added to
future networks. It will also enable simultaneous connections
to numerous slices. After that, we will choose the best model
to train and predicate the resources with less CUP usage to
reduce computational power and create sustainable networks
for sustainable environments.

Softwarization methods are built based on SDN and NFV
and will be used to create this system. According to the 5G
functionalities, all NFs will be realised. As we discussed in
the literature, the term ”5G” refereed to a wireless network
standard developed by several telecommunications entities to
improve the capacity, coverage, and speed of data transfer
in logical networks as opposed to traditional networks. Real-
time dynamic programming services were added to the future
networks based on use case demand according to the compen-
sation between softwarization, virtualization, and 5G features.

Figure 1 summarized the methodology framework for the
End-to-End 5G slicing system to analyse and predict the 5G
recourse’s using the best-fit model for our datasets. Our system
framework contains three stages. In stage one, we must prepare
an End-to-End 5G Slicing model to collect slicing traffic.
All the available projects in our paper [1] and two open-
source code projects selected one for the 5G functions [49]
and the second for the 5G users and RAN [50]. Then, all
the 5G functions should be connected and placed in the 5G
core and UPF in the user plan and connected to the RAN.
All the 5G users will be registered and connected to the 5G
networks. In stage two, traffic will be sent over the slices from
the user’s device to the DNN. Later, slicing traffic will be
collected and saved in different files after sending traffic by

the traffic generator tools and Iperf. Data files must be cleaned
from unwanted data and labelled before moving to stage three.
In stage three, The collected traffic will be analyzed after
choosing specific features for training to predict the slices
based on user demands. More details about each step will
be explained in depth in our system model part and machine
learning part.

All the necessary information is saved in =III‘I Allowed
MongoDB which includes a List of all Allowed 1 SNSSAI

SNSSAI list after the user's registeration. No I List

S, Discard

Slice arriving at the 5G Core will be added to the
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1- Check Authentication and Secure Info.

2- Handel Initial Registeration.

3- NF Discovery Request.

4- Get NSSAI, Subscription Data, PLMN-Id.
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Fig. 2. System Design

From Figure 2, the user plane functions connected to all
slice types (inter and intra slice) in the physical layer as virtual
Tenants linked with the radio access network and the data
network. This layer will be connected with the 5G core layer,
which contains all the functions and entities needed to control
the SGE2ES networks. Further, when the user registers to the
5G networks, all the slice details will be saved in MongoDB.
Then in the connection stage, the user will connect to the
slices available in the SNSSAl-allowed list only. The Proposed
5GE2ES model will be built on top of 5G emulator open-
source code for the 5G core [49], and UERANSIM open-
source code is used for the users, and radio access network
[50]. The 5G core uses the N4 interface to configure and
change the slice resources and services. The user plane’s slices,
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including slice policy, data flow, and slice management, must
be managed by the 5G core. All upcoming networks must
implement all 5G core network slices to control users on the
user plane. Additionally, according to the needs of the slice
management in the future network, all 5G functions will be
programmed in the core network and subsequently executed
in the user plane.

III. TRAFFIC GENERATION SCENARIOS

Inter and intra slice were configured over the 5G core, UPF
and RAN. Each user can connect to more than eight slices and
generate traffic over them based on the user’s requirements.
Multiple scenarios are considered to be running over the End-
to-End 5G networks to evaluate the QoS of the networks after
sending multiple streams using traffic-generated tools, as is
shown in Table I. Traffic is generated over the slices and the
5G core. The number of packets in scenario 2 was 10000
packets sent over seven slices, then the number of the slices
increased to eleven by adding a new user. After the new user
was added to the system and connected to the new four slices,
the average transmission rate increased by 1.425 Mbps.
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Fig. 3. bandwidth sent over the slices

In Table I, when the slices are given to the users based
on their needs, as is provided in scenarios 2, 3, 5 and 7, the
average transmission rate is between 57 Mbps and 70 Mbps.
On the other hand, when the users connect to all the slices
listed in the allowed list, the average transmission rate is higher
than 70 Mbps, as given in scenarios 6 and 8. In addition, all
these scenarios are sent the same amount of packets over the
networks. All the scenarios discussed in depth in our paper [3].
After the user connects to the 5G core, traffic generator tools

such as iperf and GTP are used to send traffic over the slices
to measure the performance for the End-to-End slicing. The
traffic will be sent to the data network via the virtual tunnel
for each slice. Traffic generators will send packets containing
TCP, UPD, ICMP and ARP to check network diagnostics. The
traffic is sent over Inter and intra slices to evaluate, enhance
the network performance of slices and reduce the cost. The
bandwidth is sent over the End-to-End 5G slicing is shown in
Figure 3.

