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Abstract—The human exposure assessment to wireless com-
munications systems including the fifth generation (5G) mobile
systems is related to determining the specific absorption rate
(SAR) or the absorbed power density (APD). The assessment of
both quantities requires the use of various numerical techniques,
including moments method (MoM). As the use of MoM results
in a fully populated system matrix, a tremendous computational
cost is incurred, both in terms of matrix fill time and memory
allocation, as the matrix size is directly related to frequency of the
problem. This paper investigates the applicability of numerical
integration at frequencies related to 5G. The novelty of this work
is related to the comprehensive set of tests of various combination
of source and observation triangles using the developed unit cube
test. A number of convergence tests were performed to investigate
the effects of the increasing frequency and the discretization
scheme on the numerical solution, as well as to determine how
to curb the computational requirements by the proficient use of
numerical integration. The results show that in the lower GHz
range, lower integration orders could be used, resulting in the
decrease of matrix fill time without loss of solution accuracy.

Index Terms—Dunavant rules; integral equation formulation;
numerical integration; 5G frequencies; computational cost.

I. INTRODUCTION

THE mobile communication systems fifth generation (5G)
represents the significant evolution over the previous

4G LTE networks both in terms of high transmission data
rates and overall network capacity as well as a very low
latency. It is expected that 5G networks will facilitate nearly
instantaneous connectivity to multibillion devices based on
the use of millimeter waves operating in the GHz frequency
range, but also on the use of beam steering technologies such
as massive multiple input, multiple output (MIMO) antenna
systems.

However, the extensive use of new MIMO antenna systems
comprising a high number of antenna elements will most
definitely result in the public concern due to possible negative
health effects. Compared to electromagnetic (EM) radiation in
the radio frequency (RF) range, the thermal effects related to
the mm-waves from the GHz part of the spectrum are limited
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to the body surface due to small skin effect and low penetration
depth. Nevertheless, rather recently, IEEE standard [1] in 2019
and ICNIRP guidelines [2] in 2020, respectively, have been
revised, in order to assure the compliance with the basic
restrictions and consequently to ensure the safety of humans
due to exposure to EM fields. Regardless of basic restriction
quantity, defined by the specific absorption rate (SAR) in the
range of up to 6 GHz, or the absorbed power density (APD)
for frequencies above 6 GHz, the assessment of both quantities
requires the use of advanced computational methods.

Recently, integral equation based methods coupled with
stochastic approach resurfaced as one of the means for solv-
ing high frequency electromagnetic-thermal dosimetry prob-
lems [3], [4]. Unfortunately, if formulations based on the use
of integral equation are utilized, the accuracy of the numerical
solution will be impacted by the precision with which the ma-
trix system elements are calculated. The numerical integration
is used most often to solve various double surface integrals,
whereas the calculation speed and solution accuracy should be
taken into account. It should be emphasized that in most cases
some compromise solution between the numerical efficiency
and accuracy is required.

It is a well known fact that one of the disadvantages of
using integral equation formulations is they result in a fully
populated system matrix. The matrix filling and the solving of
system matrix represent the two time-consuming operations
required by moments method (MoM) code with N unknowns
[5]. In case of wire structures, these operations are of O(N2)
for the former, and O(N3) for the latter, when direct solvers
are used. However, in practice, matrix filling often requires
more time spent. Since number of unknowns N is proportional
to kd, with k and d being wave number and wire length,
respectively, the asymptotic cost of these operations is of
O([kd]3), clearly indicating the frequency scaling feature of the
algorithm. Compared to wires, the asymptotic computational
cost for surfaces is even more expensive, i.e. of O([kd]6), with
matrix filling again dominating the computational runtime for
most problems. On the other hand, the memory requirements
for surfaces are of O([kd]4).

Additional thing to keep in mind is the system matrix size,
as large matrices are impossible to directly solve, e.g. via
Gaussian elimination. In these cases, the iterative procedure
is required such as a generalized minimum residual method
(GMRES) [6].

