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Abstract—Neurodegenerative diseases are a group of 
neurological conditions characterized by the loss or destruction of 
neurons in the central nervous system, resulting in severe 
impairments and death. Researchers commonly used a two-group 
classification (Patients with a Neurodegenerative disease vs. 
healthy subjects of control). Thus, the principal purpose of this 
article is to distinguish between Parkinson's patients and subjects 
with Hereditary Ataxias using machine learning techniques. We 
conducted experiments using a real dataset comprising Gait 
characteristics derived from the inertial motion sensors of a 
smartphone (iPhone 5S). This investigation had 67 participants, 53 
of who had Parkinson's disease and 14 of whom had Hereditary 
Ataxias. Methods of feature selection were applied to reduce 
dimensionality. In addition, five classification algorithms were 
constructed and assessed based on their accuracy, precision, 
sensitivity, and specificity. The Support Vector Machine algorithm 
achieved an accuracy of 92.7%, a precision of 91.1%, a sensitivity 
of 96.2%, and a specificity of 89.1%. These results show that the 
suggested technique might inspire new research issues and have a 
direct therapeutic impact. 

Keywords—Neurodegenerative Disease, Gait, Machine 
Learning, Smartphone. 

I. INTRODUCTION 

Neurodegenerative disorders impair motor abilities, 
resulting in an imbalanced gait pattern due to a lack of 
coordination and balance. Nevertheless, each 
neurodegenerative illness affects the patient's motions 
uniquely. Among neurological disorders, Parkinson's disease 
affects about six million individuals worldwide. In addition, it 
has the fastest growth rate. Therefore, it is anticipated that 13 
million individuals will have PD by 2040 [1]. Parkinson's 
disease (PD) is a neurodegenerative disorder brought on by a 
substantial loss of dopamine in the forebrain. Variable 
indications and symptoms of Parkinson's disease include 
tremors, slower movement, tight muscles, decreased posture 
and balance, loss of natural motions, and speech and writing 
abnormalities [2]. 
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Neurologists commonly use clinical scales to diagnose PD, 
including the Movement Disorder Society-sponsored version of 
the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) 
[3] and the Hoehn & Yahr (HY) [4]. However, due to the 
subjectivity of neurologists, diagnosis of PD can be challenging 
for physicians due to overlapping symptoms of other 
neurodegenerative diseases. A past study reveals that about 
25% of diagnoses are incorrect [5]; therefore, objective motor 
assessment tools are crucial for the future of PD diagnostic 
procedures. 

Another neurological disease is Hereditary Ataxias (HA). 
HA is a form of neurological illness that encompasses a broad 
set of conditions defined by ataxic gait, lack of coordination be-
tween the hands and eyes, and cerebellar atrophy. However, the 
primary symptom of the category of motor diseases is progres-
sive walking ataxia caused by neurodegeneration of compo-
nents in the cerebellar cortex, brainstem, and spinal cord [6]. 

Recent research has incorporated Machine Learning (ML) 
approaches for PD classification, notably for speech analysis, 
comparing ML algorithms such as Naive Bayes (NB), J48, Ran-
dom Forest (RF), and Support Vector Machine (SVM) [7] [8]. 
Generally, a two-group classification (Patients with a neuro-
degenerative disorder vs. healthy subjects of control (HC)) was 
utilized, with beneficial results, as we can see from the sum-
mary of recent work in Table I. 

Some researchers utilized ML to classify PD patients and 
HC examining motion abilities. However, the majority of 
investigations [17] [18] focused on the lower limbs, identifying 
evidence of changes in gait patterns and comparing them to 
medical scales to predict the course of neurodegenerative 
illness. Again, accelerometers and gyroscopes were the most 
common technology [19] [20]. 

Research indicates that the iPhone's sensors are dependable 
and accurate enough to analyze and detect kinematic gait 
patterns [21], [22]. In addition, research related to gait 
evaluation and healthcare has shown that iPhone sensors can 
obtain quantified gait characteristics with adequate precision 
and consistency, notably in ankle position and in a manner that 
is easy, portable, and wearable [23]. 

This article should be viewed as expanding the conference 
paper published in [20]. The prior study used machine learning 
to categorize PD patients and HC based on their motor 
capabilities. In this project, we utilized ML to classify PD 
patients and individuals with another neurological condition, in 
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this instance, HA, as opposed to healthy control participants. 
Our primary objective is to identify the optimal ML approach 
for identifying which disease a patient has. 

