
Security Incident Response Automation for xPON
Networks

Vaclav Oujezsky, Tomas Horvath, and Martin Holik

Abstract—This paper presents a developed tool for automated
security incident reporting in passive optical networks. This tool
interacts with our programmable development card, developed
detection modules, and TheHive project. The custom imple-
mentation of the solution has resulted in anomaly reporting
templates for xPON networks that can be universally applied
and new definitions of indicators of compromise. The custom
implementation consists of a collector and middleware layer
between the programmable card and Apache Kafka.

Index Terms—Automation, CERT, Incidents, Reports, SIRAP,
Tool.

I. INTRODUCTION

THE constant need to respond to network incidents in real-
time has led many security teams and vendors to develop

comprehensive security incident reporting systems to respond
effectively. In the past, systems were decentralized, and there
were no definitions of critical infrastructure. Later, a need to
deal with events in critical networks arose. This approach is
the only way to defend against an ever-increasing number of
network attacks. Gradually, modes of standard communication
and formats of transmitted messages are beginning to emerge.

With the increasing popularity of PONs (Passive Optical
Networks), there is a growing risk that attackers would target
these networks or active elements of a given infrastructure.
The problem of potential security incidents has currently been
primarily addressed only at the level of ethernet networks.
Internet providers, however, should be able to respond to
security incidents already in access or metropolitan networks,
which may also be vulnerable to cyber-attacks. So far, the
possibilities in this area are minimal. The standards defining
PONs serve only as recommendations and assume a certain
level of security based on the nature of the technology and
the transmission medium.

Nevertheless, these networks are no exception. Currently,
several security risks have already been identified and doc-
umented. Thus, the reason to manage and analyze security
events in passive optical networks is substantiated. Available
tools that enable real-time analysis of PON networks are lim-
ited. The main objective of this paper is to present a designed

Manuscript received April 5, 2022; revised April 11, 2022. Date of
publication April 25, 2022. Date of current version April 25, 2022.

V. Oujezsky, T. Horvath and M. Holik are with the Department of
Telecommunication, Brno University of Technology, Technicka 12, 616 00
Brno, Czech Republic. T. Horvath is also with the Department of Optical
Networks, CESNET a.l.e., Zikova 4, 160 00 Prague, Czech Republic (e-mails:
oujezsky@vut.cz; horvath@vut.cz; xholik11@vutbr.cz).

Digital Object Identifier (DOI): 10.24138/jcomss-2022-0033

OLT

ONU

ONU

ONUsplitter

1:64

FPGA

FPGA card

PCIe

Parser

Apps

Fig. 1. The basic components of the system.

and implemented automatic reporting system of security events
from PONs, based on an evaluation of currently available
options for reporting such events in general.

Today’s analyzers, probes, and IDSs (Intrusion Detection
Systems) for online services are primarily Ethernet-based. We
are working with G.984 [1] and, at present, 10gigabit-capable
passive optical network (XG-PON ITU-T G.987). To build a
security system, we identified several potential security risks
of the PON network, and these are the basis of the developed
automated report.

To detect security vulnerabilities in a PON network, we
use a system that we have developed within the project. The
article’s main contribution concerns the custom implemen-
tation of the so-called SIRAP (Security Incident Response
Automation tool for xPON network), a novelty system de-
signed to report security incidents automatically from the
PON network perspective. We also present new definitions of
indicators of compromise and compositions of template types
for automated reports that are part of our solutions. We have
introduced the details about all the inter-operable components
of the entire system in [2]–[6]. We use our FPGA (Field
Programmable Gate Array) network card developed by our
team in cooperation with [7]. This card is connected to the
laboratory PON network, see Figure 1. We have developed
two types of the card. One type is as a standalone solution
forwarding traffic from connected splitter to the development
server equipped with Myricom adapter via crafted UDP (User
Datagram Protocol) frame and the newest second type plugged
directly into the development server with PCIe (Peripheral
Component Interconnect Express). This card forwards traffic
(PON frames) from the splitter to the development server via
PCIe. The development server then contains a software frame
parser and applications (modules) for traffic analysis. These

144 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

1845-6421/06/2022-0033 © 2022 CCIS



OLTTransport
network

Ethernet
frame

GPON
frame

ONU

ONU

ONUsplitter
1:64

Message, etc

FTTHTerminating point
Web Apps

DoS
Rogue ONU

Fiber
issue

MGMT
DC

CW laser

Fig. 2. Security risks in GPON network.

components are also described in our previous publications.
We obtain outputs from this system in terms of detected
security problems in the optical network, and we store reported
incidents in Apache Kafka [8] using our message format.
Then the events are processed using custom-defined templates
for optical networks and SIRAP. Reports are created and
sent to TheHive [9] using the API (Application Programming
Interface).

The rest of this paper is structured as follows. Section II.
provides an overview of related works, and our motivation and
notes some shortcomings in the PON network analysis. Section
III. discusses the details of the design of the Security Incident
Response Automation tool for the xPON network and the
concept of interconnected sub-modules. Section IV. presents
the implementation of custom definitions and templates for
automatically reporting security events in optical networks,
including new security event definitions. The main sections of
the source code and diagrams are provided for clarity. Section
V. summarizes the functional testing of the proposed solution.
Then Section VI. discusses the proposed solution and describes
the advantages, disadvantages, and limitations. The conclusion
summarizes our achievements and our future plans.