In recent years the graphics processing unit (GPU) has
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become more often used as another important computational
resource, due to GPU’s computational potential compared to
conventional central processing unit (CPU). Various examples
of problems tackled by the finite difference time domain
(FDTD) method utilizing the GPUs, can be found in [7]. More
important, the graphics cards have been previously utilized in
accelerating the conventional MoM calculations both in terms
of filling time and splitting algorithm [8]. However, additional
effort is required when using GPU, as specialized adaptation
of the code is necessary, such as rewriting one’s code in CUDA
or other languages.

Therefore, instead of immediate paradigm shift from CPU-
based to GPU-based computations, the investigation carried
out in this paper is on the efficient utilization of a conventional
MoM code by applying proficient numerical integration rules
without sacrificing the accuracy of the approach.

It should be noted there are many interesting papers dealing
with the precision of the particular integrals’ numerical solu-
tion, e.g. [9]–[11], while the work presented here is related to
application of pure numerical quadrature, presented, in authors
opinion, in a unique way using the developed unit cube test, as
well as the (P,Q)-square convergence visualization that can
be considered a novelty.

This paper should be considered as an extension of two
conference papers published in [12] and [13]. In first pub-
lication [12], the unit cube test was presented for testing
various combinations of double surface integrals arising in the
frequency domain integral formulations, while second publica-
tion [13] is on the investigation of numerical integration using
said cube test. The results reported both in [12] and [13] are
further extended with additional computational examples given
here. In the present paper, the investigation of applicability
of numerical quadrature to the solution of double surface
integral related to the magnetic vector potential is tested on
the combination of far and near terms, both in cases of
coplanar and orthogonal triangle pairs. The numerical solution
convergence of double surface integral is tested at several 5G
frequencies currently utilized or to be used in Croatia (0.7
GHz, 3.6 GHz, 26 GHz, 90 GHz), as well as 6 GHz, con-
sidered as the transition frequency in the safety standards [3].
Moreover, extensive tests have been carried out to determine
the effects of increasing frequency and surface discretization,
respectively, both in terms of quadrature precision as well
as computational requirements. The numerical study carried
out in this work could found its application in the assessment
procedures related to human safety to electromagnetic fields,
by providing some guidelines related to the application of
numerical quadrature as well as its potential applicability when
very high frequencies are considered (such as in 5G).

The paper is organized as follows: following the introduc-
tory part, the mathematical background is given in second
section including a brief descriptions of the used integral
formulation, a numerical approach to double surface integral
as well as a unit cube test and Dunavant’s quadrature rules,
respectively. The following section presents the results of the
extensive convergence tests with the accompanying discussion.
In the fourth and also the final part the concluding remarks
are given.

II. MATHEMATICAL BACKGROUND

In frequency domain surface integral equation (SIE) formu-
lations, the complex surface geometry of a problem is most
commonly described using the triangular elements or patches.
This enables the use of a so called Rao-Wilton-Glisson (RWG)
basis functions particularly developed for triangles [14].

A. Surface Integral Equation Formulation

This work is based on the frequency domain formulation
for the homogeneous penetrable scatterer. The electric field
integral equation (EFIE) can be derived from the use of equiv-
alence theorem at the scatterer’s surface and the application
of appropriate boundary conditions (BC):

[
−E⃗sca

n (J⃗ , M⃗)
]
tan

=

{[
E⃗inc

]
tan

, i = 1

0, i = 2
(1)

where Einc represents the known incident electric field while
Esca is the field scattered from the surface.

The tangential component of the scattered electric field can
be written in terms of the equivalent surface electric and
magnetic currents, J⃗ and M⃗ , respectively, which, in turn, can
be expanded using a linear combination of basis functions. As
the surface of scatterer is represented by triangular patches,
J⃗ is expanded by the RWG basis functions [14], while M⃗ is
expanded by the orthogonal functions n̂×RWG, as follows:

J⃗(r⃗) =
N∑

n=1

Jnf⃗n(r⃗); M⃗(r⃗) =
N∑

n=1

Mng⃗n(r⃗) (2)

where Jn and Mn are coefficients to be determined, while N
denotes the number of elements used to discretize the surface
S of a scatterer.