We organized the rest of the paper as follows; section II 
discusses the design implementation of this experiment, 
including data collection, data preprocessing, feature 
extraction, and selection. We also described in this section the 
machine learning algorithms used in this paper. Next, section 
III deals with the performance evaluation of each algorithm 
used in every dataset, and section IV consists of the conclusion. 

II. METHODS 

A. Data Collection 

We conducted this project in Mexico City with the Manuel 
Velasco Suarez National Institute of Neurology and 
Neurosurgery (INNN-MVS). This institute investigates and 
treats patients with walking disorders, including Parkinson's 
disease and other neurodegenerative diseases like Hereditary 
Ataxias. INNN-MVS enabled the creation of a Gait laboratory 
in a large enough space (20m long by 3m wide) to capture gait 
characteristics and ensure that patients with walking disorders 
can move around comfortably. 

In this study, two groups were comprised of 53 PD patients 
(27 males, 26 females, mean age standard deviation: 65.6±14.2 
years) and 14 HA patients (HA) (seven males, seven females, 
mean age standard deviation: 43.2.8±23.0 years). The 

 

specialists diagnosed the patients with PD, and HA. The local 
Ethical Committee adhered to the most recent version of the  
Declaration of Helsinki, which approved the study protocol 
after receiving written informed consent from each participant. 
We used a protocol that accounted for the patient's motor 
disturbances and gait deterioration, such as loss of balance, 
precision, and movement speed, to acquire the data. This 
protocol states that INNN-MVS medical staff supported Gait 
data collection to prevent accidents, avoid contact to allow 
patients to walk freely during the trajectory, and respect the 
illness-induced swings that prevented patients from walking in 
a straight line. During ten days, data were collected from 
patients with varying disease severity during their medical 
visits. With the patient's comfort and freedom of movement in 
mind, movement sensors were placed on the subjects' ankles at 
each step. This arrangement of sensors was optimal for reducing 
walking gait disturbances, see Fig. 1. The protocol specifies that 
each participant covers 20 meters of the track at an average 
walking speed. Therefore, we simultaneously placed a 
smartphone on both the right and left ankles for each participant 
(R_ANKLE and L_ANKLE, respectively). See Fig. 2. 

We utilized the three-axis accelerometer of an iPhone 5S to 
collect data from each subject's ankle. Figure 3 depicts the raw 
tri-accelerometer axis value for the walking activity. 

B. Data Preprocessing 

Preprocessing begins with linear interpolation to calibrate 
the data sensor and compensate for timing differences. Then, 

TABLE I 

STUDIES THAT APPLIED MACHINE LEARNING MODELS TO MOVEMENT DATA TO DIAGNOSE PD 

Ref. Machine learning methods Number of subjects Outcomes (Best result) 

[8] Support vector machine 

Artificial neural networks 

14 healthy subjects(HC) + 

16 Parkinson's Disease patients(PD) 

ANN: 

Accuracy = 0.894 

[9] Support vector machine 

Random forest 

Naïve Bayes 

30 PD + 30 HC + 

30 subjects with idiopathic hypomia(IH) 

 

Random forest: 

HC vs. PD: 

Accuracy = 0.950 

HC + IH vs. PD: 

Accuracy = 0.917 

HC vs. IH vs. PD: 

Accuracy = 0.789 

[10] Support vector machine 

Decision tree 

Random forest 

22 HC + 19 PD SVM: 

Accuracy = 0.890 

[11] Logistic regression 

Naïve Bayes 

Random forest 

Decision tree 

30 HC + 30 PD Random forest: 

Accuracy = 0.820 

[12] Naïve Bayes 

K-Nearest neighbors 

Support vector machine 

30 HC + 30 PD SVM: 

Accuracy = 0.950 

[13] Random forest 26 HC + 14 PD Accuracy = 0.946 

[14] Support vector machine 10 Early-onset cerebellar ataxia + 20 HC Accuracy = 0.729 

[15] Artificial neural networks 1 Friedreich’s ataxia + 1 HC Accuracy = 0.740 

[16] K-Nearest neighbors 30 Cerebellar ataxia + 30 HC Accuracy = 0.733 
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accelerometer data is recorded at a variable sampling rate 
amidst setting a recording frequency. 

