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Abstract—Federated cloud interconnects small and medium-

sized cloud service providers for service enhancement to meet 

demand spikes. The service bartering technique in the federated 

cloud enables service providers to exchange their services. 

Selecting an optimal service provider to share services is 

challenging in the cloud federation. Agent-based and Reciprocal 

Resource Fairness (RRF) based models are used in the federated 

cloud for service selection. The agent-based model selects the best 

service provider using Quality of Service (quality of service). RRF 

model chooses fair service providers based on service providers' 

previous service contribution to the federation. However, the 

models mentioned above fail to address free rider and poor 

performer problems during the service provider selection process. 

To solve the above issue, we propose a Multi-criteria Service 

Selection (MCSS) algorithm for effectively selecting a service 

provider using quality of service, Performance-Cost Ratio (PCR), 

and RRF. Comprehensive case studies are conducted to prove the 

effectiveness of the proposed algorithm. Extensive simulation 

experiments are conducted to compare the proposed algorithm 

performance with the existing algorithm. The evaluation results 

demonstrated that MCSS provides 10% more services selection 

efficiency than Cloud Resource Bartering System (CRBS) and 

provides 16% more service selection efficiency than RPF. 

  Index terms—federated cloud, multi-factor service selection, 

multi-provider service selection, QoS, free rider. 

 

I.  INTRODUCTION 
 

Federated cloud has gained huge popularity among the Cloud 

Service Providers (CSPs) as it facilitates service sharing ability 

to meet dynamic demand. Small and medium-sized CSPs are 

unable to handle service requests efficiently due to the varying 

number of service request. CSPs have two solutions to handle 

the varying number of service request: (a) Increase the amount 

of available resources, (b) Reject the resource request. The 

solution (a) may lead to underutilization of resources, and the 

solution (b) affects the customer base of the service provider.  

Besides, both solutions (a) and (b) may affect the 

trustworthiness and reputation of the CSPs in the market.  
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Cloud federation interconnects service providers and 

aggregates unused services of the federation to meet dynamic 

demand. The small and medium-sized service providers join the 

federation to meet dynamic service demand. Cloud federation 

provides a monetary based solution to the problem mentioned 

above. However, monetary based service exchange is 

frightening for the CSPs with limited capital investment [1-3]. 

Bartering is a technique used to exchange services for other 

services without monetary benefits. Service bartering is an 

alternative to the monetary based service exchange that 

significantly increases CSPs’ service capacity and utilization [4, 

5]. Direct and indirect are the two service bartering trading 

methods. Both direct trade (peer to peer) and indirect trade 

(agent-based) are used in the federated cloud. Direct trade is 

provider to provider, and no third party is involved. Indirect 

trade is among multiple providers with the help of a third-party 

agent. Avoiding poor performers and free riders are significant 

challenges in the development of the service bartering-based 

system. QoS value determines service provider performance in 

service selection process. A poor performer is a CSP who has 

low QoS value. A free rider is a user who avails services but 

does not share services with others [6], [7]. 

Whitewasher is a CSP who utilizes the services of one service 

provider entirely but does not share any services. Majorly, 

reputation-based system and ring-based incentive mechanism 

were used to handle the white washer problem [8-10]. In 

reputation-based system and ring-based incentive mechanism, 

rating collection, information aggregation, source validation, 

recording performance, and calculating the reputation value of 

service providers create computational overhead. Resource 

contribution-based service selection method solves the free 

rider problem, but it selects poor performers. Additionally, 

many CSPs offer similar services that create challenges while 

selecting an optimal CSP [11]. For example, Amazon, IBM, 

Microsoft, and Google offer similar services like compute, 

storage, database, migration, mobile services, and analytics. 

Majority of the method fail to address problem of 

computational overhead, poor performer selection, 

whitewashing, and optimal service selection. 

The proposed MCSS system uses three parameters, such as 

QoS, PCR, and RRF, to select the best CSP for service sharing.  

QoS value is calculated from CSPs’ service history. PCR is the 

ratio between QoS of service provided and quoted service cost.  

RRF is the ratio between resources consumed and resources 

shared by the service provider. MCSS presents CSP selection 

algorithm that comprises of factors such as QoS, PCR, and 

RRF, which solves the problem of free riders, poor performer 

selection, whitewashing, and optimal service selection. MCSS 

selects the best CSP by neglecting poor performers and free 

riders.
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The significant contributions of the paper are outlined as 

follows: 

1. A novel multi-criteria service selection agent has been 

proposed for federated cloud. 

2. Multi-factor Service Selection (MFSS) algorithm and 

Multi-provider Service Selection (MPSS) algorithm 

have been implemented to select a service provider 

effectively 

3. Comprehensive case studies are conducted to prove the 

effectiveness of the proposed algorithm. 

4. The extensive simulation experiments are conducted to 

compare the proposed algorithm performance with 

existing algorithm. 

