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Abstract—Regression testing is a process that is repeated after
every change in the program. Prioritization of test cases is an
important process during regression test execution. Nowadays,
there exist several techniques that decide which of the test
cases will run first as per their priority levels, while increasing
the probability of finding bugs earlier in the test life cycle.
However, sometimes algorithms used to select important test
cases may stop searching in local minima while missing the
rest of the tests that might be important for a given change.
To address this limitation further, we propose a domain-specific
model that assigns testing priority to classes in applications
based on developers’ judgments for priority. Moreover, our
technique which takes into consideration applications’ code
content and bug history, relates these features to overall class
priority for testing. In the end, we test the proposed approach
with a new (unknown) dataset of 20 instances. The predicted
results are compared with developers’ priority score and saw
that this metric can prioritize correctly 70% of classes under test.

Index Terms—Regression testing, Machine learning, Test pri-
oritization, Bug history, Code complexity.

I. INTRODUCTION

With the development of various applications, today peo-
ple have easier communication, faster services, and lower
costs both financially and in terms of time. Producing a
software application is a process that passes through several
stages otherwise known as Software Development Life Cycle
(SDLC). However, to produce an application that has the
quality and meets users’ expectations, one of the important
processes that should be given special attention, is software
testing. In principle, no application can be considered a zero-
bug application, but through testing, a level of confidence
can be achieved regarding how efficient and functional an
application is. Alternatively, testing can also be defined as a
set of activities and procedures that must be undertaken to
evaluate certain aspects of an application [1].

During all stages of software development, the application
undergoes modifications. These modifications may be due
to new features, change in the existing functions, or even
removing part of functions not useful at that point. All these
changes increase the possibility of introducing new bugs in
the system, which requires testing and making sure that the
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modifications applied have not affected the functional parts of
the software. This practice is also known as regression testing
(RT).

RT is a costly process that needs to be repeated in each
change, which means the amount of testing that needs to
be performed each time increases. One of the methods of
reducing testing load is tests prioritization. Test prioritization is
a technique that first runs important tests, while less important
ones are ignored [2] if conditions are so. However, since search
algorithms that are used to select tests may be stuck on local
minima, this process has its limitations, too.

In this paper, we will try to give another perspective on
RT, where we will propose a novel technique that instead of
ranging tests, will select classes that need to be tested based on
their internal code content, and bug history. For this, we design
a domain-specific model that prioritizes classes or modules
based on the developer’s judgments. Furthermore, we present:

• An overview of the phases used to generate and test a
model for class priority assignment. (Section III)

• Two case studies taken from an industrial company and
their code content and bug history data. Furthermore, we
introduce a new technique that can parse code content or
its number of statements and methods. (Section III-A)

• A classification model that can predict test priority for a
given application under development. (Section III-B)

• A comparison between model priority prediction, and
developer priority assignments for classes under test.
(Section III-B1)

With collected data for both applications, we create a dataset
of 79 instances with four attributes such as number of methods,
number of statements, number of issues within time, and
priority to be tested. The model is further trained using the
Random Tree algorithm which gave the best precision and
recall result with a value of 0.59. Our technique that can
assign priority from 1 (very important to be tested) to 5 (less
important to be tested), succeed in predicting priority for 70%
modules. Although there are 6 incorrectly prioritized classes,
the range of incorrectness is 1 for four classes, and 2 for
two classes, while none of the instances have a large distance
between what developers said and what the model predicts.

II. RELATED WORK

Software testing is a process that exists at every stage
of development. The idea of testing is that an application
designed and developed based on a set of requirements, should
meet its expectations, and achieve the purpose for which it was
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created. However, testing is costly in terms of time and effort.
After each change that is done in an application, testing is
repeatedly done, and this is called regression testing. The
main purpose of regression testing is to prove that certain
developments, the implementation of new functionality, or the
fixing of a preliminary problem have not caused problems
in the existing functionalities of the software application.
According to the IEEE standard, RT is defined in this form:
”Selective retesting of a system or component to verify that
the modifications made have not caused adverse effects and
that the system or component still complies with the specified
requirements.” [3]
Mathematically, RT is defined as follow:

• Let T be the set of test cases for application P
• Let P ′ be the new version of the application P after

changes are applied.
• Select T ’ ⊂ T , a set of test cases to execute on P ′

Each time that RT is applied in an application, the total
cost of it will be increased if we take into consideration the
new and existing tests that need to be executed. Therefore, to
normalize these costs, test cases are selected according to their
priority, or the most important test is placed at the beginning
of the execution process [4], [5]. The main reason behind this
is to achieve test coverage as soon as possible or to find failing
tests at the beginning [6].