SIE formulation of the problem via EFIE can be numerically
solved, e.g. using an efficient MoM scheme reported in [15].
Examples of application of a SIE based formulation include
models of pediatric patients in e.g. transcranial magnetic stim-
ulation (TMS) [16] or electromagnetic-thermal dosimetry [17],
or even in a stochastic dosimetry of the human brain [18].
More details on the particular application can be found in
corresponding papers [16]–[18].

Multiplying (1) by test functions f⃗m, where f⃗m = f⃗n, and
integrating over the scatterer surface S, followed by some
additional steps [15], [19], results in the following integral
equations set:

N∑
n=1

(
jωµiAmn,i +

j

ωεi
Bmn,i

)
Jn+

+
N∑

n=1

(Cmn,i +Dmn,i)Mn =

{
Vm , i = 1

0 , i = 2
(3)

where Amn, Bmn, Cmn, and Dmn denote various surface
integrals, while i = 1, 2 indicate the regions exterior and
interior to the scatterer, respectively. The indices m and
n denote the source and observation triangles, respectively.
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Object’s material properties are taken into account via µ and
ε, representing permeability and permittivity, respectively.

The set of integral equations (3) can be written more
compactly in the matrix form as

[Z] · {I} = {V} (4)

where the size of system matrix Z is 2N ×2N , while the size
of source vector V is 2N , as illustrated on Fig. 1. It should be
emphasized that the system matrix Z formed in this manner
represents a fully populated matrix [4], as this is a well known
drawback of integral equation formulations.

Fig. 1. The size of MoM system matrix [4]. Column vector I contains un-
known coefficients used to determine equivalent surface electric and magnetic
currents J⃗ and M⃗ .

B. Numerical Integration of Double Surface Integrals

In order to determine the elements of the system matrix, it
is necessary to solve various surface integrals appearing in (3).
One of the double surface integrals, whose numerical solution
is considered in this work, is of the following form:

Amn =

∫∫
S

f⃗m(r⃗) ·
∫∫

S′
f⃗n(r⃗

′)G(r⃗, r⃗ ′) dS′ dS (5)

where f⃗m is test function, and f⃗n = f⃗m represents basis
function expanded over triangles. Observation and source
points are denoted by r⃗ and r⃗ ′, respectively. RWG function
is used as basis function [14]:

f⃗±
n (r⃗) =


ln

2A±
n
ρ⃗±n , r⃗ ∈ T±

n

0 , r⃗ /∈ T±
n

(6)

where ln is the shared edge length at the interface between
triangles T+

n and T−
n , while A+

n and A−
n denote the surface

areas of triangles. Vector ρ⃗+
n = r⃗ − r⃗+

n is directed from free
vertex of T+

n while ρ⃗−
n = r⃗−

n − r⃗ is directed towards free
vertex of T−

n .
Integral (5) includes Green’s function for the homogeneous

medium given by:

G(r⃗, r⃗ ′) =
e−jkR

4πR
; R = |r⃗ − r⃗ ′| (7)

where R is the distance from observation to source point, while
k denotes the wave number.

Depending on the distance between source and observation
triangles, Tm and Tn respectively, specific solution approach
to the integral (5) is necessary.

In case when observation and source triangles are far
enough, simple numerical integration suffices. On the other
hand, in case of near terms, that is, when the triangles are close
to each other and/or are sharing a vertex or an edge, usually
the combination of analytical and numerical integration is
used. Some authors suggest purely numerical integration [20],
[21] also in the case of near triangles. In that situation, it
is then customary to choose one sampling point from the
outer triangle corresponding to numerical quadrature order of
M = 1, where the observation point is placed at the center of a
triangle. Unfortunately, due to kernel singularity, this approach
will result in numerical instability, as shown in our previous
work for integrals of the form Dmn, [22].