 

The rest of paper is organized as follows; section II discusses 

the related work of multi-criteria service selection agent for 

federated cloud. The proposed system and algorithm is 

described in section III. The proposed algorithm performance is 

evaluated using simple case study in section IV. Section V deals 

with performance evaluation, and section VI consists of the 

conclusion and future work. 

 

II.  RELATED WORKS 
 

Many service selection models have been proposed to solve 

free riders, whitewashers, poor performers, and optimal service 

selection problems in the federated cloud. Agent-based service 

selection, QoS-based service selection, and RRF-based service 

selection in peer-to-peer environment are discussed in 

subsections, respectively. 

 

A. Agent-based Service Selection 

An automated resource bartering system proposed by 

ZarAfshan Goher et al. [12] is a multi-agent e-bartering system 

that uses utility value to select services from available CSPs. 

The automated resource bartering system makes price 

adjustment based on utility values and prolongs free riders to 

consume services until they clear their previous debts. When a 

new provider joins federation, agent assigns zero to QoS 

parameter that causes starvation in the service provider 

selection process. The proposed model is not handling free 

riders. 

Agent-based e-barter system developed by Demirkol et al. 

[13] is a multi-agent e-bartering system that utilizes ontology-

based comparison for bid matching. The agent-based e-barter 

system performs service selection using consumers' maximum 

buying price, providers' maximum selling price, and their 

tolerance value (for negotiation). Also, the agent-based e-barter 

system makes a price adjustment. However, systems mentioned 

above fail to address free-riding, resource contribution, and 

whitewashing problems. 

Zhao et al. reported the service agent for simulation in cloud 

manufacturing. Cloud manufacturing application stage, 

administration agent can assist endeavors with discovering 

accomplices quicker with all the more precisely. Be that as it 

may, in the cloud producing reenactment stage, the 

administration agent can mimic the conduct of service, the plan 

of action, the administration procedure [14]. Al-Sayed et al. 

implemented the intelligent cloud service framework by 

considering functional and nonfunctional features of the cloud 

service providers to share the resource. Intelligent system as it 

applies most of the fundamental AI techniques, such as 

knowledge representation, knowledge inference, knowledge 

discovery, and NLP. The developed framework depends on a 

comprehensive cloud service ontology that has been 

constructed to provide a standardized semantic specification of 

services [15]. 

 

B. QoS-based Service Selection 

Ranking CSPs based on QoS attributes mentioned in the 

CSMIC Service Measurement Index (SMI) version 2.1 is a 

complex task as it has many KPIs, attributes, and sub-attributes. 

Zeleny [16] defined this problem as Multi-Criteria Decision 

Making (MCDM) problem. Moreover, Grguevic [17] has found 

that choice of MCDM techniques depends on the kind of service 

offered by CSPs. Context-aware cloud service selection 

approach implemented by Lie et al. [18] is a subjective and 

objective assessment system based on cloud providers’ QoS 

value. Service selection algorithm in multi-cloud environment 

proposed by Farokhi [19] is a Service Level Agreement (SLA) 

based service allocation method, which is suitable for SaaS. 

Service selection algorithm in a multi-cloud environment 

proposed by Farokhi et al. [20] is a prospect theory based 

service selection method that compares SLA while selecting a 

service provider.  Integrated multiple criteria decision-making 

method implemented by Kumar et al. [21] is an Analytical 

Hierarchical Process (AHP) and TOPSIS based service 

selection method.  SELCLOUD proposed by Jatoth et al. [22] 

is a hybrid service provider selection method that uses AHP, 

TOPSIS, and gray theory.  A Neutrosophic Multi-Criteria 

Decision Analysis (NMCDA) approach proposed by Abdel-

basset et al. [23] is a framework for evaluating CSPs’ QoS 

value.  The above-mentioned methods consider only QoS value 

for service selection that solves poor performer problem but 

fails to solve free rider, whitewasher, and optimal service 

selection. 

 

C. RRF-based Service Selection in Peer-to-Peer Environment  

RRF-based service selection systems select service providers 

by considering past service contribution [24], [25]. Zhang et al. 

[8] proposed a novel Cluster-Based Incentive Mechanism 

(CBIM) that provides incentives to the contributing service 

provider that solves free riding and whitewashing problems. 

However, the CBIM is suitable for the CSPs who consume a 

type of resource and shares another type of resource in the 

federation simultaneously.  The CBIM is not suitable for the 

CSPs who needs to consume resources when there is a demand, 

contributes resources in the near future and inversely. Falcao et 

al. [10], [24] proposed a Decentralized Fairness Driven 

Network of Favors (FD-NoF) model that focuses service 

contribution fairness based service selection in peer to peer 

service sharing. FD-NoF has high computational overhead 

because peers calculate and update fairness value, debit details 

for every transaction. 