One perspective that may affect test prioritization is the way
developers do testing. It is well known that automated testing
decrease the effort and time of testing in general, however,
developers still spend a good amount of time on writing
tests [7]. Taking this into consideration, test prioritization is
listed as an important process in both manual and automated
testing, and there are proposed various techniques that help
in sequencing the tests that need to run based on the priority
required [6].

Today there exist several test prioritization techniques, such
as:

• Coverage-Based approach which aims to prioritize or
select test cases based on the coverage that they have
on the application under test. This means that tests with
higher code coverage have higher priority [8]. Most
prioritization techniques are based on code coverage [9],
however, coverage alone is seen to not be enough [10].
Thus there are proposed other criteria, too.

• Requirement-based is another approach that is based on
the initial requirements on which the software applica-
tion is developed. During this process, the user is not
focused on code [11]–[13], but more on customer priority,
changes in the requirement, implementation complexity
[14].

• Risk-based is an approach that is mainly based on the
aspects of risk which derive from the requirements of the
software application and also applies to those applications
where risk is a priority. Amland [15] defines risk as the
probability of an error that can occur and the cost of the
error if we are in the production phase.

• Search-based is a test case prioritization approach that
proves to find cost-effective problem solutions [16]. Some

of the key and most popular search-based access algo-
rithms are : Greddy, Additional Greedy, Genetic algo-
rithms.

• Fault-based is a test case prioritization approach that is
based on the potential that a module or component may
have to fail [17].

• History-based is another approach that is based on the
previous test execution history. Kim and Porter in their
work had a hypothesis saying that history-based test
prioritization, can reduce the testing cost, and increase
the effectiveness of regression testing [18].

Besides all the listed test prioritization techniques, different
articles use code complexity as a criterion for test selection.
Software Complexity Metrics measure the cost of software
development, maintenance, and usage [19], meanwhile, they
are closely related to error distribution in the current code
[9]. Afzal et al. [20] in their work, propose a new approach
that uses path complexity and branch coverage to prioritize
test cases. This approach outperforms the existing branch
coverage-based approach in terms of APFD (Average Percent-
age of Faults Detected) up to 18% on average.

The complexity-based prioritization technique assumes that
complex code contains more bugs. Since systems in use
may become complex over time, there has been work where
researchers measure the complexity of software in the previous
several years. Hence, estimates show that existing software
systems achieved to receive 40% to 70% of total expenses
[10]. Heard et.al. [21] proposed an approach that computes the
testing importance of each module by using fault proneness
and importance of the module from system and user perspec-
tives. Their work became even stronger with the proposed
metric(Average Percentage of fault-affected Modules Cleared
per test case) which measures the effectiveness of various
prioritization techniques.

Based on these findings, we started to work on this article
assuming that complex code is more difficult to change, is
more likely to contain faults, and is difficult to be integrated.
Therefore, we took code internal content and bug history as
two criteria to further proceed with an approach of module
prioritization for RT.

III. THE PROPOSED APPROACH

Our new approach for testing priority, is based on two indus-
trial case studies or two software applications developed using
C# programming language. Both of them are produced by the
same company and are used by real users. Applications are
delivered to us with their source code, bug history, and testing
priority assigned to each class that they contain. However,
to collect even more information for their code content, we
implemented a parser that reads through every class in the
application and counts the number of statements and methods
that they have (Phase 1 in Figure 1). This process, will give
us a general understanding of code to be prioritized, and
shows its correlation with bug history and priority assigned
by developers. After collecting all four parameters (number of
issues, number of statements, number of methods, and testing
priority), in the second phase (Phase 2 in Figure 1), we created
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a dataset of 99 instances where 79 are used for training, and
20 are used for testing the model.