II. THE STATE OF THE ART AND MOTIVATION

Our motivation consists of two aspects. The first aspect is
the security risks in PON networks, and the second aspect is
the existence of a security tool for PON networks to detect
and analyze security risks.

A. Security Risks in PON Networks

The security features specified by the standards for the PON
network are based on the assumptions that gaining physical
access to the optical medium is difficult for an attacker,
and eavesdropping on the signal is not a trivial task. Uplink
transmission in the two-direction communication of the PON
network is therefore considered secure. However, this may not
always be true in a real environment. Splitters are commonly
installed, for example, in basements where they are not further
secured [10]. If some of the ports on the splitter are free, an
attacker can easily connect to the network; otherwise, it is
enough to disconnect a legitimate user from the network and
connect an attacker’s device. Several known types of security
risks should not be ignored within PON networks. Figure 2
presents some of the security weaknesses of GPON (Gigabit
Capable Passive Optical Network).

Passive intercept in xPON networks is due to the nature
of the communication. The data in the downlink direction are
broadcasted [11], and modified ONU (Optical Network Unit)
in promiscuous mode (Rogue ONU) can intercept all commu-
nications in the downlink direction. Other optical detectors can
also intercept this communication, but the intercepted signal
must be further processed [12]. The actual implementation
of the interception then depends only on the access to the
network, e.g., by using a free connector in a splitter. Modified
ONUs represent one of the most significant security risks
in the xPON network. For example, they can be used for
attacks such as TOS (Theft of Service), Masquerade, or Reply
Attack [13]. Detecting these modified units in the network
is challenging. The standard [14] generally addresses the
principles and techniques that should be in place for the
detection, isolation, and mitigation of these units.

DoS (Denial of Service) attacks make a network service
unavailable to legitimate users. The blocking of upstream
communication occurs when an ONU transmits outside of its
allocated time slots. The root cause of a DoS attack also can be
a hardware or software malfunction of an ONU. However, an
attacker can deliberately modify an ONU to transmit continu-
ously on a given wavelength and with sufficient transmit power
to block the communication of other ONUs. The attack can be
realized with a sufficiently powerful laser beam source [15].
Testing of the attack has been performed [16], and the results
prove that with a sufficiently powerful laser source capable
of transmitting at the exact wavelengths, the attacker can
block the communication successfully. The OLT (Optical Line
Termination) can detect the interfering signal, but there is
no adequate protection against the attack. Due to the passive
network, it is impossible to accurately identify the source of
the interference and distinguish the disturbance from a targeted
attack.

Both ONU and OLT are targets of attacks. The implemen-
tation of the PON protocol is not unified, and the firmware
of devices from different manufacturers may be programmed
contradictorily. Thus, such devices may contain security weak-
nesses. For example, the vpnMentor server published two
critical vulnerabilities in DASAN home GPON routers in
2018 [17]. These vulnerabilities are CVE-2018-10561 and
CVE-2018-10562. Exploiting a combination of these vulnera-
bilities allows an attacker to bypass authentication altogether
for device management access and subsequent malicious code
execution using RCE (Remote Code Execution). Specific ex-
ploits are then available, at an example in the Exploit Database.
The most recent contribution is code enabling RCE targeting
home PON routers, published in 2021 [18].

As part of our research, we also investigated how an attacker
could exploit exposed ONUs on the Internet, as well as
their “Web App” interfaces, and how it would be possible
to paralyze an internal network [19]. We focused on PLOAM
(Physical Layer Operation Administration and Maintenance)
messages used in the management communication between
OLT and ONU. These messages are used to transmit control
and monitoring instructions between the OLT and the ONU.
We found that some vendors do not follow the standard,
and thus, undefined messages are present in these PLOAM

V. OUJEZSKY et al.: SECURITY INCIDENT RESPONSE AUTOMATION FOR XPON NETWORKS 145



messages [20].
The attack can be automated, where a modified ONU can

be programmed in such a way to send a message to the
OLT to perform an action upon receiving instruction on the
ONU Web App interface from a CC (Command and Control
Center). For example, OLT is instructed to configure a bridge
between the management and the user network. Thus, such
configuration may provide the attacker direct access to the
operator’s management network.

Our motivation is based on the abovementioned security
risks. We need an automated tool for reporting security risks
for PON networks, not only for TCP/IP-based (Transmission
Control Protocol/Internet Protocol) networks.

B. Tools for Processing Security Incidents

Security teams use a variety of tools to detect and resolve
incidents. There is no single standard that mandates the use
of specific tools, and it depends on the variety of individual
teams’ decisions. However, organizations such as ENISA (Eu-
ropean Union Agency for Cybersecurity) or NIST (National
Institute of Standards and Technology) provide teams with
specific recommendations and procedures. The tools can be
divided into a few general categories, including IDS (Intrusion
Detection Systems), IPS (Intrusion Prevention Systems), SIEM
(Security Information and Event Management), and SOAR
(Security Orchestration, Automation and Response).