Zhang et al. [26] implemented a lightweight reputation-based 

incentive system that gives solution to free riding.  Lightweight 

reputation-based incentive system computes simple reputation 

value and goodness factor based on local transaction data. Then, 
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the ultimate reputation value is calculated from the simple 

reputation value and goodness factor. Peers who have low 

ultimate reputation value in the suspect table are considered as 

cooperative peers, and others are considered as rational peers or 

malicious free riders. Lightweight reputation-based incentive 

system eliminates free-riding problems; however, the final 

decision is individual peer’s decision and not a collective one. 

RRF based resource selection approach is a multitenant 

cooperative system which is suitable for cooperative users but 

not suitable for federated cloud users The methods mentioned 

above are not automated bartering systems. Rosa et al. present 

the computational resource and cost prediction service for 

scientific workflows in federated clouds (CRCPs). CRCPs 

allows users to pick between high-performance, low-budget 

executions or to automatically and transparently define how 

much to pay and how long to complete a procedure [27]. 

Chauhan et al developed the broker-based resource allocation 

model for federated. Kumar et al discuss the performance-based 

risk driven trust secured service sharing in peer-to-peer 

federated cloud. This work mainly focusses on the secure 

service selection and it is not considering the free riding issues 

in the federated cloud [28], [29].  

In federated cloud, service selection deals with optimal 

service selection, free riding, whitewashing, and poor performer 

problems. The existing systems adopted two different 

approaches for service selection: a) QoS-based selection, and b) 

RRF-based selection. However, the approach (a) has free riding 

and whitewashing problems, and (b) has poor performer 

problem. The proposed MCSS algorithms select optimal CSPs 

by considering the QoS, PCR, and RRF. Besides, MFSS and 

MPSS algorithms solve free riding, whitewashing, and poor 

performer problems. Various models, discussed above consider 

the factors such as QoS, service contribution, and fairness 

individually while selecting services. The models do not 

consider a combination of these factors while selecting services. 

Additionally, none of the models discussed service distributions 

equitably if more than one service provider meets the service 

requirement. Our MCSS algorithms consider a combination of 

the factors while selecting the service provider and provides fair 

service selection efficiency than traditional methods. 

 

III.  MULTI-CRITERIA SERVICE SELECTION AGENT FOR 

FEDERATED CLOUD 
 

Cloud Federation indicates to the unionization of 

programming, framework and stage administrations from 

divergent organizations that can be gotten to by a customer 

through the web. It is vital to take note of that united distributed 

computing administrations actually depend on the presence of 

actual server farms. The union of cloud assets permits 

customers to upgrade venture IT administration conveyance. 

The league of cloud assets permits a customer to pick the best 

cloud administrations supplier, as far as adaptability, cost and 

accessibility of administrations, to meet a specific business or 

innovative need inside their association. Organization across 

various cloud asset pools permits applications to run in the most 

suitable foundation conditions. The union of cloud assets 

additionally permits a venture to disperse responsibilities all 

over the planet, move information between dissimilar 

organizations and execute creative security models for client 

admittance to cloud assets. 

One shortcoming that exists in the league of cloud assets is 

the trouble in expediting availability between a customer and a 

given outer cloud supplier, as they each have their own 

remarkable organization tending to plot. To determine this 

issue, cloud suppliers should give customers the authorization 

to indicate a tending to conspire for every server the cloud 

supplier has stretched out to the web. This furnishes clients with 

the capacity to get to cloud administrations without the 

requirement for reconfiguration when utilizing assets from 

various specialist organizations. Cloud league can likewise be 

carried out behind a firewall, furnishing customers with a menu 

of cloud administrations given by at least one confided in 

substances. 

We developed a multi-criteria service selection agent for 

federated cloud that performs optimal service selection by using 

QoS, performance-cost ratio, and reciprocal resource fairness 

value. 
 

A. Mathematical Preliminaries 

The list of mathematical terms used is given below for better 

understanding of the paper. 
TABLE I 

THE LIST OF MATHEMATICAL TERMS 

Symbol Description Symbol Description 

a cost adjust value av available service 

c service cost CSP cloud service provider set 

CSPs 
selected service 

provider 
d duration 

in number of instances n(S) 
number of service 

provider in s 

pcr performance cost ratio q qos value 
r required service rc service count 

rrf 
reciprocal resource 

fairness 
s csp score 

S 
service request 

satisfying provider set 
st service type 

wpcr 
weight of the 
performance cost ratio 

wq weight of the qos 

wrrf 
weight of the reciprocal 

resource fairness 

  

 

B. Service Selection Architecture 

Service selection architecture is shown in Fig. 1. consists of 

three components: CSPs, service selection agent, and service 

monitoring database. CSPs are service providers who share 

services to federation or consume services from federation. 

Service provider score calculation component calculates 

service provider’s score to rank services. Service provider score 

is calculated using equation 

 

CSP𝑖 . s = CSP𝑖 . q × 𝑤𝑞 + CSP𝑖 . pcr × wpcr 

 +CSP𝑖 . rrf × wrrf               (1) 

 

where CSPi is ith service provider where i = 1, 2… n, q – QoS, 

pcr – performance-cost ratio, rrf – reciprocal resource fairness, 

Wq, Wpcr, and Wrrf  are relative weight assigned to QoS, PCR, 

and RRF, respectively.  