As accelerometers measure the rate of change of the 
velocity of an object (acceleration), the average acceleration of 
a motionless accelerometer should be equal to the acceleration 
of gravity; however, due to their high sensitivity, the Gait data 
captured by these devices is consistently fluctuating as the 
acceleration values change. Therefore, we employed zero 
normalization to eliminate the constant signal effects on each 
ax [23]. 

Generally, data is smoothed to eliminate unwanted noise 
and identify outliers (data points significantly differ from the 
remainder). A common technique for smoothing data is the 
moving average, which calculates the mean of the points within 
a sliding window. This method eliminates insignificant 
differences between data points. This procedure is analogous to 
a low-pass filter with a response that is smoothed by its 
difference. 

The values measured along the sensor axis depend on the 
device's position and method of attachment to the subject's 
body. However, when attached rigidly to the ankle, the relative 
motion between the sensor and the ankle can be disregarded. 
Sensor inertial signals are recorded relative to the smartphone 
in a coordinate system. For our purposes, the Gait dynamics 
must be represented in a coordinated manner relative to the sub-
ject. It is only sometimes feasible to manipulate or determine 
the subject-related device orientation. The device will likely 
maintain a different orientation when collecting data from mul-
tiple subjects. To account for this change in orientation, we cal-
culate the orientation-invariant signal acceleration magnitude 
as the square root of the sum of the squares of each vector value 
in the time series. 

The acceleration signal was used to identify strides by 
identifying changes in the signal corresponding to heel contact 
with the ground. Acceleration increases at the beginning of the 
stride and decreases at its conclusion. 

 

Fig. 1. Arrangement of sensors in both the right and left ankles 

We implemented an algorithm to determine the maximum 
and minimum local value of acceleration magnitude from signal 
acceleration magnitude. We only considered peaks that were 

more significant than the subject's standard deviation. A find 
peaks function identifies all peaks that are more notable than 
the minimum value and returns the value and index of each 
peak. The minimum values are calculated by the same 
algorithm using the same data with the signals inverted as input. 
To determine the beginning of each stride, we considered 
minimum peaks below the standard deviation of all values. 
Each peak chosen as the beginning of a stride should be 
preceded and followed by a maximum peak higher and lower 
than its standard deviation, respectively [24]. Fig. 4 depicts the 
filtered accelerometer value of the walking activity. 

 

 

Fig. 2. Subject walking 20 meters at normal speed 

Fig. 3. Raw accelerometer data collected from an iPhone 5S 

C. Feature Extraction 

We used a computer-assisted Gait assessment tool, "iGAIT" 
[25], based on MATLAB to help extract gait features. The iGait 
tool extracted 56 gait characteristics from data taken from each 
patient's right and left ankle accelerometers: six Spatio-
temporal, fifteen Frequency domain, and seven Regularity and 
Symmetry of step characteristics (28 for each accelerometer). 
Table II contains exhaustive lists of each type of variable. Given 
the position of the capture instrument, the movement axes of 
sensors correspond to gait movements as follows: 
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• The Y-axis corresponds to vertical movement (VER). 

• The X-axis corresponds to the anterior-posterior 
movement (AP). 

• The Z-axis corresponds to the middle-lateral movement 
(ML). 

Fig. 4. Filter and segmented accelerometer data 

After detecting heel contacts, the number of steps is determined 
by counting the identified contacts. Next, cadence is calculated 
by dividing the number of steps by the time spent walking while 
walking velocity is determined by dividing the distance by the 
time spent walking. Next, the average step length is calculated 
by dividing the walking distance by the number of steps. 
Finally, the square root of the mean acceleration (RMS) 
indicates the intensity of motion, and the RMS values of the 
three acceleration directions (VT, AP, and ML) are calculated 
using (1): 

𝑅𝑀𝑆𝑑 = √
1

𝑁
∑ (𝑥𝑑𝑖 − �̅�𝑑)2𝑁

𝑖=1    (1) 

where 𝑥𝑑𝑖 is the acceleration along either the VT, AP, or ML 
axis, 𝑁  is the size of the acceleration signal, and �̅�𝑑  is the 
average acceleration along any axis. iGAIT extracts six Spatio-
temporal characteristics from acceleration data, including 
cadence, mean step length, velocity, RMSVT, RMSAP, and 
RMSML. 