IDS systems analyze and monitor network traffic based
on known signatures or anomalies. IPS systems extend the
functionality of IDS with the possibility of actively blocking
and filtering traffic. Then, both IDS and IPS systems generate
notifications for further analysis. SIEM systems aggregate and
analyze data obtained from various network or system logs.
They also use machine learning for the analysis. The IDS
builds a predictive model (i.e., a classifier) to differentiate
between intrusion or attacks and regular connections. For
example, the SIEM comes with prebuilt machine learning for
anomaly detection to automatically detect host and network
anomalies. Therefore, potential threats can be identified, and
alarms can be automatically generated based on this data.
SOAR systems collect and centralize data and alarms from
different sources. Such an approach enables a holistic view
of an ongoing event. They usually integrate additional tools
to streamline the incident analysis and the resolution process.
They also allow some of the processes to be automated.

The individual tools work with IoC (Indicators of Com-
promise), forensic data discovered during network or system
monitoring indicating potential intrusion or malicious activity.
In general, these can be, for example, IP addresses, malware
signatures, domain names, malware file hashes, and more [21].
Another example can be unusual activities such as data found
in system log entries, unusual network traffic, bundles of data
in the wrong place, signs of DDoS (Distributed Denial of
Service) activity, etc. IoCs are not defined for PON networks.
According to our findings, most systems are designed for
TCP/IP networks, but little attention is paid to the optical
access network. For example, based on the detection of non-
standard PLOAM messages we have found, these particular

FPGA

DMA Parser

Apache Kafka

MongoDB

Data analysis

SIRAP

TheHive (MISP, Cortex)

Stream

JSON

Queue of data
collections

API reports

Apache Kafka

Fig. 3. The diagram of the individual parts of the solution.

messages could be considered as IoCs. We propose this
one and several possible IoC to be used for PON system
automation and monitoring.

III. PROPOSAL OF THE SIRAP

SIRAP, as we call it, consists of an API design and parts
that provide a collection and analysis of reports from PON
networks. The SIRAP also uses modules that connect it to
existing incident reporting tools. Still, these are primarily
designed for ethernet networks. Therefore, it is also necessary
to create new and specific IoC identifiers. The SIRAP is a
middleware between the rest of our modules’ processing data
and tools used for reporting.

As mentioned in the introduction, we use our developed
FPGA card for data acquisition, already available for com-
mercial use [7]. The Figure 3 shows the cooperation of the
individual parts of the whole system with the SIRAP module,
which is the subject of this paper. The rest of the components
were presented in [2]–[6], [22].

For a better overview, we introduce the basic concept of
each interconnected module with the SIRAP. The FPGA card
plugged into the PCIe slot of the development server transfers
frames from the optical network (downlink and uplink direc-
tion) to the server’s DMA (Direct Memory Access). The frame
parser we designed and developed in C# formats the received
frames according to the frame fields and stores them for further
processing in the MongoDB database and for direct analysis,
which is also in Apache Kafka. The data analysis module is
based on TensorFlow, meaning that it is a TensorFlow detector.
The analysis of the frames focuses on two areas of the audit:

• syntax verification – examining the message to see if
it complies with the standard, verification of each field
content in GPON header, and whether or not it is similar
to patterns from baseline traffic. We use OneClassSVM
and the autoencoder.

• sequence verification – controls the continuity of individ-
ual messages and the content of respective fields between

146 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022



messages, as well as the analysis of patterns found
in message sequences verifying whether the analyzed
protocol uses the same message in the same order and
with similar content. We use LSTM (Long Short-term
Memory) and the autoencoder.

After the detection module analysis, this module sends the
identified events to Apache Kafka. It reads SIRAP events and
formats the messages according to the developed templates
before sending them to the API’s event reporting system.

After evaluating the available options, the TheHive project
is selected for the subsequent implementation into our solution
as an endpoint for reporting security incidents – specifically,
a version of the system designated as TheHive4 [9]. The
main selection criteria are the possibility of creating custom
indicators and a solid connection with MISP (Malware Infor-
mation Sharing Platform) and Cortex systems [23]. With the
ability to create custom indicators, data types can be defined.
The advantage of the connection with the MISP system is
the easy sharing of IoCs, both internally and between other
security teams. The system is currently widely used by several
organizations, particularly in Europe, and the enabling of
incident reporting to CERT (Computer Emergency Response
Team) using MISP presents interesting possibilities. A basic
comparison of the tools is shown in Table I. As mentioned
earlier, the main criteria are both customization possibilities
and a widely used tool.

The design concept for processing and data storage for PON
frameworks is based on the Apache Kafka [8] and the Mon-
goDB technologies. Based on our testing of the write speed to
MongoDB, it is determined that this database is not feasible for
storing data from real-time traffic. We test the number of GEM
(GPON Encapsulated Method) frames we can write and store
per second into the database using different approaches. The
maximum of GEM frames we reached is ≈ 105. Due to this
limitation, we have proposed to use Apache Kafka as the buffer
in our solution. The analysis module reads the data from both
MongoDB and Apache Kafka, doing an analysis using defined
approaches and methods [27] and sending back results to
Apache Kafka buffer for the SIRAP. Because TheHive allows

TABLE I
A COMPARISON OF INCIDENT MANAGEMENT TOOLS.