The agent sort score in descending order and selects a high 

score service provider using the calculated score. Service 

aggregation and negotiation component do the service 
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negotiation and service aggregation if the required service is not 

available with one service provider. Otherwise, the agent 

eliminates top scored CSP from the list and selects next top 

scored CSP for service negotiation, and this step iterates till the 

service negotiation is successful. After the successful 

negotiation, service control is transferred to service requesting 

CSP. Service monitoring component monitors selected services' 

and records the performance in service monitoring database. 

Service history update component records complete transaction 

details in service monitoring database. 

 

 

Fig. 1. Service selection architecture 

 

 

C. Multi-factor Service Selection 

Multi-factor service selection (MFSS) makes the service 

provider selection using input attributes such as service type, 

QoS, number of instances, duration, service cost, and cost 

adjustment value. A registered CSP submits a service request to 

the federation to avail service. Agent executes MFSS algorithm 

to find best CSP that meet the submitted service requests. MFSS 

algorithm performs two functions service discovery and service 

selection. 
 

C.1 Multi-factor Service Discovery 

Service Discovery (SD) algorithm takes attributes in the 

service request as inputs and returns set of services (S) that 

satisfy the service request. Initially, S is an empty set containing 

no service. SD algorithm takes services from service database 

in sequential order to check service request is met or not. If 

service meets the service request, then the selected service is 

added to S and weighted score of the service is calculated using 

eq. (1).  Weighted sum technique is a widely used multi-factor 

decision-making technique for evaluating a number of 

alternatives.  Otherwise, service is not added to S. This process 

repeats for all the services exist in the service database. Finally, 

S contains a set of services that meets service request. 

 

Service_Discovery (CSP, r, in, q, d) 

Input:  r: required service 

 in: number of instances 

 q: QoS, d: duration 

 CSP: List of cloud service providers 

Output:  S: set of services satisfying r, in, q, and d  

 

Initialization S= ϕ; i=1; 

begin 

1. foreach (CSPi in CSP) do 

2.    if(CSPi.st == r^q<=CSPi.q ^ in<= CSPi.av ^ d<= CSPi.d) 

3.     CSPi.s=CSPi.q*wq+CSPi.pcr*wpcr+ CSPi.rrf*wrrf; 

4.     S = S U CSPi 

5. return S; 

end 
 

C.2 Service Selection 

MFSS has two sub-algorithms, namely SD and service 

selection algorithm. Initially, MFSS calls SD algorithm to find 

a set of matching services (S) for the given request. Next, MFSS 

calls the service selection algorithm to find the best service from 

the set S. Service selection algorithm performs two tests based 

on number of elements in the set S. When n(S) = 0, service 

selection algorithm returns failure and agent informs the failure 

to the requesting service provider. When n(S) > 0, service 

selection algorithm selects the service provider that has the 

highest weighted score in set S. If the cost of the service 

(CSPi.c) is less than or equal to cost of service (c) given in the 

request, then selected service provider is returned. Otherwise, 

price negotiation process starts. During the negotiation process, 

cost difference (CSPi.c – c) is calculated. If cost difference is 

less than or equal to service provider's cost adjustment value 

(CSPi.a) or cost adjustment value given in the service request, 

then negotiation succeeds, and the selected service provider is 

returned. Otherwise, the selected service provider is removed 

from the set S and repeat from step 2 of service selection 

algorithm. 

Service_selection (CSP, r, in, q, d, c, a) 

Input:  CSP: list of cloud service providers; 

 r: required service, in: number of instances; 

 q: QoS, d: duration, c: service cost; 

 a: cost adjustment value  

Output:  CSPi: selected service provider or a failure; 

begin 

1.  S = SD (CSP, r, in, q, d)); 

2.  if ( n(S) == 0)  return failure; 

3.  else 

4.       i=findMaxIndex(CSP[].s); 

5.       if ( CSPi.c <= c)  return CSPi; 

6.       else  

7.  if (CSPi.a >= CSPi.c – c ˅ a >= CSPi.c – c) 

8.        return CSPi; 

9.   else 

10.        S = S – CSPi;  

11.        repeat step2; 

end 

 

D. Multi-provider Service Selection 

Multi-provider service selection (MPSS) is called, when one 

service provider of the federation does not have sufficient 

services to meet the submitted service requests. MPSS 

aggregates services from multiple service provider of the 

federation to meet the submitted service requests. 
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D.1 Multi-provider Service Discovery 

The submitted service request has multiple attributes such as 

service type, QoS, number of instances, duration, service cost, 

and cost adjustment value.  Service Discovery1 (SD1) 

algorithm takes all attributes in the service request as inputs 

except number of instances required (in) and returns set of 

services (S) that satisfy the service request.  Initially, S is an 

empty set containing no service. SD1 algorithm takes services 

from service database in sequential order to check service 

request is met or not.  If service meets the service request, then 

the selected service is added to S and weighted score of the 

service is calculated using eq. (1). Otherwise, service is not 

added to S. This process repeats for all the services that exist in 

the service database. Finally, S contains a set of services that 

meet all attributes except the number of instances required. 
 