In the last phase (Phase3 in Figure 1) we use supervised
machine learning to construct a predictive model of test prior-
ity from those features. To predict the testing priority of a new
class, we used 20 new instances and their feature values and
apply the learned model. In this paper, we use a simple Linear
Regression learner [22] and Random Tree classifiers, although
in principle other learners are also applicable (e.g., multilayer
perceptron [22]). However, with Random Tree classifier, the
resulting model (which consists of weightings for individual
features) is quick, and can easily be interpreted.
In this section, we describe how we collected the data to learn
this model, the features of classes under the test we considered,
and the machine learning algorithms that we applied to create
our final model. Moreover, we applied the trained model
to a test dataset and compared the results with developers’
priorities for each class.

A. Phase1 - Code Review and Bug History Collection

To have real data and do a study on them, we agreed
with a local software development company containing 51
employees, 12 of which were software developers. This mid-
size company, was asked to provide us with some applica-
tions that were representative of their overall development
history, implemented using the same principles (especially bug
tracking and project management system), within a similar
time frame, and for our local market. Hence, they offered
two applications named iTms, and Real Estate which will
be subject to the process of class prioritization for testing.
iTms is more complex in terms of internal structure that it
has, while Real Estate is simpler (less code amount). For
both applications the necessary data have been collected which
will contribute to the process of evaluation and completion of
this work. The components that were needed to complete the
paper include the project solution (all application classes) and
the development history of each module within the software
application (total number of problems for each component).

Firstly, to parse the inner structure of the given applications,
we implemented a console program in C# programming lan-
guage, through which a single solution is read at the same time.
This means that each class of an application under parsing
is filtered based on the content of their code. Code content
analysis is based on two main parameters which are:

• Number of methods,
• Number of statements.

Therefore, each class’s source code in the applications’
folder is read, and their number of statements and methods
are counted. While parsing methods in the class, their type is
checked (protected, private, and public), too. Also, the control
over the number of methods does not take into account the
interface and other classes that may be within the parent
class. Regarding the number of statements, we took into
consideration all lines in the class that contain an action.
This may include declaring variables, assigning values, calling
methods, looping, and branching expressions.

TABLE I
ITMS AND REAL ESTATE CLASS PRIORITIZATION LIST.

Application iTms Real Estate
Number of Classes 90 9
Priority 1 3 1
Priority 2 1 1
Priority 3 2 0
Priority 4 10 1
Priority 5 74 6

Finally, to rank the classes based on the number of methods
and statements, we assigned an internal ’priority’, which will
show the internal structure of a given class in the application.
Thus, the sum of total methods and statements for each class
is taken and divided into 5 ranges. The difference from this
division also determines the priority number that a certain class
has within the software application under testing. Respectively,
the classes with the largest number of methods and statements
belong to priority 1, then for the other classes, the priorities
are divided depending on the other number of methods and
statements together, until the end where the classes with the
smallest number of methods and statements have priority 5.

In Table I, there is presented code content analyses for each
applications. From 90 constituent classes of iTms application,
3 classes have priority 1, only 1 class has priority 2, 2 classes
have priority 3, 10 classes have priority 4 and 74 classes have
priority 5, respectively. Hence, from 9 constituent classes of
Real Estate application, 1 class has priority 1, 1 class has
priority 2, 0 class has priority 3, 1 class has priority 4 and 6
classes have priority 5.

Secondly, as part of the data-gathering phase, we have
requested company bug history data for both applications. To
collect the information that we exactly needed, we requested
to have only ’bugs’ or issues that caused a test case to fail
(e.g., error in the code, incomplete user requirement) and is
registered as change. We did not collect changes in the code
that were due to additional user requirements. Bug history
was obtained from the whole development period and was
downloaded from an existing internal tool that the company
uses for managing application development and troubleshoot-
ing. However, to apply companies’ confidentiality rules, we
did not have the opportunity to obtain data regarding the
time distribution of bugs during the software development life-
cycle. In Table II and Table III, we have listed iTms and Real
Estate applications’ bug history, respectively. Moreover, there
are listed the number of problems for each module/component,
their priority which is again assigned by developers, and
the code content details (number of methods and number of
statements) extracted from our parser mentioned in Phase1.