FIR [24] Wazuh [25] Cyphon [26] TheHive [9]

Programming
Language Python Python Python Python

Installation Linux
Docker

Linux
Cloud

Kubernetes
Docker

Linux
Windows
Mac OS
Docker

Linux
Docker

Graphical User
Interface

Web UI
Dashboard

Web UI
Dashboard

Web UI
Dashboard

Web UI
Dashboard

Database MySQL Elasticsearch PostgreSQL Elasticsearch

Integration Elastic Stack
Spunk

VirusTotal
Snort

Cortex
MISP

Webhooks

Application
Programmable
Interface

Python
Python

Curl
PowerShell

Django
Logstash

thehive-4py
(Python)

Curl

Advantages Simple to use Official support Twitter API
IoT data

Templates
Custom identificators
Community support

:Kafka Server :Kafka-Listener :GponEvent :TheHive

subscribe

group assignment

Message

format check

select template

report

Fig. 4. The sequential diagram of SIRAP.

working with templates, SIRAP includes custom templates
designed for specific anomalies defined for PON networks,
automatically generating reports for TheHive. These templates
and the format of messages for Apache Kafka are created
universally to add additional incident types within the open
community. The detailed implementation is presented in the
following section.

IV. IMPLEMENTATION

This section is focused on the implementation of the SIRAP
description, enabling the creation of reports in TheHive system
for PON. The application consists of two main modules, an
auxiliary core module, a configuration file, and files to enable
deployment to Docker solution. The main modules, Figure 4,
are the Apache Kafka client KafkaEventListener as
the consumer and the defining the message template class
GponEvent. The auxiliary core module Logger then de-
fines data classes and formatting of information and debug
statements.

First, a connection is established with the Apache Kafka
server. The application as a client in the role of a consumer
subscribes to receive messages from the topic and, subse-
quently, messages containing data describing detected security

Fig. 5. The configuration core module diagram.

V. OUJEZSKY et al.: SECURITY INCIDENT RESPONSE AUTOMATION FOR XPON NETWORKS 147



Fig. 6. The main configuration module diagram.

events. When a message is received, its format is first checked.
A report is generated based on the message type according to
the defined templates if the format of a message is correct.
The report is sent to the TheHive system, where it can be
analyzed, and further actions can be taken at the operator’s
discretion.

The core module, shown in Figure 5 [28] declares data
classes for the configuration file within the config.py file.
The various Kafka, TheHive, and message format configu-
ration attributes within these data classes are set. The main
configuration file Config.py is used to set the application
parameters. It uses the core module and declared data classes.
The settings of the Kafka server, the general Kafka message
format, and the TheHive system are defined in the configura-
tion file, which can be seen in Figure 6.

For Apache Kafka, it is necessary to set the IP address
and the port where the server is available and the topic from
which messages should be received. The MsgConfig data
class defines the general format of incoming messages from
Kafka, i.e., the required fields and the number of templates
are defined.

The IP address and port where the system is accessible
and the user’s API key needs to be added by a user. The
observable_types dictionary is an additional setting for
the TheHive system. This dictionary binds the type of report
(from the defined GponEvent templates) to the type of
compromise indicator. It is necessary to determine the data
type under which it indicates the data for each report type. In
the case of using defined indicator data types, they must first
be specified directly in the TheHive.

The templates defined in GponEvent for TheHive are
bound to the observable dictionary. Such a dictionary
binds a report type to a compromise identifier type. A custom
data type is defined under which event data is inserted into the
template for each report type. The KafkaEventListener
module shown in Figure 7, defines an asynchronous Kafka
client as a consumer and methods for processing received

Fig. 7. The KafkaEventListener module diagram.

messages. The aiokafka library is used to define the client.
The library allows creating an asynchronous consumer that
enables multiple consumers to spread the load of topics and
allows for more efficient processing of received messages.
The class constructor allows initializing the consumer. The
IP address of the Kafka server (boostrap servers), the list of
topics, and the group id (group id) are expected on the input
of the method.

The consume() method is used to subscribe the consumer
to messages from the Kafka server. The consumer establishes
a connection to the Kafka server using this method and
starts receiving messages if it successfully subscribes to the
subscription group.

The received messages are then processed using the
process_message(msg) method. Incoming messages are
in JSON (JavaScript Object Notation) format, and are first
uploaded into the dictionary. Such an approach allows working
with individual fields of the original message. Subsequently, a
message is verified by correlating the contained fields with the
defined required fields in the dictionary. The proposed generic
message format contains the event type (EventType), the
super-frame counter (SuperFrameCounter), and the data
describing the event itself (IncidentData). The content of
the IncidentData field is different for each type of incident
and enables the transmission of any number of compromise
indicators (artifacts) in JSON format. The generic format
is adopted to reduce overhead on the producer side. If the
message format is valid, the existence of a message template
for the event type is verified. A regular expression matching
operations perform the validation. A string of one digit in
the range of 1 to the number of defined report templates
is searched as "ˆ[1-" + str(eventType) +"]$". If
a template for the received message type is defined in the
GponEvent module, the GponEvent template object is
initialized. The template is passed the contents of each field of
the received message and the source reference. The reference
combines the received message origin data from the Kafka
server, which is the subject, partition, and offset. Finally, based
on the completed template, a report is created in TheHive.