Service_Discovery_1 (CSP, r, q, d) 

Input:  r: required service; 

 q: QoS, d: duration; 

Output:  S: List of services satisfying r, q, and d 

 

Initialization S= ϕ; i=1; 

begin 

1. foreach (CSPi in CSP) do 

2.    if(CSPi.st == r ^ q<=CSPi.q ^ d<= CSPi.d) 

3.       CSPi.s=CSPi.q*wq+ CSPi.pcr*wpcr+ CSPi.rrf*wrrf; 

4.       S = S U CSPi 

5. return S; 

end 
 

D.2 Service Selection 

Service_selection_1 algorithm executes three functions 

orderly to select a set of service providers for the given service 

request that is shown in Fig. 2. Firstly, service selection1 

algorithm executes service discovery by calling SD1 algorithm 

to find matching services (S) for the given request.  

 

Fig. 2. State diagram for service selection algorithm 1 

 

Secondly, Service_selection_1 algorithm examines the 

number of elements in the set S. When n(S) = 0, service 

selection1 algorithm returns failure and agent informs the 

failure to the requesting service provider.  When n(S) > 0, 

service selection algorithm1 selects the service provider that has 

the highest weighted score in set S.  

Thirdly, service selection1 algorithm checks the number of 

instances required (in) from the service request. If instances 

required is 0, then service selection1 algorithm returns a set of 

service providers (CSPs). Otherwise, service selection1 

algorithm verifies the service cost with service cost given in the 

request. Next, service selection1 algorithm goes for the price 

negotiation process when the service cost is higher than the 

service cost given in the request. Finally, MPSS examines the 

criteria (a) and (b). (a) If the service cost is less than or equal to 

service cost given in the request or price negotiation process 

succeeds then CSPi is added to CSPs. Subsequently, MPSS 

updates the instance count details in the service database, and 

CSPi is removed from the set S.  (b) If the price negotiation 

process fails in the third step, CSPi is removed from the set S. 

This process continues till the service selection algorithm 

returns either set of service providers for the given request or 

failure. 
 

Service_selection_1 (CSP, r, in, q, d, c, a) 

Input:  r: required service; 

 in: number of instances; 

 q: QoS, d: duration; 

 c: resource cost, a: cost adjustment value; 

 CSP: list of cloud service providers; 

Output:  CSPs: selected service provider set or a failure; 

begin 

1.  CSPs = ϕ; 

2.  S:= Discovery (CSP, r, in, q, d)) 

3.  if ( n(S) == 0) 

4.   return failure; 

5.  else 

6.   i=findMaxIndex(CSP[].s); 

7.   if (in >0) 

8.   if (CSPi.c > c) 

9.   if (CSPi.a >= CSPi.c – c ˅ a >= CSPi.c – c) 

10.   CSPs = CSPs U CSPi; 

11.   if (in >= CSPi.a) 

12.    in = in – CSPi.a;   

13.   CSPi.rc = CSPi.a; 

14.   CSPi.a=0; 

15.   S = S - CSPi; 

16.   else  

17.    CSPi.a = CSPi.a – in; 

18.   CSPi.rc = in; 

19.   in = 0;    

 else 

20.  S:= S – CSPi;  

21.   repeat step3; 

22.   else 

23.   CSPs = CSPs U CSPi; 

24.   if (in >= CSPi.a) 

25.   in = in – CSPi.a; 

26.   CSPi.rc = CSPi.a; 

27.  CSPi.a=0; 

28.  S = S - CSPi; 

29.   else  

30.  CSPi.a = CSPi.a – in; 

31.  CSPi.rc = in; 

32.  in = 0; 

33.  else 

34.  return CSPs; 

end 

IV. CASE STUDY: CSP SELECTION USING MCSS 

Consider CSP1, CSP2 … and CSP10 have advertised their 

service (VM) sharing details with the federation, which is given 

in Table II. Agent at federation maintains CSPs’ service sharing 

details in the service database. Agent calculates service 

providers' QoS, PCR, and RRF values using the weighted sum 

method [30]. The calculated CSPs' QoS, PCR, and RRF values   
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TABLE II 
CSPS SERVICE SHARING DETAILS 

 

CSP / 
Service 

details 

Instance details Cost   

Small 

Instance 

cost /hour 

(in $) 

Duration 

(in days) 
Medium 

Instance 

cost/hour 

(in $) 

Duration 

(in days) 
Large 

Instance 

cost / hour 

(in $) 

Duration 

(in days) 

X-

large 

Instance 

cost / hour 

(in $) 

Duration 

(in days) 

adj.   

