

BW-TOPSIS: A Hybrid Method to Evaluate

Software Testing Techniques
Ajay Kumar, and Kamaldeep Kaur

Abstract—Software testing plays a significant role in various

software development phases. There are so many software testing

techniques available. Selecting the most suitable software testing

technique based on multiple factors is challenging for software

practitioners. This paper proposes an MCDM-based hybrid

approach for selecting the most appropriate software testing

technique among various available software testing techniques,

considering multiple factors such as cost, schedule, resources, etc.

Because of the involvement of multiple factors, the problem of

selecting the most appropriate software testing technique can be

modeled as an MCDM problem. This study proposes a hybrid

approach by integrating two MCDM methods BWM (Best-Worst

Method) and TOPSIS (Technique for Order Preference by

Similarity to Ideal Solution), for evaluating various software

testing techniques considering multiple factors altogether. For the

applicability of the proposed approach, an experimental study was

conducted using seven software testing techniques and six

evaluation criteria. Results show the proposed approach can be

used as an efficient tool for selecting the most suitable software

testing technique among various available testing techniques in the

presence of multiple factors.

Index terms— Software Testing Technique; Multi-Criteria

Decision Making; BWM; TOPSIS.

I. INTRODUCTION

In day-to-day life, software plays a vital role in many

applications, such as home appliances, industrial controls,

hospital health care units, nuclear reactor plants, aircraft, air

traffic control, shopping, and many more. To increase their

effectiveness and efficiency, many governments and

commercial organizations depend on the proper functioning of

the software. Software failure may lead to economic loss and

customer dissatisfaction for the organizations. So, in this

scenario, assessing the quality of the software is an essential

task.

Software testing is a significant sub-space of software quality

affirmation, which assists software practitioners with

Manuscript received October 25, 2022; revised November 23, 2022. Date of

publication December 6, 2022. Date of current version December 6, 2022. The
associate editor prof. Darko Huljenić has been coordinating the review of this

manuscript and approved it for publication.

A. Kumar is with the Department of Information Technology, KIET Group
of Institutions, India. K. Kaur is with the University School of Information,

Communication & Technology (USIC&T), Guru Gobind Singh Indraprastha

University, India. E-mails: ajaygarg100@gmail.com, kdkaur99@ipu.ac.in.
Digital Object Identifier (DOI): 10.24138/jcomss-2022-0138

discovering bugs and mistakes during software product

development. Software testing is a necessary task which is to be

needed at various stages in the development of any software to

ensure the proper functioning of software according to the

specific requirements [1]. There are different software testing

techniques available but selecting the most suitable testing

technique is a crucial task because selecting the right testing

technique depends upon various factors such as cost, schedule,

resources, etc.

MCDM is a technique that is used to select the most

appropriate alternative from the different available alternatives

to solve a particular problem in the presence of various

conflicting criteria [2]. In this paper, the problem of selecting

the most suitable software testing technique from different

available software testing techniques (alternatives) can be

modeled as an MCDM problem since the selection of the right

software testing technique involves more than one factor

(criteria).

This paper proposes a hybrid approach by integrating two

MCDM methods, BWM and TOPSIS, for evaluating various

software testing techniques taking various factors into

consideration. For the validation of the proposed approach, we

have conducted an experimental study using seven integration

testing techniques considering six different factors as

evaluation criteria. To the best of our knowledge, no previous

research has attempted to evaluate software testing techniques

using an MCDM-based hybrid approach by integrating BWM

and TOPSIS, considering various factors altogether. The

proposed MCDM-based hybrid approach will be useful in

aiding software practitioners in selecting the most suitable

software testing technique during the various phases of software

development.

The remaining part of this study is as follows. Section II

presents research done related to the evaluation of software

testing techniques. Section III presents the proposed MCDM-

based hybrid approach. Section IV presents the experimental

study to validate the proposed approach. Section V discusses

the results, section VI highlights the theoretical and practical

implications, and section VII concludes the paper.

II. RELATED WORK

Vos et al. [3] proposed a framework for the evaluation of

software testing techniques. According to them, this framework

336 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

1845-6421/12/2022-0138 © 2022 CCIS

mailto:kdkaur99@ipu.ac.in

will be helpful for software engineers in defining test cases.