The investigation carried out in this work is related to
evaluation of integral (5) using the numerical procedure (Gaus-
sian quadrature). In total, four combinations of source and
observation triangles are considered in this work, as depicted
on Fig. 2.

0

1 0

1
0

1 5

6

7

4

1
3

2

Fig. 2. Unit cube for testing various triangle combinations. Coplanar and
orthogonal, far and near triangle combinations, respectively, are considered:
(1− 2), (1− 3), (1− 5), (1− 7).

Triangles numbered 1 and 2 (1 − 2) are considered as
coplanar far combination (far terms), while triangles 1 and
3 (1− 3) denote the coplanar near combination (near terms).
Furthermore, triangle combinations numbered 1 and 5 (1− 5)
and 1 and 7 (1−7) represent the orthogonal far and near terms,
respectively.

Inserting (6) and (7) into (5), the double surface integral (5)
can be written as

Amn =

∫∫
S

lm

2A±
m
ρ⃗±m(r⃗) ·

∫∫
S′

ln

2A±
n
ρ⃗±n (r⃗

′)
e−jkR

4πR
dS′ dS

(8)
Both surface integrals from (8) can be approximated by a

weighted coefficients sum, written on a triangular domain as:

∫∫
T

f(α, β, γ) dS ≈ A
N∑
i=1

wi(αi, βi, γi)f(αi, βi, γi) (9)
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where A denote the triangle area, wi(αi, βi, γi) are weighting
coefficients normalized to triangle area, while αi, βi, and γi
are local or simplex coordinates (defined on the unit triangle).

Utilizing (9) in (8), the following is obtained:

Amn =
lmln

16πA±
mA±

n
A±

m

M∑
p=1

wpρ⃗
±
m(r⃗p)·

·A±
n

N∑
q=1

wqρ⃗
±
n (r⃗

′
q)
e−jkRpq

Rpq
(10)

while, after some cancellation and rearranging, the resulting
expression is obtained:

Amn =
lmln
16π

M∑
p=1

N∑
q=1

wpwqρ⃗
±
m(r⃗p) · ρ⃗±n (r⃗′q)

e−jkRpq

Rpq
(11)

with Rpq = |r⃗p − r⃗′q|, where r⃗p, r⃗′q , wp and wq denote the
location of Gaussian points and weights for the source and
observation triangles, respectively. M and N , represent the
number of integration points for the source and observation
triangle, respectively, dependent on the order of integration,
P = 1, . . . , 20, and Q = 1, . . . , 20.

C. Dunavant’s Quadrature Rules for Triangles

Dunavant’s symmetric quadrature rules for triangles are
utilized in this work. The quadrature rules of degree up to
P = 20, with associated quadrature points and weighting
coefficients can be found in [23], while the examples of
symmetric location of quadrature points on the unit triangle
are depicted on Fig. 3.

a) b)

d)c)

Fig. 3. The location of quadrature points on the unit triangle and the associated
weights for several selected Dunavant’s rules. P = integration order, n =
number of points: a) P = 4, n = 6, b) P = 8, n = 16, c) P = 12, n = 33,
d) P = 20, n = 79.

While there are many other rules available [24]–[28],
Dunavant’s rules are nowadays most frequently used inte-
gration rules for triangles, and similar to classical Gaussian
quadratures, an n-point rule is exact for all polynomials of
orders up to 2n − 1, [27]. Although some of the rules have
undesirable features such as nodes position outside the triangle
and negative weights, Dunavant’s rules are optimal in the sense
that for a given rule, the number of nodes used is close to or
even theoretically equal to the smallest possible value [29],
which makes them highly efficient for problems requiring
solutions to a large number of integrals. Furthermore, these
rules use the symmetrical position of the integration nodes
with respect to the vertices of the triangles, thus eliminating
possible variations in the order in which they are assigned [29].

Using all the possible combinations of integration orders
P = 1, . . . , 20 and Q = 1, . . . , 20, for the source and the
observation triangles, the double surface integral (5) is solved
using (11).