(in 

%) 

CSP1 200 0.191 60 80 0.367 30 22 0.739 45 2 1.498 90 10 

CSP2 415 0.192 45 60 0.369 45 10 0.743 90 4 1.506 30 5 

CSP3 50 0.191 30 78 0.367 60 24 0.739 60 5 1.498 60 12 

CSP4 130 0.193 30 30 0.371 45 16 0.747 60 3 1.514 30 10 

CSP5 260 0.192 60 20 0.369 30 12 0.743 45 6 1.506 45 18 

CSP6 75 0.191 75 42 0.367 45 18 0.739 30 5 1.498 90 10 

CSP7 20 0.191 60 60 0.367 30 6 0.739 60 0 1.498 45 12 

CSP8 360 0.193 90 85 0.371 30 15 0.747 60 7 1.514 75 12 

CSP9 30 0.194 30 55 0.373 45 0 0.751 90 3 1.522 45 10 

CSP10 80 0.188 30 100 0.361 60 4 0.727 45 8 1.474 60 12 

 

 

 
TABLE III 

CSPS’ QOS, PCR, AND RRF DETAILS 

 

CSP / 

Year 

CY CYM1 CYM2 CYM3 Weighted Sum 

QoS PCR RRF QoS PCR RRF QoS PCR RRF QoS PCR RRF QoS PCR RRF 

CSP1 89.95 470.95 121.67 87.35 457.33 108.89 71.91 376.49 88.89 87.33 457.23 95.56 85.30 446.60 108.67 

CSP2 67.60 352.08 101.25 69.63 362.65 108.57 69.73 363.18 91.43 68.60 357.29 91.43 68.73 357.99 100.50 

CSP3 87.72 459.27 115.38 86.63 453.56 109.30 89.47 468.43 90.70 89.99 471.15 104.88 87.97 460.58 107.57 

CSP4 96.90 502.07 80.00 90.34 468.08 85.71 99.95 517.88 100.00 94.37 488.96 93.62 95.29 493.73 87.08 

CSP5 66.86 348.25 90.00 68.46 356.56 110.00 64.44 335.63 105.00 65.91 343.28 95.00 66.76 347.72 99.50 

CSP6 82.24 430.59 115.00 84.41 441.94 90.00 80.31 420.47 106.45 81.11 424.66 90.00 82.39 431.38 103.29 

CSP7 72.42 379.18 116.67 74.77 391.47 106.25 73.76 386.18 106.12 73.45 384.55 96.08 73.50 384.80 109.37 

CSP8 77.44 401.24 89.29 79.98 414.40 93.75 79.35 411.14 105.41 80.45 416.84 121.21 78.88 408.73 97.04 

CSP9 92.83 478.50 75.00 88.63 456.86 82.05 90.55 466.75 107.14 91.91 473.76 110.34 91.02 469.19 87.08 

CSP10 86.12 458.08 80.00 88.55 471.01 120.00 89.19 474.41 110.00 88.99 473.35 142.86 87.75 466.75 104.29 

 
 

 

TABLE IV 
VIRTUAL MACHINE CONFIGURATION DETAILS 

 

Specification 
Virtual machine configuration 

Micro Small Medium Large X-Large 

RAM 1 - 4 GigB 4 - 8 GiB 8 - 16 GiB 16 - 32 GiB 32 - 64 GiB 

Storage Space 20 – 60 GB 80 – 240 GB 320 – 800 GB 1 – 1.5 TB 2 TB 

VCPUs 1 1 - 2 1 - 4 2 - 8 4 - 16 
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are given in Table III. VM standard instance configuration 

details are given in Table IV. 

Let’s assume a CSP in federation submits a service request 

as <X- large, 4, 80, 45 days, $1.35, 5>. Firstly, the agent 

executes SD algorithm and selects CSP3, CSP6, and CSP10 that 

meets the given service request and rejects CSP1, CSP2, CSP4, 

CSP5, CSP7, CSP8, and CSP9 that do not meet the given 

service request. Reason for rejecting service providers CSP1, 

CSP2, CSP4, CSP5, CSP7, CSP8, and CSP9 is given in Table 

V.  
TABLE V 

SERVICE PROVIDER REJECTION SET 

Service Provider Reason for rejection 

CSP1 Insufficient instances 

 CSP2 Duration did not match 

CSP4 Insufficient instances 

CSP5 QoS value did not match 

CSP7 Insufficient instances 

CSP8 QoS value did not match 

CSP9 Insufficient instances 

 

The selected service provider set (S) details are shown in 

Table VI. SD algorithm uses a relative weight-based score 

calculation method to rank service providers in the set S that is 

given in Eq. (1). Let us consider relative weight assigned for 

QoS, PCR, and RRF are 0.4, 0.3, and 0.3, respectively. 

 
TABLE VI 

SERVICE PROVIDER SELECTION SET (S) 

CSP / 

Service 
details 

X-

Large 

Instance 

cost/hour  
(in $) 

Duration 

(in days) 

Cost adj. 