Babu et al. [4] conducted a systematic review of software

testing strategies on the basis of the evaluation and

classification of software testing techniques. Lemos et al. [5]

conducted a review of evaluation studies in software testing

research and emphasized the importance of the evaluation of

software testing techniques. Neto and Travassos [6] proposed a

method based on the combined selection of model-based

software testing methods for using software testing techniques

effectively. Atifi et al. [7] presented a comparative study of two

software testing techniques, namely risk-based testing (RBT)

and model-based testing (MBT). Dallal et al. [8] presented a

comparative analysis of various software testing techniques

specifically used for aspect-oriented software systems.

Ibarra and Rodriguez [9] proposed a content-based system

for the evaluation of software testing techniques based on the

characteristics of a target project using a collaborative

approach. Shuaibu et al. [10] investigated different types of

software testing techniques by comparative analysis based on

different characteristics of the software system. Farooq [11]

presented an empirical study for the assessment of three

software testing methods, namely functional, code reading, and

structural testing.

Khari and Kumar [12] presented a survey of research work

on the evaluation of search-based software testing techniques

between 1996 to 2016. Sharma et al. [13] analyzed the impact

of ontology on software testing. The authors also discuss the

factors affecting software testing directly or indirectly. Qasim

et al. [14] conducted a systematic literature review of test case

prioritization methods in regression testing. Martensson et al.

[15] proposed a tangible model for the efficient testing of large-

scale software products.

Ali et al. [16] proposed a model for prioritizing and selecting

a test case to improve the quality of a software release. Their

proposed model follows two steps for prioritizing and selecting

the test cases. First, the most frequently changing test cases are

clustered together and prioritized. Second, test cases are

selected based on the higher failure rate. The authors conducted

an experimental study considering three industrial software

projects to compare their proposed approach with existing

regression techniques. The results show that the proposed

model outperforms alternative regression techniques.

Juhnke et al. [17] performed a case study to identify the

problems related to test case specifications in the automation of

software testing. The identified problems were summarized in

nine categories: availability, content-related problems, quality

assurance, tools, communication, processes, test case

specification content, test case description, and lack of

knowledge. The authors emphasized the necessity of quality

assurance measures for specifying test cases. Abusalim et al.

[18] evaluated software testing techniques were focusing on

mobile application software systems.

Beyer [19] reported the results of the first international

competition on software testing. The author concludes that the

new standards for making input values, writing the generated

test suites, and specifying test coverage criteria will encourage

test case generators to apply them for delivering the testing tools

that can be used easily as quality assurance components. Jung

et al. [20] developed a model to reduce redundant test

executions during the testing of a software project.

Following a thorough review of related work, it is clear that

the majority of previous research has focused on improving the

effectiveness of software testing techniques. However, some

researchers have worked towards the evaluation of software

testing techniques, but they have considered only one

evaluation criterion at a time. As the selection of software

testing techniques depends upon various characteristics

(evaluation criteria) of the project, it is essential need to develop

a framework that can be used to evaluate software testing

techniques in the presence of more than one evaluation

criterion. This paper proposes a hybrid approach by integrating

two MCDM methods, BWM and TOPSIS, for evaluating

various software testing techniques taking various factors into

consideration altogether.

III. PROPOSED METHOD

The problem of selecting the most suitable software testing

technique can be modeled as an MCDM problem since the

performance of software testing techniques (alternatives) may

depend upon various factors (evaluation criteria) such as cost,

schedule, resources, etc. This study proposes a hybrid approach

BW-TOPSIS by integrating two MCDM methods, BWM and

TOPSIS, for the selection of the most suitable software testing

techniques from different available software testing techniques

(alternatives) considering various factors (evaluation criteria).

The proposed method uses the concept of TOPSIS [21] along

with BWM [22] to select the most appropriate software testing

technique. TOPSIS selects the best alternative based on the

distance of the alternative from the positive ideal solution and

negative ideal solution. The alternative which has the farthest

distance from a negative ideal solution and the shortest distance

from a positive ideal solution is considered the best alternative.

Weights of the evaluation criteria are calculated by using

BWM. A graphical representation of the proposed methodology

is shown in Fig. 1.