D. Unit Cube Test

The unit cube test, depicted on Fig. 2, utilized for testing
the interaction between source and observation triangles, was
introduced in [12]. The unit cube is meshed using 48 triangular
patches, with 8 isosceles triangles on each cube side. Utiliz-
ing the cubical shape, various combinations of coplanar and
orthogonal triangles could be tested, as previously mentioned.
Furthermore, the unit cube and the associated mesh can be
easily scaled to facilitate testing of numerical integration at
various frequencies of interest.

Figure 4 illustrates the comparison of triangular element size
when unit cube scale is halved in several iteration steps (n =
1, . . . , 8). The discretization steps numbered n = 4, 5, 6, 7, 8
are latter denoted as: 1/8, 1/16, 1/32, 1/64, and 1/128,
discretization schemes, respectively.

Fig. 4. Illustration of triangular element size on one side of unit qube,
depending on the scaling iteration number n = 1, . . . , 8.

The number of triangles per unit cube side, the total number
of RWG elements, as well as other parameters of unit cube,
are given in Table I.
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III. RESULTS AND DISCUSSION

Utilizing the unit cube test, the following results are ob-
tained. The first set of results are obtained without scalling of
the unit cube geometry to ascertain the effects of the increased
frequency. Those are followed by the results obtained using
various geometry scalling in order to determine the appropriate
discretization scheme suitable for the particular frequency. The
final set of results are given in terms of relative error calculated
for different utilized frequencies, discretization schemes and
triangle combinations.

A. Visualizing Convergence using (P,Q)-square

Before going into more details, it would be beneficial to
first explain how the obtained results are to be interpreted. To
this end, we would like to draw the readers attention to Fig. 5.

The results depicted in Fig. 5 denote the numerical solution
of double surface integral (5) in cases of far triangles and
near triangles sharing an edge, numbered (1− 2) and (1− 3),
respectively [12]. The results are obtained using varying inte-
gration orders P and Q for source and observation triangles,
respectively, with P = 1, . . . , 20 and Q = 1, . . . , 20.

The unit cube is scaled such that ka = const., where a =
λ/5 and b = a/2. The cube length is denoted by a, the length
of triangle edge by b, while λ is the wavelength. Thus, for
a constant electrical length of cube, irrespective of frequency
(tested in the frequency range from 300 MHz to 90 GHz), the
solution practically converges identically.

The results for the far triangle combination, depicted on
Fig. 5a), show that the increasing number of integration points
results in the convergence both on the real and imaginary
part of the solution. These same results are also visualized
on Fig. 5b) where the convergence is represented by the
grey colour shade on a (P,Q)-square, where the increase of
integration order is from left to right for Q, and from top to
bottom for P . It should be mentioned that the gray colour itself
is not essential when considering the (P,Q)-square, but, rather,
the colour of the complete (P,Q)-square is. If the shade of
gray becomes uniform - when moving from top left to bottom
right - the solution converges, as evidenced also on Fig. 5a).

On the other hand, the checkered pattern of (P,Q)-square
indicates that the convergence is not guaranteed. This is
illustrated on Fig. 5c) in case of near triangles combination.
When purely numerical approach is used, as seen on Fig. 5c),
at low integration orders, rather erratic behavior is evident
on the real part of the solution. Compared to that, when the
integration orders on both triangles are increased, the solution
starts to converge. This very slow convergence of the solution
can be seen by the checkered pattern, as shown on Fig. 5d).

B. The Effect of Increasing Frequency

The first set of results, shown on Fig. 6, are obtained at the
following frequencies: 0.7 GHz, 3.6 GHz, 6 GHz, 26 GHz, 90
GHz. All results are obtained without the previous scaling of
unit cube geometry.

As seen from Fig. 6, the convergence of real and imaginary
parts of integral Amn are depicted using (P ,Q)-square, with

respect to utilized frequency. Four triangle pair combinations
are considered, namely: coplanar far terms (1 − 2), coplanar
near terms (1−3), orthogonal far terms (1−5), and orthogonal
near terms (1− 7).