iGAIT also extracts six frequency domain features from 
each direction of the acceleration data. These features measure 
the amplitude and frequency of body movements and are taken 
from each direction of the acceleration data. The integral of the 
power spectral density (IPSD) was estimated by a periodogram 
using (2) and (3). Where 0 ≤ 𝜔 ≤ 𝜋  represents the angular 
frequency, 𝑥𝑖 represents the acceleration along the VT, AP, or 
ML axis, and 𝑁  represents the total number of acceleration 
samples. The frequency with the highest PSD value is known 
as the primary frequency. The remaining four frequency 
features ( 𝐹𝑟1 , 𝐹𝑟2 , 𝐹𝑟3 , and 𝐹𝑟4 ) correspond to the 
frequencies when the PSD is cumulated (CPSD), which is 
calculated using Equation (4) for 50%, 75%, 90%, and 99% of 
IPSD, respectively. iGAIT extracts eighteen frequency 
characteristics from the acceleration data, including IPSD, 
primary frequency, 𝐹𝑟1, 𝐹𝑟2, 𝐹𝑟3, and 𝐹𝑟4 in each of the three 
directions (VT, ML, and AP). 

𝑃𝑆𝐷(𝑒𝑗𝜔) =  
1

2𝜋𝑁
|∑ 𝑥𝑖𝑒

−𝑗𝜔𝑖𝑁
𝑖=1 |

2
  (2) 

𝐼𝑃𝑆𝐷 = ∫ 𝑃𝑆𝐷(𝜔)𝑑𝜔
𝜋

𝑂
   (3) 

𝐶𝑃𝑆𝐷(𝜔) = ∫ 𝑃𝑆𝐷(𝜔)𝑑𝜔
𝜔

0
    (4) 

The autocorrelation coefficient measures the relationship 
between a time series' past and future values. To quantify the 
regularity and symmetry of gait, iGAIT employs 
autocorrelation coefficients of acceleration data that are 
independent of their direction. Autocorrelation coefficients of 
acceleration data can be estimated without bias using (5), where 
𝑥𝑖 represents acceleration data, and 𝑓𝑐(𝑡)  represents 
autocorrelation coefficients, 𝑡  represents the time. When the 
time lag t is equal to the periodicity of the acceleration 𝑥𝑖, the 
𝑓𝑐(𝑡) series will contain a peak. 

𝑓𝑐(𝑡) =
1

𝑁+|𝑡|
∑ 𝑥𝑖𝑥𝑖+𝑡

𝑁−|𝑡|
𝑖=1 .   (5) 

TABLE II 
FEATURES EXTRACTED FROM IGAIT 

Spatio-Temporal 

Features 

Frequency Features Regularity and 

Symmetry Features 

Cadence (step/min) IPSD VER Symmetry in VER 

Mean step length 

(m) 

Frequency at 50% energy 

(Hz) VER 

Symmetry in AP 

Velocity (m/s) Frequency at 75% energy 

(Hz) VER 

Stride Regularity 

in VER 

RMS VER Frequency at 90% energy 

(Hz) VER 

Stride Regularity 

in ML 

RMS ML Frequency at 100% 

energy (Hz) VER 

Stride Regularity 

in AP 

RMS AP IPSD ML Step Regularity in 

VER 

 Frequency at 50% energy 

(Hz) ML 

Step Regularity in 

AP 

 Frequency at 75% energy 

(Hz) ML 

 

 Frequency at 90% energy 

(Hz) ML 

 

 Frequency at 100% 

energy (Hz) ML 

 

 IPSD AP  

 Frequency at 50% energy 

(Hz) AP 

 

 Frequency at 75% energy 

(Hz) AP 

 

 Frequency at 90% energy 

(Hz) AP 

 

 Frequency at 100% 

energy (Hz) AP 
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A. Datasets 

 We obtained three sets of data, one for each ankle 
(PH_RANKLE and PH_LANKLE) with the 28 gait features 
described in the preceding section and the combination of the 
two (PH_ANKLES) with 56 Gait features. Each dataset 
contains 67 instances. 

B. Feature Selection 

Feature selection techniques are required to alleviate the 
effect of the curse of dimensionality, improve the performance 
of the designed model, shorten the time required for the learning 
process, and enhance data comprehension. This study employed 
the f-test for one-way Analysis of Variance (ANOVA). The F-
test computes the variance ratio between two groups and within 
a group for a given characteristic. In this case, the groups are 
instances with the same target value. Greater values of the f-test 
indicate smaller distances within the groups and greater 
distances between the groups. In this ANOVA feature selection 
method using the f-test, the features are ranked according to 
their f-score [26]. 