The detailed stepwise procedure of the proposed BW-

TOPSIS hybrid approach for evaluating m alternatives in the

presence of n criteria is given below.
Step1: Construction of Decision matrix [M]m×n

First, a decision matrix [M]m×n is constructed as shown in
“(1)” in which each value of Mij represents the performance of
ith alternative with respect to jth criterion.

11 12 13 1

21 22 23 2

1 2 3

n

m n n

m m m mn

M M M M

M M M M M

M M M M

(1)

Step2: Construction of Normalized Decision matrix
[NM]m×n

The decision matrix obtained from the previous step is

normalized to convert ratings given in various scales and units

of criteria into a single measurable unit. The value of NMij of

normalized decision matrix [NM]m×n can be calculated by using

the following equation.

A. KUMAR et al.: BW-TOPSIS: A HYBRID METHOD TO EVALUATE SOFTWARE TESTING TECHNIQUES 337

2

1

ij

ij
m

ij

i

M
NM

M

(2)

Step3: Construction of Criteria Weight Matrix [CW]1×n

The MCDM method Best-Worst method (BWM) [22] is used

to calculate the absolute weights of all the criteria. In this

MCDM method, the most desirable criterion is taken as the best

criterion, and the least desirable criterion is taken as the worst

criterion. These two criteria (best and worst) are then pairwise

compared with other criteria. The weights of various criteria are

then determined by formulating and solving a maximin

problem. The detailed procedure to calculate the weight matrix

by using BWM is given below.

Step3(a): Consider the n number of criteria for which the

weight matrix is to be calculated.

Step3(b): Choose the most desirable criterion as the best

criterion and the least desirable criterion as the worst criterion.

Step3(c): Find the preference of the best criterion over other

criteria using a number scale from 1 to 9. These preferences are

represented in the form of a best-to-others vector as follows.

1 2(, ,.....,)B B B BnC c c c (3)

where BJc denotes the preference of the best criterion B with

respect to criterion j. It may be noted that 1BBc .

Fig. 1. Graphical representation of the proposed methodology

Step3(d): Find the preference of all the criteria over the
worst criterion using a number scale from 1 to 9. These
preferences are represented in the form of others to worst vector
as follows.

1 2(, ,.....,)T

W W W nWC c c c (4)

where JWc denotes the preference of criteria j with respect to the

worst criterion W. In this case 1WWc .

Step3(e): Find the optimal weights (* * *

1 2, ,...., ncw cw cw).

Consider the weight of the criterion as an optimal weight where

for each pair of /B jcw cw and /j Wcw cw , we have

/B j BJcw cw c and /j W jWcw cw c . For all values of j, these

conditions may be satisfied by finding a solution where the

maximum absolute differences
B

Bj

j

cw
c

cw
 and

j

jW

W

cw
c

cw
 .

By taking into account the non-negativity and sum condition
for the weights, the following problem is generated.

min max ,

such that

1 and 0, for all

jB

Bj jW
j

j W

j j

j

cwcw
c c

cw cw

cw cw j

(5)

The problem given in “(5)” can be converted into the following

problem.

 min

such that

, for all

1 , 0, for all

jB

Bj jW

j W

j j

j

cwcw
c c j

cw cw

cw cw j

(6)

The optimal weights (* * *

1 2, ,...., ncw cw cw) and * can be

calculated by solving the problem given in “(6)”. Here * is

used to calculate the consistency ratio as described in the

following step.

normalization
Software Testing

Techniques (STTs)

Evaluation Criteria

Construct decision

matrix

Normalized decision

Matrix

pairwise comparison of criteria
Get the optimal weights of criteria with

CR<0.1

Find Euclidean distance

of alternatives from ideal

solutions.

Find ranking score

(Relative Closeness of
alternatives from ideal

solution)

Recommendation of the
best Software Testing

Technique.

Weighted Normalized

Decision matrix

Find ideal solutions

(Positive and negative)

338 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

Step3(f): In this step, the Consistency Ratio (CR) is
calculated using the following equation.

 *

CR
CI

 (7)

Here CI is the consistency index. CI is the maximum
possible value of for the different values of

{1,2,3,.....,9}BWc listed in Table I. Comparisons will be more

reliable if the value of CR is less. In general, if the value of CR
is less than 0.1, comparisons are consistent.