At lowest considered 5G frequency of 0.7 GHz, it is
evident that, in the case of far terms, both coplanar and
orthogonal, much lower integration orders could be used
(P = 3, 4, 5;Q = 3, 4, 5). In case of the near terms, on
the other hand, although the imaginary part of the solution
converges at lower integration order, the real part does not,
hence, higher number of integration points should be used.

As the frequency increases, at 3.6 GHz and 6 GHz, check-
ered pattern becomes evident at lower values of P and Q, even
in case of the far triangle interactions, indicating that higher
integration orders should be utilized. Compared to that, the
near triangle interactions does not show convergence until the
highest integration orders are utilized (P = 15 − 20;Q =
15− 20).

Finally, in case of the highest frequencies, i.e. 26 GHz and
90 GHz, it is obvious that even the highest available integration
order in case of far terms interaction is not sufficient to obtain
the convergence. These results were expected, as it is well
known that the dimensions of the utilized mesh should be at
least comparable to the wavelength at particular frequency. In
case of 26 GHz, the corresponding wavelength is 1.15 cm,
i.e. significantly lower than the utilized triangle size (50 cm).
For the comparison, at 0.7 GHz, the wavelength of EM wave
(42.8 cm) is comparable to the triangle size.

Thus, to obtain a more reliable results, it is necessary first
to discretize the mesh appropriately.

C. The Effect of Surface Discretization

The following set of results, shown on Figs. 7–9, are
related to the effects of the surface discretization. The double
surface integral (5) is again solved implementing the numerical
quadrature rules using varying integration orders, utilizing
several discretization schemes of the unit cube: 1/8, 1/16,
1/32, 1/64, and 1/128. Each row from Figs. 7–9 illustrates
the convergence for one of the particular combination of
triangles, as previously explained. The results are obtained at
the following frequencies: 3.6 GHz, 26 GHz and 90 GHz.

As seen from Figs. 7–9, as the frequency increases, much
finer discretization should be used in order to ensure the
convergence of the results. In case of the near terms, the
checkered pattern is again obvious, however, it emerges only
on the real part of the solution, while the imaginary part of
the solution converges even at the lowest orders of integration.

If the discretization is adequate (1/32, 1/64), as e.g. the
results from Figs. 9c) and 9d) suggest, lower integration
orders could be used for far terms, but also the integration
of near terms could be to a certain extent utilized even at the
highest considered frequency (90 GHz). Furthermore, basically
the behavior (i.e. convergence) of solution’s real part should
determine the convenient integration order, as the convergence
of the imaginary part is much smoother.

To summarize, if coarser mesh is utilized (1/8 and 1/16),
the convergence of the solution at higher frequencies (26 GHz
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Fig. 6. Effect of increasing frequency. Convergence of real (Re) and imaginary (Im) part of integral Amn depicted on (P,Q)-square. Combination of triangle
pairs: a) coplanar far terms (1− 2), b) coplanar near terms (1− 3), c) orthogonal far terms (1− 5), d) orthogonal near terms (1− 7).
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Fig. 7. Effect of surface discretization at 3.6 GHz. Convergence of integral Amn with respect to frequency, using several discretization schemes: a) 1/8, b)
1/16, c) 1/32, d) 1/64, e) 1/128. Each square (real and imaginary part at particular frequency includes integration orders from P = 1 . . . 20, Q = 1 . . . 20.
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Fig. 8. Effect of surface discretization at 26 GHz. Convergence of integral Amn with respect to frequency, using several discretization schemes: a) 1/8, b)
1/16, c) 1/32, d) 1/64, e) 1/128. Each square (real and imaginary part at particular frequency includes integration orders from P = 1 . . . 20, Q = 1 . . . 20.

and 90 GHz) is questionable, at best. On the other hand,
using more finer mesh (1/32, 1/64, 1/128), even at very high
frequencies such as 90 GHz, lower integration orders can be
used. However, simply utilizing a more finer mesh, results
in the significantly increased computational requirements, due
to a fully populated system matrices arising from the use of
integral equation formulations.