F. SMOTE 

A problem with imbalanced classification is insufficient 
instances of the minority type for a model to learn the decision 
boundary effectively. One solution to this difficulty is to 
oversample samples from the minority group. Before fitting a 
model, oversampling can be achieved by simply duplicating 
examples from the minority type in the training dataset. This 
method can balance the category distribution but provides no 
additional data to the model. 

Synthesizing new samples from the minority category is an 
improvement over duplicating minority samples. Therefore, 
this method is an acceptable form of data enhancement for 
tabular data. The Synthetic Minority Oversampling 
Technique(SMOTE) is conceivably the most popular technique 
for synthesizing new examples. 

Setting samples close to the feature space, marking a line 
between the instances in the feature space, and drawing a new 
sample at a point along the line is how SMOTE operates. In 
particular, SMOTE selects a sample at random from the 
minority class. Then, SMOTE identifies the n closest neighbors 
that belong to the same minor category for any value of a minor 
type, draws a straight line with that neighbor, and generates 
random values until they exhibit a synthetic ratio [27]. 

G. Classifiers 

This work uses five supervised classifiers among the most 
recently used to classify people based on Gait features: Logistic 
Regression, Naive Bayes, K-Nearest Neighbors, Support 
Vector Machine, Decision Trees, and Random Forests. 

Support Vector Machines: It is a discriminative classifier 
defined mathematically by separating hyperplanes. It is very 
efficient in binary classification with small data sizes. Since the 
data size used in the experiment is comparatively more minor, 
SVM is expected to show good performance. The algorithm is 
used in solving regression problems also [28]. 

Naive Bayes: Based on Bayes' theorem, the Naive Bayes 
Classifier is a straightforward probabilistic classification 
technique. In Bayes' theorem, if two independent occurrences 
occur randomly and in succession, the chance of the second 

event occurring is the likelihood that one of these events occurs. 
For example, the product rule in (6) can be expressed using two 
distinct expressions by utilizing the change property. 

𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) = 𝑃(𝑌|𝑋)𝑃(𝑋)          (6) 

As shown in (7), Bayes' theorem describes the relationship 
between a random event occurring in a random process and the 
conditional probability of another unexpected event. 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
              (7) 

In (7), Bayes calculates the probability of the dependent 
states that are likely to occur in any scenario. In this equation, 
P (X) represents the problem's input probability, P (X) indicates 
the likelihood of possible exit status, and P (Y |X) reflects the 
chance of an output of Y given input X. The NB classification 
method analyzes the link between dependent and independent 
attributes to generate a conditional probability for each 
relationship. the effects of independent variables on the 
dependent variable are combined To classify a new sample [29]. 

K-Nearest Neighbors: It is one of the supervised machine 
learning algorithms most used and one of the simplest 
classification algorithms. It is a method of data classification 
that determines what cluster a data point is in by examining the 
data points around it. For example, a point is categorized based 
on the majority vote of its neighbors, with the point being 
assigned to the category most common amongst its K nearest 
neighbors estimated by a distance function [30]. 

Decision Tree: It is one of the most straightforward machine 
learning algorithms that can be used to solve classification and 
regression problems. A decision tree is a simple flowchart-like 
tree structure that facilitates binary classification by making 
iterative decisions for different attributes based on the outcomes 
of random events [28]. 

Random Forest: A classification algorithm developed by 
Breiman and Cutler uses an ensemble of tree predictors. In 
Random Forest, each tree is constructed by bootstrapping the 
training data and for each split randomly selected subset of 
features is used. Splitting is made based on purity measures 
[31]. 

H. Performance Evaluation 

All the classifiers used above are evaluated based on Accuracy, 
Precision, Sensitivity(recall), Specificity, F1 score, and AUC, 
respectively. The formulas for (8), (9), (10), (11), and (12) are 
based on a confusion matrix, as shown in Table III. AUC is the 
two-dimensional area under the Receiver Operating 
Characteristic (ROC) curve. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
             (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
              (7)

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
            (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
             (9) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (10) 
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TABLE III 
CONFUSION MATRIX 

 Classified as PD 

Patients 

Classified as HA  

Patients 

Real Patients with 

PD 

True Positives False Negatives 

Real Patients with 

HA 

False Positives True Negatives 

 

where TP, TN, FP, and FN are True Positives, True Negatives, 
False Positives, and False Negatives, respectively. 