TABLE I

CONSISTECY INDEX (CI) TABLE

BW
c 1 2 3 4 5 6 7 8 9

CI

(max

)
0 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23

Step4: Construction of Weighted Normalized Matrix
[WM]m×n

Multiply each column of the normalized decision matrix

[NM] by the respective column of the weight matrix [W] to

obtain the weighted normalized matrix [WM]. The value of

WMij of the weighted normalized matrix [WM]m×n can be

calculated by using the following equation

ij j ijWM W NM (8)

Step5: Calculate Ideal Solutions [PIS]n×1 and [NIS]n×1

The best value each criterion may achieve is determined as

the positive ideal solution. The least/worst value each criterion

can achieve is used to calculate the negative ideal solution. They

can be calculated as follows:

1 2 3

(max /),

(min / ') for i=1,2.....m

 { , , ,..... }

ij

ij

n

WM j z
PIS

WM j z

WM WM WM WM

 (9)

1 2 3

(min /),

(max / ') for i=1,2.....m

 { , , ,..... }

ij

ij

n

WM j z
NIS

WM j z

WM WM WM WM

 (10)

where z is associated with beneficial criteria and z’ is associated

with cost criteria.

Step6: Euclidean Distance

For each alternative Euclidean distance ED+ from PIS and

Euclidean distance ED- from NIS is calculated using the

following equations

2

1

() for i=1,2,.....,m
n

i ij j

j

ED WM WM

(11)

2

1

() for i=1,2,.....,m
n

i ij j

j

ED WM WM

 (12)

Step7: Find Relative Closeness [RC]m×1

Relative closeness for each alternative with respect to

negative ideal solution and positive ideal solution can be

calculated using the following equation.

()

i

i

i i

ED
RC

ED ED

(13)

Step8: Selection of the best alternative

Rank the alternatives (in this study, software testing

techniques) according to the value of relative closeness

obtained in step 7. Software testing technique with the highest

value of relative closeness (RC) will be recommended as most

appropriate alternative.

IV. EXPERIMENTAL STUDY

A software was developed to maintain the research data of a

university. It was necessary to test the integration between the

unit-tested modules. Seven Software Testing Techniques (STT)

and six Evaluation Criteria (EC) were identified, and the

proposed methodology described in section III was applied to

select the most suitable software testing technique. For testing

the software, the following software testing techniques were

identified.

STT= {Top-down integration testing, Bottom-up integration

testing, Incremental integration, smoke testing, End-to-End

testing, Big Bang, and Sandwich}.

The set of evaluation criteria considered for selecting the

most appropriate software testing technique is as follows:

EC= {End user view, Test cases reusability, Fault detection

time, Effort required for additional work, Test cases writing

easiness, and Error fixing easiness}.

Stepwise application of the proposed method described in

section III to select the best software testing technique is

described as follows:

The decision matrix [M]7×6 representing ratings of seven

software testing techniques with respect to six evaluation

criteria is shown in Table II.

 TABLE II

DECISION MATRIX M

Software

Testing

Technique

(STT)

Evaluation Criteria (EC)

EC1 EC2 EC3 EC4 EC5 EC6

STT1 3 4 5 3 4 3

STT2 2 1 2 3 4 1

STT3 1 3 3 5 4 5

STT4 5 3 4 3 4 4

STT5 4 5 4 4 5 3

A. KUMAR et al.: BW-TOPSIS: A HYBRID METHOD TO EVALUATE SOFTWARE TESTING TECHNIQUES 339

STT6 4 2 5 3 3 1

STT7 2 4 5 3 3 4

Normalized decision matrix [NM]7×6 can be calculated using “2”

and is given in Table III.

TABLE III

NORMALIZED DECISION MATRIX [NM]7×6

Software
Testing

Technique

(STT)

Evaluation Criteria (EC)

EC1 EC2 EC3 EC4 EC5 EC6

STT1 0.3464 0.4472 0.4564 0.3235 0.3867 0.3419

STT2 0.2309 0.1118 0.1826 0.3235 0.3867 0.1140

STT3 0.1155 0.3354 0.2739 0.5392 0.3867 0.5698

STT4 0.5774 0.3354 0.3651 0.3235 0.3867 0.4558

STT5 0.4619 0.5590 0.3651 0.4313 0.4834 0.3419

STT6 0.4619 0.2236 0.4564 0.3235 0.2900 0.1140

STT7 0.2309 0.4472 0.4564 0.3235 0.2900 0.4558

Next, the weight matrix [CW]1×6 can be constructed by using

BWM [22] as described in the proposed methodology section

(section III) and is shown in Table IV. The consistency ratio

calculated is 0.035, which implies good consistency of

judgments.