D. Relative Error

Finally, the decision about which level of discretization
should be used, will depend not only on the required level

of accuracy but also on the computational resources available.
This will be illustrated in the following.

The results from the previous sections will be utilized,
hence, we consider: five frequencies (0.7 GHz, 3.6 GHz, 6
GHz, 26 GHz, 90 GHz), five discretization schemes (1/8,
1/16, 1/32, 1/64, 1/128), and four triangle interaction types
(far and near, coplanar and orthogonal, respectively).

All the results, shown on Figs. 10 and 11, are represented
as relative error with respect to reference value according to:

Relative error =
|Iquadrature − Ireference|

|Ireference|
(12)

48 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 1, MARCH 2022



P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

P

Q
1

5

10

15

20

1 5 10 15 20

1-2

1-3

1-5

1-7

1/8 1/16 1/32 1/64 1/128
a) b) c) d) e)

Fig. 9. Effect of surface discretization at 90 GHz. Convergence of integral Amn with respect to frequency, using several discretization schemes: a) 1/8, b)
1/16, c) 1/32, d) 1/64, e) 1/128. Each square (real and imaginary part at particular frequency includes integration orders from P = 1 . . . 20, Q = 1 . . . 20.

where Iquadrature denotes the value at particular quadrature order
(P ,Q), while Ireference is the reference value selected as the
highest integration order, i.e. P = 20, Q = 20.

Fig. 10 depicts the convergence vis-à-vis relative error in
case of far triangle pairs, (1−2) and (1−5), while on Fig. 11
similar results are shown for near triangle pairs, (1 − 3) and
(1− 7).

From Fig. 10, in case of both coplanar and orthogonal far
terms, we can see a very rapid convergence with respect to
increasing integration order, on both real and imaginary part
of the solution. Moreover, it can be seen from Fig. 10 that
finer discretization (1/32) results in rather similar convergence
rate regardless of the frequency. Compared to that, coarser
discretization (1/8), i.e. larger size of triangular elements,
results in rather low convergence rate. This becomes particu-
larly pronounced as the frequency is increased, as the coarser
discretization schemes will result in a rather large relative
error, i.e. slower solution convergence, even when highest
integration order is utilized.

For example, if the required relative error is below ϵ =
10−5, at frequencies below 6 GHz, the choice between using
finer discretization versus higher integration rule is still open.
However, at 26 GHz and above, the only option is to use
finer mesh discretization, as even the highest quadrature rules
converge very slowly. Hence, depending on the required accu-
racy, i.e. relative error, at higher frequencies the only option
is to utilize finer discretization resulting in higher number of
triangular elements, and consequently, larger system matrix.

On the other hand, in case of near terms, as shown on
Fig. 11, although the relative error on the imaginary part
falls exponentially, it is nearly constant on the solution’s real
part, irrespective of the utilized frequency as well as the
discretization scheme, suggesting other approach rather than
purely numerical one should be considered.

E. Computational Considerations

From the previous analysis, we have seen that in some
cases it is not a straightforward decision whether to use finer
discretization or to utilize higher integration order. As already
mentioned, finer discretization raises the computational re-
quirements, related both to matrix fill time as well as matrix
storage.

In Table I parameters of the unit cube are given when unit
cube is scaled using several iteration steps n, n = 1, . . . , 8,
namely, triangles per unit cube are given, number of the
related triangle interactions (pairs) per cube side, as well as
the total number of RWG elements (pairs). Finally, Table I
shows the resulting matrix size and the memory allocation,
for the considered discretization schemes.

Table I shows that as the number of elements is increased,
the memory allocation becomes significant burden at finest
discretizations (1/64, 1/128), while even relatively coarse
discretizations such as 1/16 and 1/32 result in matrix size
where iterative solution procedures such as GMRES should
be considered.

The number of matrix elements and the related matrix size
in GB, when double precision is used, are shown on Fig. 12.

As shown on Fig. 12b), simply using finer mesh discretiza-
tion results in a very high number of matrix elements, and thus
prohibitively large requirements for the memory allocation.