The GponEvent module, which is the diagram shown in
Figure 8, serves as a template for creating reports. The class
defines all mandatory attributes and methods for creating
reports. Within the template, thehive4py python library is
used for communication with the TheHive system. This library
provides access to the TheHive API and methods to manage
reports. An API object is defined to establish a connection to
TheHive. The interface object is populated with the necessary

148 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022



settings from the configuration file, and thus, there is no need
to modify the template.

Reports can be created by using the defined API. The
combination of the type, source, and sourceRef at-
tributes must be unique for each report. If a report with the
same combination of these three attributes already exists in
the system, creating a new report is rejected. The defined
reports carry an external type since they come from an
external source of the Gpon_Analyzer, i.e., the FPGA
card. A combination of values describing the origin of the
message received from the Apache Kafka server is used as
a reference. The defined consumer passes this value. The
individual attributes are defined using a constructor with
input parameters, such as eventType, incidentData,
superFrameCounter, and a reference is expected. Some
of the attributes are set in general for all report types, and
some are explicitly defined for a given report type based on
the received eventType value.

The SIRAP defines five basic report types so far, but we
are continuously working on its extension. These message
definitions are definitions of problems (incidents) that the
data analysis module can identify in the PON network
based on PON frame analysis and machine learning, which is
presented in [6], [27], [29]. The basic report types are:

• PLOAMd Anomaly – notification of anomaly detection in
a PLOAMd message, i.e., a deviation from the messages
specified by the standard,

• Activation process anomaly – notification of anomaly
detection in activation process,

• Non-standard Frame structure – notification of anomaly
detection in GTC (G-PON Transmission Convergence
Layer) frames,

• OMCI Anomaly – notification of anomaly detection in
OMCI (ONU Management and Control Interface) mes-
sages or the OMCC (ONU Management and Control
Channel) activation process channel,

• Non-specified error – the empty report, used as a template
for the specification of a new report type.

Fig. 8. The GponEvent module diagram.

The report template can be easily extended because of the
defined empty report, and new report types can be added.
The new report also makes it possible to redefine generally
defined attributes. In that case, an entry must also be added
to the observable dictionary with the label of the new
eventType value associated with the required data type of
the indicator of compromise (artifacts) in the report.

For filling the artifacts attribute into the TheHive system,
the initArtifacts() method is used. The application
adds two indicators to the report: the detected data and the
superframe value.

The datatype parameter at the input of the
AlertArtifact() method specifies the datatype of
the indicator in the TheHive environment. For the application
itself, custom-defined datatypes are used. The list of defined
datatypes is given in the configuration file. These are not data
types at the programming language level; they are indicator
labels in the TheHive environment for further analysis. In
general, only data in string format can be passed. However, it
is possible to pass multiple values within the JSON format.
Thus, generic data types are defined for each type of report.
A set of detected indicators in JSON format is then passed
as data. All data to populate the indicators of compromise
are given to the template by the defined consumer from the
received report.

The proposed reporting types are based on possible sce-
narios in a PON network. The individual events and the
content of the defined messages are based on the previously
analyzed anomalies. The severity of incidents has been created
somewhat experimentally for the time being. However, after
consideration, the individual report attribute values can be
redefined. The creation of the reports is based on the general
form of a message transmitting data describing an event. Thus,
it is possible to pass arbitrary indicators on the producer
side to the application. The condition is that the parameter’s
content transmitting this data (IncidentData) is in JSON
format. The reports are all embedded under one data type
defined for the report. However, it is possible to modify the
template and add individual indicators from the parameter
(IncidentData) to the report under its data types.

The messages are created by the createAlert()
method. The API implements the creation of a report using
its api.create_alert() method, which is passed the
defined report object.

An asynchronous main() function is defined to run the
SIRAP that reads the configuration file and sets the format
of the Logger information dumps. In addition, the client is
initialized as a consumer, the server address and topic are
taken from the configuration file. The application uses an
asynchronous Apache Kafka client. Thus, the main method
executes the defined main function in an asynchronous loop.

V. TESTING

The testing within this article is focused on the SIRAP
module, i.e., the functionality of reading information from
Apache Kafka, creating messages according to the information
content, and sending them to the server with the TheHive

V. OUJEZSKY et al.: SECURITY INCIDENT RESPONSE AUTOMATION FOR XPON NETWORKS 149



Fig. 9. The TheHive GUI with received alarms.

application. The results of testing the remaining parts of the
whole concept, such as the FPGA card, parser, and artificial
learning module, have already been published in the references
provided.