IV. ANALYSIS
A. Cleaning the Data Files

In this section, data files will be analysed to prepare our
datasets for the following stages, which are the training and
testing stage.

1) After the traffic is generated, the data will be gathered

in files.

2) Unwanted data and commands will be removed, such as
slice IP address, 5G core IP address, UPF IP address and
the commands for the traffic generated tools and Iperf.

3) Unsuccessful traffic will be removed from the file.

4) All the units need to be the same for each row in a
related column. For example, ms, KBite and Mbits. Then
all units will be removed to deal with numerical data.

5) Remove the duplication, all NaN values and zeros from
the datasets.

6) Filter all files by removing all signs such as space,
slashes and hyphens.

B. Datasets Preparation

The traffic is sent over the slicing from the 5G users through
the user plane function to reach the DNN. All data collected in
a file and a new dataset need to be prepared for the analysis
stage. The pcaps files will be checked first, and the data in
these files are already labelled as follows: Number, Time,
Source IP, Destination IP, Time-delta, Protocol name, Packets
Length and Packets Information. Irrelevant data, such as The
number and Packets Information columns, will be removed
from these files. In addition, the Data cleaner application in
MATLAB will be used for organising and cleaning the data
from null values and replacing it with NaN. The datasets
will be called dataset]l and dataset2. After connecting 100

TABLE I
APPLY DIFFERENT SCENARIOS TO CHECK THE SLICES’ PERFORMANCE [1]

Scenarios Users Number of the Slices Slices Packets | Average TR GTP Streams
Scenarios 1 1 9 slices for UEL 9 Slices 1000 45.98762342 Mbps 24
Scenarios 2 3 UELl: 4, UE2: 2, UE3: 2 7 Slices 10000 | 63.1267305 Mbps 40
Scenarios 3 4 UEL: 4, UE2: 2, UE3: 2, UE4: 4 11 Slices 10000 | 64.55263382 Mbps 33
Scenarios 4 3 9 Slices each UE 27 Slices 140000 | 65.203378 Mbps 78
Scenarios 5 6 UE1,2,3,4: 9, UES,6: 4 44 Slices 10000 | 69.946225 Mbps 132
Scenarios 6 7 9 Slices each UE 63 Slices 10000 | 71.416840 Mbps 189
Scenarios 7 11 UEL: 6, UE2: 10, UE3,6,7: 9, UE4,5,9,10: 4, UE8,11: 5 | 69 Slices 10000 | 57.03236434 Mbps 207
Scenarios 8 100 8 Slices each UE 800 Slices 10000 135.9415505 Mbps 2400
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users and sending traffic over 800 slices, all data is saved as
log files, cleaned from unwanted values and commands and
saved in text files. Python command is used inside the Ubuntu
server to extract the columns needed to prepare the dataset.
The dataset will be labelled as follows: Time, Transmission
Rate, Bandwidth, Jitter, Latency Average, Latency Maximum,
Latency Minimum, Standard Deviation and Network Power.
Furthermore, a data cleaner application will clean the data
from null values and replace it with NaN. The datasets will
be called dataset 3.

C. Preparation Before Training

All dataset files will be filtered for the training stage. all the
noisy and redundant data will be removed from the files, and
unwanted columns will be dropped before further processing
the datasets. The framework for Datasets 1 & 2 in Figure 4
and the framework for Dataset 3 in Figure 5.