In Figure 2 we visually demonstrated all the classes under
study, the number of methods and statements that they contain,
and the number of issues that they had until that point. As
shown in the figure, in most cases, when the class has more
statements and methods, the higher the number of issues for
it. However, there are seen edge cases, too, where even though
the module is small, it might have issues.
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Fig. 1. Three phases that are used to create the model for class prioritization during regression testing.

TABLE II
FIRST 32 ITMS CLASSES, THEIR CODE CONTENT, ISSUE HISTORY, AND THE PRIORITY GIVEN BY DEVELOPMENT TEAM.

Controllers/Modules Module Priority No. Issues No. of Methods No. of Statements
AccidentReportAssessmentController.cs 4 15 14 19
AccountController.cs 1 100 195 372
AdminSettingsController.cs 3 66 13 16
AlertsController.cs 3 30 34 45
AppointmentsController.cs 4 8 6 4
AssetsController.cs 3 16 13 43
ATMS Authorize.cs 3 5 10 7
AuthorizeUserAttribute.cs 3 45 53 118
BranchesController.cs 2 88 49 139
BudgetPeriodsController.cs 5 2 9 11
BusinessController.cs 4 11 8 18
ChartsController.cs 3 19 7 0
ClientAssetsController.cs 3 32 13 43
CommunicationTypesController.cs 5 11 8 3
ConfigurationTypesController.cs 5 21 9 3
ContractsController.cs 3 55 12 6
CustomersController.cs 2 136 9 3
DashboardController.cs 2 61 71 124
DocumentsController.cs 3 31 8 3
DocumentsTypesController.cs 5 6 8 3
DynamicLibrary.cs 5 18 30 176
ElementsController.cs 4 7 11 9
EmployeesController.cs 2 111 44 69
EncryptUploadFilesController.cs 5 0 1 0
ErrorsController.cs 5 22 6 3
ExpenseCategoryController.cs 5 4 14 8
ExpenseDepartmentController.cs 5 3 15 8
ExpenseInternalController.cs 4 15 16 7
ExpensePaymentMethodController.cs 4 0 11 6
ExpensesController.cs 1 420 108 171
ExpenseStatusController.cs 5 0 14 9
FilesController.cs 2 95 78 67

TABLE III
REAL ESTATE CLASSES, THEIR CODE CONTENT, ISSUE HISTORY, AND THE PRIORITY GIVEN BY DEVELOPMENT TEAM.

Controllers/Modules Module Priority No. Issues No. of Methods No. of Statements
AccountController.cs 2 15 28 20
BaseController.cs 3 0 0 0
ForRentController.cs 1 24 2 3
ForSaleController.cs 1 35 2 3
HomeController.cs 3 10 3 0
ManageController.cs 2 22 23 10
RealEstateController.cs 1 7 3 5
UserProfileController.cs 2 17 5 7
UserProfilePersonalController.cs 2 8 5 2

B. Phase 2 - Model Feature Extraction and Training

During this phase, we prepared a training data set for a
model that can further predict the priority for a class to be
tested during the Regression Testing phase. Therefore, we took

both of these applications which in total have 99 classes,
and listed 4 different features for each of them. However,
to have a set of test data for later phases of model testing,
we used only 79 instances as training data, and keep 20 for
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Fig. 2. Comparison of number of issues with number of statements and number of methods for each class.

TABLE IV
MODEL TRAINING, AND THEIR PERFORMANCE VALUES USING WEKA.

Algorithm Correlation coefficient
Linear Regression 0.45
Random Tree 0.59

the testing purpose. Model attributes are in fact the features
that we measured during the study, or number of issues, num-
ber of methods, number of statements, and the final attribute
which is the class or priority score.