The testing is performed on a real GPON network. It is a
polygon from ONUs and OLT. A computer communicating to
the Internet is connected to the ONU. The FPGA card captures
the traffic and forwards it to the Parser module, which parses
the data into the individual fields of the GPON frame and then
sends it for analysis. If the parser module evaluates an error
or anomaly, it sends a message in a predefined JSON format
to the Apache Kafka queue. The SIRAP then reads the events
from the queue and processes them.

Created reports are available through TheHive’s web inter-
face under the Alerts tab. The received reports are displayed in
a list, which can be seen in Figure 9. Successfully received in-
cident reports of the PLOAMd Anomaly and Activation
process anomaly can be seen. It is then possible to filter
the reports according to the specified criteria in the list.
Using Preview and Import, the report content and detailed
information can be viewed, including the contained indicators
that have been defined in the templates, as seen in Figure 10.
In the detailed report, the overview can be seen. It includes
the description of the detected event, the source of the report,
and especially the discussed indicators of compromise defined
for the PON network.

The stability of the implementation is also reviewed.
Each part of the solution is stable over the long term
without substantial outages. As each part of the system
uses a different database (SIRAP, Apache Kafka, TheHive,
MISP), the whole solution is quite a memory-intensive
≈ 21.84GB RAM (Random-Access Memory), 1.1GHz CPU
(Central Processing Unit). Minor problems can occur when mi-
grating data between versions when deploying TheHive using
Docker. The stability of the system and the application are also
tested in case of a high number of events. Simulated security
events messages are periodically sent to the Apache Kafka
server during the test. The SIRAP receives and processes
approximately ≈ 400 messages per minute. The messages
produced as part of the message processing are displayed
within seconds on the TheHive system’s web interface. The
slight delay is due to a list refresh after receiving a certain

number of reports. The refresh rates can be adjusted as
necessary. However, such a large number of security events at
one time is not usually expected, but systems are nevertheless
capable of handling such a load.

When automatically exporting an event to the MISP system,
there may be a problem with defined indicator data types.
MISP requires a standard data format for the indicators of
compromise and specifies standard categories. However, it is
possible to export indicators under the MISP format manually
and add them manually to an event in the MISP system
using the menu Add attribute. Nevertheless, it is not a very
automated function for now.

VI. DISCUSSION

The limitations of the system need to be discussed. In
principle, SIRAP is not limited to being used with the FPGA
card and our analysis module if another system uses our
incident reporting templates. However, it primarily represents
one part of our entire solution under development, which
includes the FPGA card, the data parser, and the analysis
module. The last-mentioned module analyzes and generates
specific reports to send to Apache Kafka for SIRAP. If another
such tool is used, there is no problem using SIRAP for other
purposes as a middleware.

However, the limitation remains on what we can detect
and report. We are primarily concerned with verifying GPON
frames and whether the PON standards are being followed.
We are not concerned with the user data within the frame in
the data field that, for example, encapsulates ethernet. We are
also concerned with anomaly detection directly on the optical
fiber. There is no comprehensive database of “vulnerabilities”
or anomalies for these specific problems yet. Therefore, our
report sets and templates are based on our testing and our
findings.

Another factor is the speed of frame processing and verifi-
cation. We are already talking about several thousand frames
per second in high-speed networks like XG-PON. This re-
quires implementing data analysis as much as possible in the
hardware part. There is a specific type of limitation on the side
between the data parser that sends data to Apache Kafka and
the analysis module, which may not efficiently read the frames
in a timely manner, and the queue can get very congested.

150 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022



Fig. 10. The detail of one of the GPON alarms.

There is no problem between the analysis module and SIRAP.
It is not expected to have the same number of incidents
as the original data frames. However, to avoid problems, it
is necessary to consider optimizing and distributing traffic
between Apache Kafka and SIRAP. Clustering could also be
considered.

Another section for improvement is the section that com-
pares whether there is an existing template for a given incident
report. The simultaneous use of regex reduces the performance
of the solution. Here it is possible to focus on more efficient
features, such as using a tree search strategy.

Since the solution given represents the first possible solution
for frame verification and is still under development, further
issues may arise.

VII. CONCLUSIONS

The article presents the approach, design, and application
that enables automated reporting of security events from
PON networks with a focus on security and current potential
security threats.

A survey of available open-source systems enabling incident
management is performed to select suitable systems to be
used within the proposed solution. A set of TheHive, Cortex,
and MISP applications are chosen based on the performed
comparison. The systems are selected mainly because of their
integration and the customization options they provide. The
proposed set of systems is then used to interact with our
application to automate reporting.

The central part of the work includes designing and devel-
oping a custom application to enable the creation of security
event reports in the TheHive system for passive optical net-
works, standard G.984 and G.987. The FPGA network card
analyzes the communication in the optical link among the
ONUs and the OLT, and subsequently, by analysis modules,
which pass data to the Apache Kafka server based on detecting
a possible security event. The result of our work is a custom
application called SIRAP, which represents the middleware
between TheHive systems and the analysis tools and the parser,
which come from our previous work.

The SIRAP implements the Apache Kafka client as a
consumer that retrieves messages from the Apache Kafka
server containing a description of the captured events. It then
creates reports in TheHive based on the type of event using
a custom-created library that serves as a report template. The
result of the proposal is thus a custom application that enables
the automatic creation of security reports in TheHive for PON
networks and brings its definitions and templates of security
events in PON networks.