Clean the Dataset from
unwanted values or Columns in
Wireshark file

l

The Dataset contains 130K rows T

Check the Accuracy

Yes

Train the Dataset
with only 5

Accuracy
Features

less than
50 % Accuracy higher Than 70 %
in Train or in Test Stage

Select the best ML Model that's
fitted our Model to classify and
predict the Protocol Name

The Following Features Imported:
1- Time
2- Source IP Address
3- Destination IP Address
Classification App in MATLAB 4- Time_Delta
is used to train the Dataset to 5- Length
predict the slice 6- Packet Information

Fig. 4. Preparation Steps for Datasets 1 & 2

1) The datasetl and dataset2 will be trained after select-
ing five features and dropping the Packets Information
column from the trained features.

2) The dataset3 will be trained after selecting seven features
out of nine features and dropping the latency Min and
latency Max columns from the trained features.

3) Importing the datasets to Matlab for training and pre-
diction. After extracting several slices and the cleaning
process, the datasets will be ready for the training.

Clean the Dataset & Reduce the
number of the rows
Yes Train the Dataset
with 9 Features
Accuracy
higher than
0% Train the

No| datasetagain
No Train the Dataset
with only 7 out of
9 Features
Train the .
Dataset again Accuracy higher Than 70 %
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Model to classify and predict the slices
based on the QoS

Clean the Dataset from
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NaN, zero, space and

Continue Training the Dataset ]
hyphen

ot
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Check the Accuracy
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1- Time
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4- Jitter

5- Latency Avg
6- Latency Max
Classification App in MATLAB 7- Latency Min

is used to train the Dataset 8- stdev
9- NetPwr

Fig. 5. Preparation Steps for Dataset 3

V. MACHINE LEARNING MODEL
A. Classification Model

In this research, we will classify the 5G traffic for different
services using machine learning in Matlab. The idea of using

different machine learning algorithms is to choose the best
model that’s fitted our purpose. We need to apply an algorithm
with good accuracy and less training time to decide to choose
the services faster to reduce the usage of the computational
power in 5G networks. The classification model will help us
identify our dataset’s best algorithms. Our dataset contains
Traffic time, source and destination address, protocol name,
packet length, and packet information. Different protocols are
generated over the 5G systems, such as: TCP, UDP, ICMP
and HTTP. In MATLAB, we will identify all columns as input
features except the service name will be the output. Machine
Learning Model Classification for the prototype are shown in
Tables II, III and IV. Machine Learning models enhanced the
prediction accuracy values as shown in Tables II and III. Also,
we got higher accuracy compared with the work in [51]. In
our system, different types of traffic are classified over the
5GE2ES network. Accuracy is our concern; we must predicate
future services in less time. For this reason, the medium tree
model has less training prediction time than other models.

TABLE 11
CLASSIFICATION MODEL FOR DATASET1
Class Classification Acc.ura.cy ];Ir)ee(ilgtlon %rrarigmg
Model Validation
(obs/sec) (sec)
Fine 99.2% 1200000 10.358
Trees Medium 97.0% 1100000 9.0747
Coarse 89.3% 950000 11.486
Optimizable 99.3% 1000000 229.09
SVM Linear 80.1% 4900 50947
Quadratic 79.2% 390 67292
Boosted Trees | 98.8% 81000 184.95
Ensemble Bagged Trees | 98.8% 74000 218.69
RUSBoosted 32.2% 75000 113.76
Trees
TABLE III
CLASSIFICATION MODEL FOR DATASET2
Accuracy Prediction Train
Class Model S Speed Time
Validation
(obs/sec) (sec)
Fine 99.9 1900000 13.205
Trees Medium 99.9 1300000 14.036
’ Coarse 99.6 1200000 20.228
Optimizable 100 1800000 302.5
Ensemble Boosted Trees | 99.9 69000 255.79
Bagged Trees | 99.9 70000 545.29

The classification model for our dataset3 contains nine fea-
tures which are: the time, transmission rate, bandwidth, jitter,
latency Avg, latency Min, latency Max, standard deviation
and network power. After extracting several unique slices and
the cleaning process, dataset3 will be ready for the training.
Finally, dataset3 was imported to Matlab for training and
prediction. We only trained and tested seven out of 9 features,
and the result is shown in Table IV.