TABLE IV

WEIGHT MATRIX [CW]1×6

Weights of Evaluation Criteria

EC1 EC2 EC3 EC4 EC5 EC6

0.1787 0.1072 0.1341 0.0395 0.4064 0.1341

Next, the weighted normalized decision matrix [WM]7×6 can be

calculated using “8” and is shown in Table V.

TABLE V

WEIGHTED NORMALIZED DECISION MATRIX [WM]7×6

Software

Testing

Technique
(STT)

Evaluation Criteria (EC)

EC1 EC2 EC3 EC4 EC5 EC6

STT1 0.0619 0.0479 0.0612 0.0128 0.1572 0.0458

STT2 0.0413 0.0120 0.0245 0.0128 0.1572 0.0153

STT3 0.0206 0.0360 0.0367 0.0213 0.1572 0.0764

STT4 0.1032 0.0360 0.0490 0.0128 0.1572 0.0611

STT5 0.0825 0.0599 0.0490 0.0170 0.1964 0.0458

STT6 0.0825 0.0240 0.0612 0.0128 0.1179 0.0153

STT7 0.0413 0.0479 0.0612 0.0128 0.1179 0.0611

Use “9” to calculate the positive ideal (PIS) and use “10” to

calculate the negative ideal solution (NIS). Calculated values of

PIS and NIS are shown in Table VI.

TABLE VI

PIS AND NIS

Ideal
Solution

Evaluation Criteria (EC)

EC1 EC2 EC3 EC4 EC5 EC6

PIS 0.1032 0.0599 0.0245 0.0128 0.1964 0.0764

NIS 0.0206 0.0120 0.0612 0.0213 0.1179 0.0153

Now, for each software testing technique, Euclidean distance

ED+ from PIS and Euclidean distance ED- from NIS are

calculated using “11” and “12”. The ranking score of each

software testing technique is calculated in terms of relative

closeness using “13”. Finally, ranks of software testing

techniques are obtained, considering the higher the ranking

score higher the rank will be. Euclidean distances, relative

closeness, and ranks of software testing techniques are shown

in Table VII.

TABLE VII
ED, ED, RC, AND RANKS OF SOFTWARE TESTING TECHNIQUES

Software

Testing
Techniques

ED+ ED- RC Rank

STT1 0.0753 0.0745 0.4972 3

STT2 0.1068 0.0582 0.3528 7

STT3 0.0957 0.0803 0.4564 4

STT4 0.0543 0.1061 0.6613 2

STT5 0.0445 0.1158 0.7225 1

STT6 0.1139 0.0636 0.3584 6

STT7 0.1083 0.0624 0.3655 5

V. RESULTS AND DISCUSSION

From Table VII, it can be observed that the relative closeness

(RC) value for the End-to-End testing (STT5) is 0.7225

(highest), and hence End-to-End testing is declared the best

software testing technique. End-to-end testing's properties, such

as the exclusive focus on the end user's perspective and the

reusability of test cases, which are some of the criteria used to

evaluate testing approaches, make it the best option among the

different available software testing techniques. This

demonstrates that the methodology proposed considers all

340 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

criteria for evaluating testing techniques and recommends the

appropriate testing technique among available software testing

techniques.

VI. THEORETICAL AND PRACTICAL IMPLICATIONS

In present, testing techniques have gradually involved from

the practice of single programmers or small development teams

into a systematic, managed engineering discipline. Not only

have there been numerous researches on testing techniques, but

also more and more considerable industry practices. There are

testing classes taught in universities. There have been special

testing teams, test managers, and tester job positions open to

professional testers; there have been training programs and

complete procedures for testing in large enterprises; and there

are increasing number of companies and vendors doing testing

work for other companies. This study will be helpful to the

future research scholars who want to do research in the field of

software testing techniques.