(in %) 
QoS PCR RRF 

CSP3 5 1.498 60 12 87.97 460.58 107.57 

CSP6 5 1.498 90 10 82.39 431.38 103.29 

CSP10 8 1.474 60 12 87.75 466.75 104.29 

 

 Service providers in set S are arranged as per the calculated 

score that is shown in Table VII. 

 
TABLE VII 

SERVICE PROVIDERS’ SCORE 

CSP / Service details QoS PCR RRF Score 

CSP10 87.75 466.75 104.29 206.41 

CSP3 87.97 460.58 107.57 205.63 

CSP6 82.39 431.38 103.29 193.36 

 

V. PERFORMANCE EVALUATIONS 
 

The simulation environment was made to evaluate the 

efficacy of the MCSS algorithm. The results of the simulation 

of MCSS are compared against two popular techniques: (a) 

Cloud Resource Bartering System (CRBS) and (b) RRF. 
 

A. Evaluation Setup 

Federated cloud environment was created using 

CloudSim4.0. We have used Simulated Cloud Service QoS 

Dataset, the dataset used for this simulation experiments were 

based on SMI attributes [31-35]. The data values were 

synthesized based on quantitative attributes such as response 

time, cost, and availability. The datasets were prepared 

according to the dataset used in the existing federated cloud 

literature. On every dataset, iterative evaluations were 

conducted to find the performance of MCSS.  

The entire dataset was divided into two sets. The first set 

contains service advertisement details, and the second set 

contains service request details. Datasets were further 

categorized into micro, small, medium, and large classes. Micro 

datasets contain 25 service providers whereas small, medium 

and large contain 50, 100 and 150 respectively. Dataset 

categorization aimed to produce test cases that calculate MCSS 

performance under different conditions. First, test cases were 

executed on MCSS, and the outcome was logged.   

 

B. Comparative Methods 

The proposed method performance analyzed with the 

existing methods, such Cloud Resource Bartering System 

(CRBS) and Reciprocal Resource Fairness (RRF) and each 

work is discussed in detail as follows: 

Cloud Resource Bartering System (CRBS): It dynamically 

extends the capacity of cloud providers. It encourages cloud 

providers to work together to meet spikes in resource demand. 

It increases overall service availability without requiring 

additional infrastructure. 

Reciprocal Resource Fairness (RRF):  RRF is a revolutionary 

resource allocation technique that allows numerous tenants in 

new-generation cloud systems to share several types of 

resources fairly. Inter-tenant resource trading and intra-tenant 

weight adjustment are two complimentary and hierarchical 

strategies for resource sharing that RRF provides. 

 

C. Handling Free Riders 

Free-riders can take a number of steps to get around the 

barriers that are in the way of their activities while also 

maximizing resource consumption in the ecosystem. 

Identifying and studying these behaviors can aid in the 

development of anti-free-rider systems. The existence of an 

uncooperative service provider who does not follow federation 

guidelines and increase his revenue affects trust in the 

federation. Free riders are selfish service providers focusing 

only on revenue generation, as discussed in section 1. Service 

provider selection in CRBS is based on their QoS value, but 

frequently free riders get selected in this method.  

MCSS agent maintains service contribution and service 

consumption history of all the registered service providers. 

Additionally, MCSS employs QoS, PCR, and RRF as service 

selection factors for selecting a service provider. A service 

provider who has low RRF value gets an overall low score in 

service provider score calculation. Service providers with low 

score are rarely get selected during service provider selection.  

RRF is one of the selection criteria to avoid free riders. In order 

to get selected for service sharing at the federation, the 

corresponding service provider has to improve RRF (service 

contribution and service consumption) value.   

In the dataset, a random number of free riders were included 

to verify the MCSS performance against the free riders. Two 

distinct sets of experiments were conducted to test the 

efficiency of MCSS. In the first experiment, the number of 
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service request was fixed as 100, whereas the number of service 

providers was varied as 25, 50, 75, and 100. Among 100 service 

requests, 80 requests are made by genuine service providers, 

and 20 requests are made by free riders. In the second 

experiment, the number of service request was changed as 25, 

50, 100, and 150, whereas the service providers made fixed as 

50.  

The evaluation results proved that CRBS permits a 

considerable number of free riders to avail services from the 

federation (shown in Fig. 3, and Fig. 5). MCSS rarely permits 

free riders to consume services from federation (shown in Fig. 

4 and Fig. 6). Preventing free riders created a significant impact 

on the number of successful transactions; however, preventing 

free riders made enough service availability for genuine service 

providers.  
 