In Tables II, the Optimizable trees model has the highest
accuracy. In this model, the estimation of the minimum clas-
sification error was 0.8453, and the maximum number of splits
was 2. On the other hand, the observed minimum classification
error was 0.0065409, and the maximum number of splits
was 182. In addition, for the bestpoint hyperparameters, the
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TABLE IV
CLASSIFICATION MODEL FOR DATASET3
Accuracy Prediction | Training
Class Model Validati Speed Time
alidation
(obs/sec) (sec)
Fine 49.8 1100 2.4809
Tree Medium 449 1100 2.0005
Coarse 29.8 850 2.4566
Optimizable 50.7 840 43.201
Fine 73.2 540 2.4577
Medium 39.5 530 2.4911
Coarse 22.0 490 2.5228
KNN Cosine 39.5 520 3.0023
Cubic 38.5 530 2.5609
Weighted 70.2 470 3.1235
Optimizable 71.2 470 61.838
Boosted Trees 62.9 250 11.151
Bagged Trees 77.1 250 11.709
Subspace 62.4 130 11.791
Discriminant
Ensemble | Subspace KNN | 71.7 130 11.24
RUSBoosted 29.3 310 14.287
Trees
Optimizable 79.0 21 1593.4
Hyperparameter | 75.1 450 384.9

maximum number of splits was 258 using the Twoing rule as
a split criterion as shown in Figure 6.
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Fig. 6. Minimum Error for Optimizable Trees in Datasetl

In Tables III, the Optimizable trees model has the highest
accuracy. In this model, the estimation of the minimum
classification error was 0.0001351, and the maximum number
of splits was 17612. On the other hand, the observed minimum
classification error was 0.00014952, and the maximum number
of splits was 282. In addition, for the bestpoint hyperparame-
ters, the maximum number of splits was 469 using the Twoing
rule as a split criterion as shown in Figure 7.

In Tables IV, the Optimizable Ensemble model has the
highest accuracy. In this model, the estimation of the minimum
classification error was 0.31018. AdaBoost is used as an
Ensemble method, the number of learners was 39, and the
maximum number of splits was 1. Furthermore, the observed
minimum classification error was 0.48165. The maximum
number of splits was 142 and the learning rate was 0.021339.
Adding, for the bestpoint hyperparameters, the maximum
number of splits was 108. The bag is used for this model
as an Ensemble method and in total, the number of learners
was 497 as shown in Figure 8.
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B. Regression Model

Each machine learning model includes regression analysis
to measure the effectiveness of the regression class in terms of
the Root Mean Square Error (RMSE), coefficient of determi-
nation (R2), Mean Squared Error (MSE), and Mean Absolute
Error (MAE). When the regression models are applied to
dataset 3, the error in each model is discovered. As illustrated
in Table V, we aim to anticipate the slice’s resources with a
lower prediction error. In terms of slice prediction with the
least amount of error, Tree and Ensemble was the best model.
The optimizable trees also have decreased RMSE from Table
V, which aligns with our objectives.

When we compared each model’s RMSE, training time and
prediction speed, the optimizable trees had less RMSE. On
the other hand, if we choose the model based on the training
time, the Least Squares Regression Kernel (LSR Kernel) had
less training time than other models, as shown in Figure 9.

VI. DISCUSSION & EVALUATION

In this part, we will describe our prototype and the process
we used to create the traffic for the 5G networks. The Ubuntu
server runs Free5gc, necessary for the 5G core on the core
layer. The User Plan Function (UPF), used for the access layer,
is executed on the Ubuntu server and links to another server
with UERANSIM, which is used for the user device and the
Radio Access Layer (RAN).

Both the 5G core and the slices create traffic. Wireshark
was used to gather the traffic from the core and user planes.
Using the Wireshark file, we evaluated the network’s latency,
throughput, and window size on several streams. Following
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Steven’s graph is shown in Figure 12 after sending one stream.
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Fig. 12. Steven’s graph for TCP traffic one stream

The time a packet takes to send from the user plane to the
slices while using the TCP protocol. Round-trip time (RTT)
is displayed for one stream in Figure 13.