The proposed method can be used in any software

organization for selecting the most appropriate testing

technique at any stage of the SDLC. Criteria like resources

required (human or computational), previous use of a testing

technique in the organization, ease of fixing the defects by the

developers, and training needed before the use of the technique

by a tester can also be used by the testing team according to the

schedule, cost or resources requirement of the project in the

process of decision making. Thus, the proposed method

considers the subjective knowledge and practical aspects of the

testing techniques in choosing the best testing technique to be

used.

VII. CONCLUSION

Software testing plays a very important role in various

software development phases. Selection of the right testing

technique from different available testing techniques is critical

as a testing technique can be chosen based on various factors.

This paper proposes a hybrid approach BW-TOPSIS for

selecting the right testing technique from different available

software testing techniques by considering various factors

(evaluation criteria). An experimental study was conducted to

show the applicability and effectiveness of the proposed

approach. Based on experimental results, it can be concluded

that the proposed approach can be used to select the right testing

technique at any stage of SDLC.

In this study we have used a smaller number of evaluation

criteria. However, the proposed approach can be extended for

the large number of evaluation criteria. Moreover, the proposed

study does not consider the inter dependency between two

criteria, considering the inter dependency of evaluation criteria

may be another future research direction. The proposed hybrid

approach can also be used in other decision-making problems

in software engineering. For example, the proposed work can

be extended to select the most appropriate SDLC model from

different available SDLC models.

REFERENCES

[1] I. Sommerville, Software Engineering, Addison-Wesley, 2011.

[2] E. Kazimieras Zavadskas, J. Antucheviciene, and P. Chatterjee,
“Multiple-criteria decision-making (MCDM) techniques for business

processes information management,” Information (Basel), vol. 10, no. 1,
p. 4, 2018. https://doi.org/10.3390/info10010004

[3] T. E. J. Vos, B. Marin, M. J. Escalona, and A. Marchetto, “A
methodological framework for evaluating software testing techniques and
tools,” in 2012 12th International Conference on Quality Software, 2012.
https://doi.org/10.1109/QSIC.2012.16

[4] K. Ajay Babu, K. Madhuri, and M. Suman, “An evaluation scheme of
software testing strategy,” in Behavior Computing, London: Springer
London, 2012, pp. 353–361. https://doi.org/10.1007/978-1-4471-2969-
1_23

[5] O. A. L. Lemos, F. C. Ferrari, M. M. Eler, J. C. Maldonado, and P. C.
Masiero, “Evaluation studies of software testing research in Brazil and in
the world: A survey of two premier software engineering conferences,” J.
Syst. Soft., vol. 86, no.4, pp. 951-969, 2013. http://dx.doi.org/10.1016/j.js

s.2012.11.040

[6] A. C. Dias-Neto and G. H. Travassos, “Supporting the combined selection
of model-based testing techniques,” IEEE trans. softw. eng., vol. 40, no.
10, pp. 1025–1041, 2014. https://doi.org/10.1109/TSE.2014.2312915

[7] M. Atifi, A. Mamouni, and A. Marzak, “A comparative study of software
testing techniques,” in Networked Systems, Cham: Springer International
Publishing, 2017, pp. 373–390. https://doi.org/10.1007/978-3-319-59647-
1_27

[8] S. dalal, S. Hooda, and K. Solanki, “Comparative Analysis of Various
Testing Techniques Used for Aspect-Oriented Software System
,” Indonesian Journal of Electrical Engineering and Computer Science,
vol. 12, no. 1, pp. 51-60, 2018. https://doi.org/10.11591/ijeecs.v12. i1.pp5

1-60

[9] R. Ibarra and G. Rodriguez, “SoTesTeR: Software testing techniques’
recommender system using a collaborative approach,” in Information
Management and Big Data, Cham: Springer International Publishing,
2019, pp. 289–303. https://doi.org/10.1007/978-3-030-11680-4_28

[10] I. Shuaibu, M. Musa, and M. Ibrahim, “Investigation onto the software
testing techniques and tools: An evaluation and comparative
analysis,” Int. J. Comput. Appl., vol. 177, no. 23, pp. 24–30, 2019.
https://doi.org/10.5120/ijca2019919685

[11] S. U. Farooq, “Gap between academia and industry: a case of empirical
evaluation of three software testing methods,” Int. j. syst. assur. eng.
manag., vol. 10, no. 6, pp. 1487-1504, 2019. https://doi.org/10.1007/s131

98-019-00899-2.