I. Software 

We performed our data pre-processing and analysis in Py-
thon version 3.6. We used software packages: pandas (version 
1.3.4), Numpy (version 1.18) [32], Scipy (version 1.7.1) [33], 
imbalanced-learn (version 0.9.0), and scikit-learn (version 
1.0.1) [34]. 

III.   RESULTS AND DISCUSSION 

A. Feature Selection 

After applying the method of ANOVA with the f-test to 
each dataset, we selected the first ten features. The selected 
features are shown in Table IV and were included in the 
subsequent analysis. 

TABLE IV 
SELECTED FEATURES 

Feature 

number 

Both anklesa Right ankle Left ankle 

Feature Feature Feature 

1 Freq_90_VER_L Freq_100_AP Freq_90_VER 

2 RMS_ML_L Velocity RMS_ML 

3 Freq_75_VER_L Sym_AP Freq_75_VER 

4 Freq_50_VER_L Freq_100_ML Freq_50_VER 

5 Freq_100_VER_L Freq_90_AP Freq_100_VER 

6 Freq_100_AP_R RMS_AP IPSD_ML 

7 Velocity_R Stride_Reg_ML Velocity 

8 Sym_AP_R Freq_90_ML RMS_AP 

9 IPSD_ML_L Cadence Cadence 

10 Velocity_L Freq_50_VER IPSD_AP 

a L=Left ankle, R=Right ankle 

 

B. Oversampling 

In the three datasets analyzed for this study, the proportion 
of individuals with PD was 79.1%, while the proportion of 
patients with HA was 20.9%. (imbalance rate: 3.78). As a result, 
we discovered a moderate imbalance in the class variable. 
Because they attempt to predict classes with greater weight, 
classifiers trained on these skewed data are more likely to 
produce biased outcomes. Therefore, it may increase precision. 
However, the precision of a variable with low frequency is 
likely to decrease. This study utilized SMOTE (sampling 
strategy: minority and k neighbors: 5) to circumvent the 
imbalance problem of these datasets. This method produced the 
following new balanced datasets: 

• PH_ANKLES: 53 PD vs. 53 HA. 

• PH_RANKLE: 53 PD vs. 53 HA. 

• PH_LANKLE: 53 PD vs. 53 HA. 

C. Hyperparameter Tunning and Cross Validation 

We conducted an Exhaustive Grid Search to determine the 
optimal hyperparameters for every model. Table V displays the 
hyper-parameter values utilized by the algorithms. Following 
that, we utilized a 10-FCV evaluation scheme: 

• Cross-validation randomly divides the original data into k 
subsets of equal size. 

• It performs k loops in which k-1 of the original dataset is 
used for training and the last k for testing. 

• The results of each iteration are averaged to obtain a single 
result. 

TABLE V 
MODEL HYPERPARAMETERS 

Model Parameter Value 

Logistic Regression C 0.1 

 

Support Vector Machines 

kernel rbf 

C 1 

gamma 1 

Naive Bayes var_smoothing 1x10-9 
 

K-Nearest Neighbors n_neighbors 3 

metric minkowski 

 

 

Decision Tree 

criterion entropy 

max_depth 4 

max_leaf_nodes 5 

min_samples_split 10 

min_samples_leaf 1 

 

 

 

Random Forest 

n_estimators 50 

criterion entropy 

max_depth 4 

max_leaf_nodes 5 

min_samples_split 10 

min_samples_leaf 1 

 

For each dataset, we performed 50 runs using each classifier 

described previously. In each sequence, a different seed is set. 

Using a different seed ensures that the train and test sets will be 

divided differently. In addition, for each run, Accuracy,  Sensi-

tivity, and Specificity were calculated. This procedure was ex-

ecuted on all datasets. We then calculated the average of these 

measurements across 50 runs. 

D. Results and Discussion 

The classification results for the right and left ankles, as well 

as the ankles as a whole, are displayed in Table VI. The Cross-

Validation results are shown in Fig. 5, 6, and 7. SVM produced 

the best results within the PH ANKLES data set. With a mean 

accuracy of 0.927 ± 0.012, the average diagnostic performance 

was exemplary. Other models performed better than indifferent 

metrics in this dataset; for example, K-Nearest Neighbors had a 

precision of 0.963 ± 0.028 and a specificity of 0.971 ± 0.018. 