 

Fig. 3. Free riders’ prevention in CRBS (No. of service request fixed as 100) 

 

 
 
Fig. 4. Free riders’ prevention in MCSS (No. of service request fixed as 100) 

 

 
 
Fig. 5. Free riders’ prevention in CRBS (No. of service provider fixed as 50) 

 

 
Fig. 6. Free riders’ prevention in MCSS (No. of service provider fixed as 50) 

 

D. Handling Poor Performing Service Providers 

The presence of poor-performing service providers in 

federation affects its reputation. In RRF, a service provider can 

acquire services from federation based on their service 

contribution. Selecting service providers based on RRF value 

selects a poorly performing service provider. In MCSS, Service 

provider score calculation takes three factors such as QoS, PCR, 

and RRF while calculating service provider weighted score. 

Service provider having low QoS value gets a low score in the 

score calculation. Score based service selection provides more 

chances to the high scored service provider at the same time 

provides less chance to the low scored service providers. 

Service providers should improve their QoS, PCR, and RRF 

value to get an increased score. Selection of service provider 

based on multiple factors eliminates poor performer selections.  

 

 

Fig. 7. Poor performers negotiation in RRF (Number of service request fixed as 100) 

In the dataset, a random number of poor performers were 

included to verify the MCSS performance against the poor 

performer selection problem. Two distinct sets of experiments 

were conducted to test the efficiency of MCSS discussed in 

Section 5.2. Test cases were executed on CRBS, and results 

were recorded. The same set of test cases was executed on 

MCSS, and results were recorded for comparative studies. The 

evaluation results showed that MCSS rarely selects poor 

performing service provider that is shown in Fig. 7, and Fig. 9. 

Whereas RRF based service selection selects a considerable 

number of poor performers in service selection that is shown in 

Fig. 8 and Fig 10. 
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Fig. 8. Poor performers negotiation in MCSS (No. of service request fixed as 100) 

 

Fig. 9. Poor performers negotiation in RRF (No. of service provider fixed as 50) 

 

Fig. 10. Poor performers negotiation in MCSS (No. of service provider fixed 

as 50) 

 

E. Service Selection Ability 

Service selection ability of agent-based systems is 

determined by the number of genuine providers' transactions. 

Many test cases were prepared to determine the ability of MCSS 

under different conditions.  In the first experiment, the number 

of service providers in the federation was fixed as 25, and 

service requests were given as 25, 50, 100, and 150. In the 

second experiment, the number of service request was fixed as 

25, and service providers were set as 25, 50, 75, and 100.   

The performance of MCSS for a fixed number of service 

providers against the variable number of service requests was 

recorded.  Similarly, the performance of MCSS for a fixed 

number of service requests against the variable number of 

service providers was recorded. The same set experiments were 

conducted on CRBS and RRF based systems, and the results 

were recorded. The experiment results demonstrated that 

service selection ability of MCSS outperformed CRBS and 

RRF based systems. Also, the service selection efficiency of 

MCSS was not decreasing when increasing the number of 

service requests. Whereas, service selection efficiency of CRBS 

and RRF based systems were decreasing when increasing 

number of service requests. The comparison of MCSS, CRBS, 

and RRF based systems is given in Fig. 11. 

 

 
Fig. 11. Comparison of service selection efficiency 

F. Average Service Cost 

Request making service provider gets satisfied when selected 

service cost is lesser. An effective service matching system 

matches services at a lesser cost. Average service cost is taken 

as an evaluation parameter to evaluate low-cost service 

matching ability of the MCSS system. MCSS' successful 

transactions average cost was calculated for 25, 50, 100, and 

150 service requests. Besides, CRBS' and RRF' successful 

transactions average cost was calculated for the same number 

of service requests. Average service cost comparison proved 

that the average cost of MCSS' transactions were less than the 

average cost of CRBS' and RRF' transactions. Also, CRBS' and 

RRF' average cost were fluctuating whereas MCSS' cost was 

steady, that is shown in Fig. 12. 

 

 

Fig. 12. Comparison of selected service average cost 

VI. CONCLUSION AND FUTURE DIRECTION 

 

Multi-criteria Service Selection (MCSS) has been used to 

select a service provider effectively in the federated cloud 

environment. MCSS system uses QoS, Performance-Cost Ratio 
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(PCR), and RRF values for selecting service providers. 

Reciprocal resource fairness ensures that service providers 

actively participate in federation. MCSS handles non-

cooperative providers such as free rider, poor performers, and 

white washer very effectively by selecting service providers 

with good QoS, PCR, and RRF value than the traditional 

algorithm. Service selection efficiency of MCSS is high 

compared to the existing CRBS and RRF based systems. MCSS 

selects low-cost services, whereas CRBS and RRF based 

systems select high-cost services. 

MCSS algorithms suggested deal with service requests that 

only include one service type at a time. In the future, these 

algorithms may be expanded to handle service requests that 

combine numerous service types into a single request. Another 

research might be conducted with the goal of dynamically 

balancing service charges based on the services provided in the 

federation. Dynamically balancing service charges may 

incentivize service providers to supply additional services while 

also preventing free riding issues. Data analytics services may 

be used to forecast service provider behavior and weed out non-

cooperative service providers. Data analytics may also be used 

to forecast service demand increases. 
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