1) Application of Machine Learning for Module Prioriti-
zation for Testing: Using the data collected for both case
studies, we have applied Weka [23] Machine Learning (ML)
tool for test priority model learning. We applied our dataset
with different learners available in Weka, however, for the
sake of result interpretation we choose to proceed with Linear
Regression, and then a classifier such as Random Tree. After
executing each of these algorithms we listed the results for
both learners in Table IV.

Each algorithm is selected to train the model with the
10-fold cross-validation option. It enables the data set to
be randomly divided into 10 sub-examples, where a single
sub-sample is stored as validity data for model testing, and
the remaining 9 sub-samples are used as training data. This
process is repeated 10 times (folds), with each of the 10 sub-
examples used exactly once as validation data.

As it is seen from Table IV, the Random Tree classifier has a
higher correlation coefficient compared to Linear Regression,
even though the last one is simpler to be interpreted in terms
of feature importance in testing priority.

C. Phase 3 - Model Testing

Following the trained model with the Random Tree algo-
rithm, the next step was to test our dataset of 20 instances
that we saved in the beginning. As we already have the testing
priority for each of the 20 classes, we saved those numbers

for comparison between what our model predicted and what
developers said is important to be tested.

In Table V, we can see that after applying the test data (test
data set), the model we have trained has managed to make the
correct prediction in 70% of instances or 14 out of 20 classes.
Moreover, the results show that for each case where our model
miss-predicted the priority, the error rate is small taking into
account that the interval of priorities is between one and five.
In four classified instances, the difference between the actual
and the predicted value is a unit (instances 2, 6, 15, and 18)
or small, or two units (instances 8, and12) medium. This tells
that, our model can predict how important is a class to be
tested, as well as a software developer aware of code history.

Finally, even though the agreement between the model and
developers seems to be substantial (70%), still there is enough
space for model accuracy improvement. According to actual
studies, to improve the prediction accuracy, researchers tend to
increase their data-sets, improve data-points (detect outliers),
or combine predictors [24]–[26]. For our study even though
we considered increasing the overall data-set, obtaining data
from industry is not always possible due to many reasons (e.g.,
confidentiality, projects belonging to different development
time-frame, projects belonging to different teams). Therefore,
we continued to base it on the projects that are produced in
the same period, using the same issue tracking and project
management system and developed by the same team. Hence,
we concluded with a result that can be improved, but which
seems to be a general issue for most of the prediction metrics,
and keep to be a continuous open area that requires work
[27]–[29].

IV. CONCLUSIONS

Testing software applications is a very important process,
but also costly because it requires sufficient resources for the
efficient implementation of this flow. In general, we can say
that the prioritization of the test case enables cost reduction in
regression testing or general software development. To address
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TABLE V
PRIORITY MODEL RESULT PREDICTION. EACH INSTANCE CONTAINS ITS
REAL PRIORITY SCORE (ACTUAL VALUE), AND PREDICTED SCORE WITH

RANDOM TREE ALGORITHM.

Algorithm Instance number Actual value Predicted value

Random Tree

1 5 5
2 3 4
3 2 2
4 3 3
5 3 3
6 3 4
7 4 4
8 3 1
9 5 5
10 5 5
11 2 2
12 2 4
13 5 5
14 1 1
15 2 3
16 5 5
17 5 5
18 4 5
19 5 5
20 4 4

this problem, we have considered two industrial applications
and built a predictive model that assigns testing priority to
classes under development, based on data on how developers
prioritize them. The features that we used to train the model
are all methods and statements in the code, extracted using an
implemented parser, bug history and testing priority, extracted
using information given from software developers. We have
applied this model to the new test dataset, and compared its
results with developers’ priority assignments. Our technique
to prioritize classes for further regression testing improves
the quality of the product by prioritizing features that need
testing and decreasing the time and effort required for quality
assurance. In summary, we proposed a domain-specific model
of testing priority based on code complexity and bug history.
We found that our model agrees with developers in 70% of
cases about which modules in the application are important to
be tested.
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