SVM also had the best performance for PH RANKLE, with a 

mean accuracy of 0.894 ± 0.01. Nonetheless, K-Nearest Neigh-

bors had the highest average specificity in that dataset, with 

0.877 ± 0.031. In addition, SVM performed the best for PH 

LANKLE, with an accuracy of 0.914 ± 0.009. However, K-

Nearest Neighbors had the highest average specificity in that 

dataset, with 0.877 ± 0.031. The SVM model had the  
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highest average AUC in the PH Ankles dataset, at 0.927 ± 

0.012. The ROC Curves are depicted in Fig. 8, 9, and 10. 

 We conducted a Mann-Whitney U test with a significance 
level of 0.05 to compare accuracy differences between the 
model with the highest performance and the others. In the 
PH_ANKLES dataset, the results revealed a highly significant 
distinction. As the p-value obtained from the Mann-Whitney U 
test (as shown in Table VII) is significant, we conclude that the 
SMV model has a significantly higher yield than the other four 
models. Next, in the PH_RANKLE dataset, we compare 
accuracy differences between the SVM model and the other 
models, and the results revealed a significant distinction. We 
conclude that the SVM model has a significantly higher yield 
than the other four models, as the p-value from the Mann-
Whitney U test (as shown in Table VIII) is significant. Finally, 
in the PH_LANKLE dataset, we compare accuracy differences 
between the SVM model and the other models (as shown in 
Table IX). Again, the results revealed a highly significant 
distinction. However, the SVM model has a significantly higher 
yield than the other models. 

Using the dataset containing both ankles, SVM was more 
accurate than Logistic regression, KNN, Decision Tree, and 
Random Forest. Most models performed better when utilizing 
the dataset containing both ankles as opposed to the same model 
utilizing datasets containing only one ankle. 

 

 

Fig. 5. PH_ANKLES dataset results from the five models 

TABLE VII 
SIGNIFICANCE TEST IN THE PH_ANKLES DATASET 

 p-value 

SVM vs Logistic Regresion 3.242x10-18 

SVM vs Naive Bayes 3.229x10-18 

SVM vs KNN 3.242x10-18 

SVM vs Decision Tree 3.242x10-18 

SVM vs Random Forest 3.231x10-18 

 

 

 

 

 

TABLE VI 
CLASSIFIER PERFORMANCE 

Datasets Model Accuracy Precision Sensitivity Specificity F1 AUC 

Both Ankles Logistic Regression 0.787 ± 0.017 0.796 ± 0.022 0.803 ± 0.019 0.771 ± 0.026 0.784 ± 0.018 0.787 ± 0.017 

Support Vector Machines 0.927 ± 0.012 0.911 ± 0.018 0.962 ± 0.002 0.891 ± 0.023 0.931 ± 0.011 0.927 ± 0.012 

Naive Bayes 0.761 ± 0.011 0.754 ± 0.016 0.813 ± 0.020 0.709 ± 0.012 0.770 ± 0.014 0.761 ± 0.011 

K-Nearest Neighbors 0.836 ± 0.017 0.963 ± 0.028 0.701 ± 0.029 0.971 ± 0.018 0.794 ± 0.024 0.836 ± 0.018 

Decision Tree 0.712 ± 0.025 0.820 ± 0.053 0.586 ± 0.048 0.837 ± 0.055 0.654 ± 0.036 0.711 ± 0.026 

Random Forest 0.807 ± 0.024 0.847 ± 0.031 0.774 ± 0.034 0.839 ± 0.034 0.792 ± 0.028 0.807 ± 0.024 

Right Ankle Logistic Regression 0.795 ± 0.018 0.816 ± 0.028 0.797 ± 0.022 0.794 ± 0.032 0.792 ± 0.019 0.796 ± 0.018 

Support Vector Machines 0.894 ± 0.019 0.865 ± 0.025 0.960 ± 0.010 0.829 ± 0.034 0.903 ± 0.016 0.894 ± 0.019 

Naive Bayes 0.675 ± 0.012 0.665  ± 0.016 0.742 ± 0.017 0.606 ± 0.023 0.690 ± 0.012 0.674 ± 0.012 