Packet
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TABLE V
PREDICTION MODEL FOR THE 5G DATASET3
Class Regression RMSE | R2 MSE MAE
Fine 22.186 | 0.82 492.2 4.8135
T Coarse 38.37 0.48 1472.3 | 13.877
ree Medium 29.654 | 0.69 | 879.38 | 8.7489
Optimizable 20.076 | 0.86 403.04 | 3.9768
Boosted Trees 27.666 | 0.73 765.42 | 6.3685
Ensemble Bagged Trees 31.471 | 0.65 990.42 | 7.9889
Optimizable Trees| 22.133 | 0.83 489.87 | 4.6022
SVM Kernel 52.488 | 0.02 2755 22.428
Leaset Squares 45982 | 0.25 21143 | 18.672
Kernel K
Regression
Kernel
Rational 33.896 | 0.59 1148.9 | 6.8438
Gaussian Quadratic GPR
Process Squared 37.226 | 051 1385.8 | 10.497
Regression | Exponential GPR
Matern 5/2 GPR | 35.086 | 0.56 1231.1 | 7.9287
Fine Gaussian 39.725 | 0.44 1578.1 | 8.1309
SVM Linear 144.7 -6.45 | 20939 24.892
Medium Gaussian| 37.379 | 0.50 1397.2 | 8.6841
Coarse Gaussian | 45.484 | 0.26 2068.8 | 15.396
Linear Robust Linear | 48.598 | 0.16 | 2361.8 | 17.386
Regression
Stepwise
Linear Stepwise Linear | 67.818 | -0.64 | 4599.3 | 17.739
Regression
I Prediction Speed [l Train Time RMSE
Fine
Coarse
© Medium
3
§ Optimizable
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Fig. 9. Performance comparison of Regression Models

a TCP traffic via the slices, Figure 10 shows the number of
packets delivered from the users’ slices to the 5G core and the
user plane function.
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Fig. 10. The number of packets sent to the 5G Core

The number of packets sent from the user slices to the user
plane function is seen in Figure 11.
The number of packets sent from the slices over time in
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Fig. 13. Round Trip Time for one stream

Figure 14 shows the throughput sent from the online server
with IP address 140.110240.80 to the 5G core network. The
segment length is shown in blue dots, and the throughput is
shown in the brown line.

The throughput sent over the slices is shown in Figure 14
after sending 45 streams.

A computer network protocol called Stream Control Trans-
mission Protocol (SCTP) allows for message transmission in
communications at the transport layer. The number of the
packets is shown in Figure 15. It resolves various issues with
TCP and UDP. The standard header and the data chunks make
up each SCTP packet.

After applying many scenarios, we built a high-stress
5GE2ES environment with the help of this deployment as
explained in [3]. The traffic was gathered and recorded as
a dataset. Before using machine learning to analyse and
categorise the traffic, we cleaned the dataset as discussed in
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Section VI. Now, we will compare the common algorithms
between the datasets and our results with the current research
papers.
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Fig. 16. Computations Power Comparison For Different ML Models for one
user eight slices

When traffic is distributed over eight slices for a single user,
computational capacity for various machine learning methods
is suggested in Figure16. Our dataset is trained using decision
trees, as seen in Figure 16. Less than other models, medium
trees used 44.4% of the CPU and took 9.0747 seconds to
train. Additionally, CPU consumption was lower than the
medium tree, with 34.9% and 35.5% for optimizable and
RUSBoosted trees, respectively. On the other hand, as shown
in Figure 17, the optimizable tree’s accuracy was 99% for both
validation and testing, while training took longer. Accordingly,
the accuracy of medium trees, which is 97% for our model,
is the best.