[12] M. Khari and P. Kumar, “An extensive evaluation of search-based
software testing: a review,” Soft Comput., vol. 23, no. 6, pp. 1933–1946,
2019. https://doi.org/10.1007/s00500-017-2906-y

[13] S. Sharma, L. Raja, and D. P. Bhatt, “Role of ontology in software
testing,” J. Inf. Optimiz. Sci., vol. 41, no. 2, pp. 641–649, 2020.
https://doi.org/10.1080/02522667.2020.1733196

[14] M. Qasim, A. Bibi, S. J. Hussain, N. Z. Jhanjhi, Mamoona Humayun, and
N. U. Sama, “Test case prioritization techniques in software regression
testing: An overview ,” International Journal of Advanced and Applied
Sciences, vol. 8, no. 5, pp. 107-121, 2021. https://doi.org/10.21833/ijaas.2

021.05.012

[15] T. Mårtensson, D. Ståhl, A. Martini, and J. Bosch, “Efficient and effective
exploratory testing of large-scale software systems,” J. Syst. Softw., vol.
174, no. 110890, p. 110890, 2021. https://doi.org/10.1016/j.jss.2020.1108

90.

[16] S. Ali, Y. Hafeez, S. Hussain, and S. Yang, “Enhanced regression testing
technique for agile software development and continuous integration
strategies,” Softw. Qual. J., vol. 28, no. 2, pp. 397–423, 2020.
https://doi.org/10.1007/s11219-019-09463-4

[17] K. Juhnke, M. Tichy, and F. Houdek, “Challenges concerning test case
specifications in automotive software testing: assessment of frequency
and criticality,” Softw. Qual. J., vol. 29, no. 1, pp. 39–100, 2021.
https://doi.org/10.1007/s11219-020-09523-0

[18] S. W. G. AbuSalim, R. Ibrahim, and J. A. Wahab, “Comparative analysis
of software testing techniques for mobile applications,” J. Phys. Conf.
Ser., vol. 1793, no. 1, p. 012036, 2021. https://doi.org/10.1088/1742-
6596/1793/1/012036

[19] D. Beyer, “First international competition on software testing,” Int. J.
Softw. Tools Technol. Transf., vol. 23, no. 6, pp. 833–846, 2021.
https://doi.org/10.1007/s10009-021-00613-3

A. KUMAR et al.: BW-TOPSIS: A HYBRID METHOD TO EVALUATE SOFTWARE TESTING TECHNIQUES 341

[20] P. Jung, S. Kang, and J. Lee, “Reducing redundant test executions in
software product line testing—A case study,” Electronics (Basel), vol. 11,
no. 7, p. 1165, 2022. https://doi.org/10.3390/electronics11071165

[21] C.L. Hwang, K. Yoon, Multiple Attribute Decision Making Methods and
Applications, Springer, Berlin Heidelberg, 1981. https://doi.org/10.1007/

978-3-642-48318-9.

[22] J. Rezaei, “Best-worst multi-criteria decision-making method,” Omega,
vol. 53, pp. 49–57, 2015. http://dx.doi.org/10.1016/j.omega.2014.11.009

Ajay Kumar is assistant professor with Department

of Information Technology, KIET Group of

Institutions, Delhi-NCR, Ghaziabad, India. He

received his master degree in CSE from National

Institute of Technical Teachers Training and
Research, Chandigarh. He has done his Bachelor of

Engineering degree in CSE from Dr. B. R. A

University Agra, Uttar Pradesh, India. His research
fields include software engineering, multi-criteria

decision-making, and machine learning.

Kamaldeep Kaur is Associate Professor with

University School of Information, Communication &

Technology, Guru Gobind Singh Indraprastha
University, Delhi, India. She received her doctorate

from Guru Gobind Singh Indraprastha University in

2016. Her research interests include Neural Networks,

Natural Language Processing and Software

Engineering. She is a lifetime member of Indian

Society of Technical Education. She has published
several research papers in Web of Science indexed

journals and IEEE conferences. She is In-charge of

IEEE Women in Engineering Chapter at University School of Information and
Communication Technology, Guru Gobind Singh Indraprastha University.

342 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 4, DECEMBER 2022