K-Nearest Neighbors 0.745 ± 0.018 0.855 ± 0.039 0.613 ± 0.024 0.877 ± 0.031 0.692 ± 0.022 0.745 ± 0.019 

Decision Tree 0.744 ± 0.040 0.805 ± 0.057 0.672 ± 0.056 0.816 ± 0.056 0.709 ± 0.046 0.744 ± 0.040 

Random Forest 0.785 ± 0.023 0.810 ± 0.029 0.777 ± 0.036 0.792 ± 0.031 0.776 ± 0.027 0.784 ± 0.023 

Left Ankle Logistic Regression 0.740 ± 0.014 0.727 ± 0.019 0.807 ± 0.018 0.674 ± 0.022 0.751 ± 0.015 0.741 ± 0.014 

Support Vector Machines 0.914 ± 0.009 0.872 ± 0.014 0.994 ± 0.009 0.834 ± 0.018 0.925 ± 0.008 0.914 ± 0.009 

Naive Bayes 0.716 ± 0.016 0.711 ± 0.022 0.770 ± 0.022 0.662 ± 0.024 0.726 ± 0.018 0.716 ± 0.017 

K-Nearest Neighbors 0.698 ± 0.013 0.829 ± 0.046 0.510 ± 0.021 0.885 ± 0.019 0.606 ± 0.025 0.698 ± 0.014 

Decision Tree 0.697 ± 0.027 0.724 ± 0.045 0.710 ± 0.052 0.683 ± 0.062 0.682 ± 0.033 0.697 ± 0.026 

Random Forest 0.728 ± 0.018 0.756 ± 0.034 0.709 ± 0.031 0.747 ±  0.036 0.712 ± 0.022 0.728 ± 0.018 
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Fig. 6. PH_RANKLE dataset results from the five models 
 

 

Fig. 7. PH_LANKLE dataset results from the five models 
 

 

Fig. 8. PH_ANKLES dataset roc curves from the five models 

TABLE VIII 
SIGNIFICANCE TEST IN THE PH_RANKLE DATASET 

 p-value 

SVM vs Logistic Regresion 3.472x10-18 

SVM vs Naive Bayes 3.459x10-18 

SVM vs KNN 3.462x10-18 

SVM vs Decision Tree 3.487x10-18 

SVM vs Random Forest 3.468x10-18 

 

 

Fig. 9. PH_RANKLE dataset roc curves from the five models 

 

Fig. 10.  PH_LANKLE dataset roc curves from the five models 

TABLE IX 
SIGNIFICANCE TEST IN THE PH_LANKLE DATASET 

 p-value 

SVM vs Logistic Regresion 3.455x10-18 

SVM vs Naive Bayes 3.458x10-18 

SVM vs KNN 3.457x10-18 

SVM vs Decision Tree 3.465x10-18 

SVM vs Random Forest 3.455x10-18 

 

IV. CONCLUSIONS 

In this paper, we implemented various classification 
methods for Neurodegenerative Disease, and they could 
differentiate between PD and HA. This analysis was conducted 
with a small number of Hereditary Ataxia patients because it is 
difficult to access a more significant number of them due to the 
disease's rareness in the overall population and limited 
availability in specialized medical centers. The data were 
preprocessed and segmented to extract Gait characteristics. We 
implemented a feature selection technique to extract the 
essential features to optimize the algorithm's dimensionality. In 
addition, we utilized an oversampling technique to rectify the 
imbalanced nature of these datasets. We implemented the 
Logistic Regression, KNN, SVM, Decision Tree, and Random 
Forest classification methods. The SVM with C equal to 1, 
gamma equal to 1, and an RBF kernel achieved 92.7% 
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accuracy, making it the most accurate classification method. In 
a previous investigation [35], the results using an enhanced 
weight voting ensemble (EWVE) method showed a 
performance in differentiation between PD vs. ataxia patients 
(AUC 0.974 ± 0.036, sensitivity 0.829 ± 0.217, specificity 
0.969 ± 0.038). However, our results obtained in the same 
metrics using a support vector machine and a k-nearest 
neighbor model showed a better effect in sensitivity and 
specificity. Results inspire future work in constant monitoring 
because binary classification may be helpful, e.g., to better 
monitor the condition's progression by identifying an 
aggravation reflected in a change in the manner in which the 
study participants walk. Also we will use different walk lengths 
to analyze new performances in future investigations. This field 
of study necessitates a monitoring system with real-time data 
transfer. 
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