Our future work will focus on solution efficiency, processing
speed, and testing of xPON networks to define other possible
security weaknesses to extend the defined template types for
our system.

ACKNOWLEDGMENT

This article is based upon the grant of the Ministry of the
Interior of the Czech Republic, Program of Security Research,
VI20192022135, “Deep hardware detection of network traffic
of next-generation passive optical network in critical infras-
tructures” and the project – e-Infra LM2018140.

REFERENCES

[1] Gigabit-capable passive optical networks (G-PON): Transmission
convergence layer specification, 1st ed., ITU-T, Geneva, 2014.
[Online]. Available: https://www.itu.int/rec/T-REC-G.984.3 (Accessed
2021-10-02).

[2] V. Oujezsky, T. Horvath, M. Jurcik, V. Skorpil, M. Holik, and M. Kvas,
“Fpga network card and system for gpon frames analysis at optical
layer,” in 2019 42nd International Conference on Telecommunications
and Signal Processing (TSP). Budapest, Hungary: IEEE, 2019.
doi: 10.1109/TSP.2019.8769054. ISBN 978-1-7281-1864-2 pp. 19–23.
[Online]. Available: https://ieeexplore.ieee.org/document/8769054/

[3] T. Horvath, M. Jurcik, V. Oujezsky, and V. Skorpil, “Gpon
analyzer - frame parser module,” in 2019 42nd International
Conference on Telecommunications and Signal Processing (TSP).
Budapest, Hungary: IEEE, 2019. doi: 10.1109/TSP.2019.8768882.
ISBN 978-1-7281-1864-2 pp. 748–752. [Online]. Available:
https://ieeexplore.ieee.org/document/8768882/

[4] M. Holik, T. Horvath, and V. Oujezsky, “Application for gpon frame
analysis,” Electronics, vol. 8, no. 6, p. 11, 2019. [Online]. Available:
https://www.mdpi.com/2079-9292/8/6/700

V. OUJEZSKY et al.: SECURITY INCIDENT RESPONSE AUTOMATION FOR XPON NETWORKS 151



[5] M. Jurcik, T. Horvath, V. Oujezsky, V. Skorpil, and M. Holik, “Gpon
parser for database analysis,” in 2019 42nd International Conference
on Telecommunications and Signal Processing (TSP). Budapest,
Hungary, Hungary: IEEE, 2019. doi: 10.1109/TSP.2019.8768849.
ISBN 978-1-7281-1864-2 pp. 347–350. [Online]. Available:
https://ieeexplore.ieee.org/document/8768849/

[6] V. Oujezsky, A. Tomasov, M. Holik, V. Skorpil, T. Horvath, and M. Ju-
rcik, “Gpon traffic analysis with tensorflow,” in 2020 43rd International
Conference on Telecommunications and Signal Processing (TSP), 2020.
doi: 10.1109/TSP49548.2020.9163575 pp. 69–72.

[7] “Dfc we make electronics: Cecilie – xpon module,” DFC Design, s.r.o,
Brno, 2022. [Online]. Available: https://www.dfcdesign.cz/en/cecilie-
xpon-module (Accessed 2022-03-28).

[8] N. Garg, Apache Kafka. Packt Publishing, 2013. ISBN 1782167935
[9] N. K. Nabil Adouani, Danni Co. (2022) Thehive project. Cortex.

[Online]. Available: https://thehive-project.org/ (Accessed 2022-03-28).
[10] P. Kim. (2016) It security research by pierre. [On-

line]. Available: https://pierrekim.github.io/blog/2016-11-01-gpon-ftth-
networks-insecurity.html (Accessed 2021-11-24).

[11] I. Cale, A. Salihovic, and M. Ivekovic, “Gigabit passive
optical network - gpon,” in 2007 29th International
Conference on Information Technology Interfaces. Cavtat,
Croatia: IEEE, 2007. doi: 10.1109/ITI.2007.4283853. ISBN 953-
7138-09-7. ISSN 1330-1012 pp. 679–684. [Online]. Available:
http://ieeexplore.ieee.org/document/4283853/

[12] T. Horvath, P. Munster, and J. Vojtech, “Deployment of pon in
europe and deep data analysis of gpon,” in Telecommunication
Systems, I. A. Alimi, P. P. Monteiro, and A. L. Teixeira,
Eds. Rijeka: IntechOpen, 2019, ch. 4. [Online]. Available:
https://doi.org/10.5772/intechopen.82679

[13] Y. Yan, S. Yamashita, S.-H. Yen, P. Afshar, V. Gudla, L. Kazovsky,
and S.-W. Wong, “Invited paper,” IET Optoelectronics, vol. 5,
no. 4, pp. 133–143, 2011-08-01. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/iet-opt.2011.0027 (Accessed
2021-11-26).

[14] ITU-T: SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL
SYSTEMS AND NETWORKS: Rogue optical network unit (ONU)
considerations, 2nd ed., ITU-T, 2011. [Online]. Available: https:
//www.itu.int/rec/T-REC-G.Sup49/en (Accessed 2021-11-26).