The processing capacity for various machine learning tech-
niques is shown in Figure 18 when the traffic is transmitted
through eight slices for three users.
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Fig. 18. Computations Power Compression For Different ML Models for
three users eight slices each

The fine tree used 57.1% of the CPU and trained in 13.205
seconds, less time than other models. Additionally, Figure 18
shows that the coarse tree’s CPU use was 32.1%, which was
lower than the fine tree’s, but the fine tree’s model flexibility
is higher than the coarse tree’s. Therefore, the fine trees model
is the best for computing power. Figure 19 illustrates the
correctness of the fine trees, which was 99.9% accurate for
both validation and testing.
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Fig. 19. Comparison between the Accuracies
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The computing capacity for various machine learning tech-
niques was suggested in Figure 20 when the traffic was sent
across 200 slices for 25 users. The coarse tree used 101.2%
of the CPU during training to predict the slice type and 18%
of the CPU during testing, which is lower than those of other
machine learning models. Training took 1.9825 seconds for
medium trees, compared to 2.5039 seconds for coarse trees.
However, compared to coarse trees, training time for fine trees
was shorter at 2.4523 seconds.
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Fig. 20. Computations Power Compression For Different ML Models for 25
users connected to 8 slices each

Further, the maximum number of splits while utilising
coarse trees is 4. With medium and fine trees, the number of
splits grows to 20 and 100, respectively. The best model for
our dataset could be the fine tree. The accuracy for predicting
the slice type was 50.7% in the validation stage and 75% in
the testing stage. According to Figure 21, the greatest accuracy
was 77.1% for bagged trees and 63.3% for boosted trees, and
it improved to 100% for both of them during the testing stage.
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Fig. 21. Comparison between the Accuracies

Along with the aforementioned techniques, KNN is em-
ployed to train the model and predict the slice type based
on the traffic sent from 25 slices linked to 8 or more slices
and their requests. Additionally, there were approximately 200
slices that were concurrently linked to the 5G End-to-End in
total.
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In Figure 22, the training time for the KNN was 2.4577
seconds, and CPU use during the training stage of the pre-

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

diction of the slice type was 85.9%, which was lower than
other models. On the other hand, compared to other models,
medium KNN uses less CPU during testing. As indicated in
Figure 23, the accuracy for the fine tree during training was
73.2%. Figure 23 illustrates how the accuracy increased to
100% as new data was provided to test the model. Although
the accuracy of all other models increases, fine KNN was the
machine learning model that best suited our dataset.
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VII. CONCLUSION AND FUTURE WORKS

Several techniques were applied to propose an 5SGE2ES
model in the 5G networks. After proposing multiple scenarios,
traffic was generated over inter and intra-slices to check the
system performance. Then, several machine learning models
were applied to our SGE2ES models to manage the 5G
resource allocation in heterogeneous requirements. Machine
learning algorithms were used to classify and predict the
slices over the 5G networks to allocate the 5G slice resources
efficiently and guarantee the QoS after training our model
with various machine-learning techniques. We selected the
method best for our model to handle real-time traffic and
estimate the services based on the needs. The proposed model
performs better than the existing methods when predicting the
5G service in less time and using less computational power.
Future directions are listed below in terms of performance,
cost, reliability, availability, QoS, QoE, and sustainability with
the SGE2ES:

1) Performance: High performance in terms of data speeds,
latency, and capacity is promised by SGE2ES. However,
it is still unclear how well it will perform in practice.
Due to the difficulties in successfully applying the
technology, there are worries that it may be unable to
deliver on its promises.

2) Cost: The SGE2ES will probably cost more than con-
ventional networking options. This is because additional
bandwidth and specialised equipment and software are
required.

3) Reliability: There are worries that traditional networking
approaches could not be as dependable as the SGE2ES.
This is because it is a novel technology without extensive
testing.

4) Availability: When it was first introduced, the SGE2ES
could not generally be accessible. This is because the
technology is new, and there might not be adequate
infrastructure to support it.

5) QoS: High QoS and QoE are promised by the 5SGE2ES.
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6) Sustainability: Since SGE2ES is a novel technology, it

is uncertain how long-lasting it will be.

In the future, deep and continuous learning will be used to
predict traffic and manage the slice according to the agree-
ment between the user and the service provider. In addition,
appropriate coordination needs to be considered in the future
if the services spread according to the geographical location.
Moreover, security will be considered to deal with multi-chain
to improve the efficiency and the QoS in the 5G networks.
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