[15] D. Gutierrez, J. Cho, and L. G. Kazovsky, “Tdm-pon security issues:
Upstream encryption is needed,” in OFC/NFOEC 2007 - 2007 Confer-
ence on Optical Fiber Communication and the National Fiber Optic
Engineers Conference, 2007. doi: 10.1109/OFC.2007.4348474 pp. 1–3.

[16] J. Šimonı́k and T. Horváth, “Gpon network with modified
end unit,” Elektrorevue, vol. 2018, no. 4, p. 6, 2018.
[Online]. Available: http://www.elektrorevue.cz/cz/clanky/komunikacni-
technologie/0/gpon-sit-s-modifkovanou-koncovou-jednotkou/

[17] S. Newman. (2018) Critical rce vulnerability found in
over a million gpon home routers. VpnMentor. [Online].
Available: https://www.vpnmentor.com/blog/critical-vulnerability-gpon-
router/ (Accessed 2021-11-26).

[18] “Exploit database - exploits for penetration testers, researchers, and
ethical hackers,” OffSec Services Limited, 2022. [Online]. Available:
https://www.exploit-db.com/ (Accessed 2022-03-26).

[19] V. Oujezsky, D. Chapcak, T. Horvath, and P. Munster, “Security testing
of active optical network devices,” in 2019 42nd International Confer-
ence on Telecommunications and Signal Processing (TSP), 2019. doi:
10.1109/TSP.2019.8768811 pp. 9–13.

[20] V. Oujezsky, V. Skorpil, and T. Horvath, “Gpon frame analysis with
artificial immune system,” in 2019 11th International Congress on
Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT), 2019. doi: 10.1109/ICUMT48472.2019.8970923 pp. 1–4.

[21] O. Catakoglu, M. Balduzzi, and D. Balzarotti, “Automatic extraction
of indicators of compromise for web applications,” in Proceedings
of the 25th International Conference on World Wide Web, ser.
WWW ’16. Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee, 2016. doi:
10.1145/2872427.2883056. ISBN 9781450341431 p. 333–343. [Online].
Available: https://doi.org/10.1145/2872427.2883056

[22] M. Holik, T. Horvath, V. Oujezsky, P. Munster, A. Tomasov, and
S. Valach, “Mongodb database as storage for gpon frames,” in Sensors,
vol. 20, no. 21, 2020. doi: 10.3390/s20216208. ISSN 1424-8220.
[Online]. Available: https://www.mdpi.com/1424-8220/20/21/6208

[23] “Misp – open source threat intelligence platform & open
standards for threat information sharing,” 2022. [Online]. Available:
https://www.misp-project.org/ (Accessed 2022-03-28).

[24] “Fir – fast incident response,” CERT Societe Generale, 2022. [Online].
Available: https://github.com/certsocietegenerale/FIR (Accessed 2022-
03-28).

[25] “Wazuh - the open source security platform,” Wazuh Inc., 2022.
[Online]. Available: https://wazuh.com/ (Accessed 2022-03-28).

[26] “Cyphon,” Dunbar Security Solutions, Inc., 2018. [Online]. Available:
https://cyphon.readthedocs.io/en/latest/index.html (Accessed 2022-03-
28).

[27] A. Tomasov, T. Horvath, P. Munster, M. Holik, and V. Oujezsky,
“Fpga xpon traffic analysis,” in 2021 44th International Confer-
ence on Telecommunications and Signal Processing (TSP), 2021. doi:
10.1109/TSP52935.2021.9522610 pp. 58–61.

[28] O. Kupka, “Gpon network security incident reporting software,” Master
Thesis, Brno University of Technology, Brno, 2021. [Online]. Available:
https://dspace.vutbr.cz/handle/11012/196915?locale-attribute=en

[29] A. Tomasov, M. Holik, V. Oujezsky, T. Horvath, and P. Munster,
“Gpon ploamd message analysis using supervised neural networks,” in
Applied Sciences, vol. 10, no. 22, 2020. doi: 10.3390/app10228139.
ISSN 2076-3417. [Online]. Available: https://www.mdpi.com/2076-
3417/10/22/8139

Vaclav Oujezsky was born in Brno, Czech Repub-
lic. He currently works as an assistant professor
at Masaryk University and a researcher at Brno
University of Technology, Department of Telecom-
munications. Working actively on projects of secu-
rity and transport networks. His research interests
include computer networks, network programming,
software-defined networking. His focus is on net-
work behaviour, intelligent networks, network ana-
lysis, and security.

Tomas Horvath was born in Havirov, Czech Repub-
lic in 1989. He is a young researcher at Brno Uni-
versity of Technology and a researcher at CESNET.
He received his PhD degree in communications and
informatics from Brno University of Technology in
2017. His record shows more than 40 peer reviewed
proceedings and journal papers. His current research
interests include software-defined optical network-
ing, passive optical networks, and sensing.

Martin Holik is a young researcher and post
graduate student at Brno University of Technology,
Department of Telecommunications. His current re-
search interests include passive optical networks,
database systems, and virtualization.

152 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022