Another important thing to consider is the time required to
fill the system matrix, which is directly related to the number
of elements as well as the number of operations, again related
to integration order. Fig. 13 shows the normalized CPU time
dependent on the combination of integration orders P and Q.

As seen from Fig. 13, obtained as an average value of
10.000 runs for each (P ,Q) combination, selecting lower
integration orders, even with modest number of integration
points, the computational time can be reduced in half. Again,
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Fig. 10. Far triangle terms convergence: coplanar pair (1 − 2), a) real part, and b) imaginary part, orthogonal pair (1 − 5), c) real part, and d) imaginary
part. All relative errors obtained with respect to P = 20, Q = 20 integration rule, using discretization schemes (1/8, 1/16, 1/32) at several 5G frequencies.
All x-axes denote P = Q = 1 . . . 20.
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Fig. 11. Near triangle terms convergence: coplanar pair (1− 3), a) real part, and b) imaginary part, orthogonal pair (1− 7), c) real part, and d) imaginary
part. All relative errors obtained with respect to P = 20, Q = 20 integration rule, using discretization schemes (1/8, 1/16, 1/32, 1/64, 1/128) at several
5G frequencies. All x-axes denote P = Q = 1 . . . 20.

50 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 1, MARCH 2022



TABLE I
PARAMETERS OF UNIT CUBE AND RELATED NUMBER OF ELEMENTS: n -

SCALING ITERATION; k - SCALING FACTOR; T - TRIANGLES PER UNIT
CUBE SIDE; L - NUMBER OF SPECIFIC TRIANGLE INTERACTIONS PER CUBE

SIDE; N - TOTAL NUMBER OF RWG ELEMENTS (FOR CUBE); NZ -
NUMBER OF ELEMENTS OF SYSTEM MATRIX; MEMORY ALLOCATION FOR

SYSTEM MATRIX.

k T =
22n+1

L =
[n·(n−
1)+1]2

N =
6T ·3/2

NZ =
(2N)2

Memory

n = 1 1/1 8 1 72 20.736 165 KB
n = 2 1/2 32 9 288 331.776 2,65 MB
n = 3 1/4 128 49 1152 5.308.416 42,4 MB

n = 4 1/8 512 169 4608 84.934.656 679,5
MB

n = 5 1/16 2048 441 18.432 1.35 E09 10,87
GB

n = 6 1/32 8192 961 73.728 2.17 E10 173,9
GB

n = 7 1/64 32.768 1849 294.912 3.47 E11 2,78 TB

n = 8 1/128 131.072 3249 1.179.648 5.56 E12 44,53
TB
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Fig. 12. a) Number of system matrix elements and b) resulting memory
allocation in GB using the double precision, depending on the scaling iteration
number n = 1, . . . , 8.
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the decision for this will depend on the required calculation
precision, as previously discussed.

F. Example of Optimal Integration Order Selection

Finally, the question as to which integration order to select
should be addressed. This can be illustrated on the following
example, as shown on Fig. 14, where each field from the
square denotes the total number of integration points used on
both triangles. So, for example, at integration order P=7, 13
integration points are used per triangle, hence, 26 points in
total for (P,Q) = (7, 7).

P=Q 1/8 1/16 1/32 1/64 1/128

a) b)

c) d)
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Fig. 14. Comparison of (P,Q) = (7, 7) with lower integration orders with
respect to discretization scheme: a) 1/16 - purple, b) 1/32 - red, c) 1/64
- blue, d) 1/128 - yellow. All coloured fields denote lower relative error
compared to (P,Q) = (7, 7).

For each (P,Q) combination, the relative error with respect
to reference value is determined according to (12). All the
coloured fields, at the respective discretization scheme, denote
the integration order with lower relative error compared to
considered (P,Q) = (7, 7) order. The reference value at
(P,Q) = (7, 7) is obtained using 1/8 discretization scheme.

Examples of several integration orders, namely (P,Q) =
(7, 7), (8, 8), (9, 9), (10, 10), and (11, 11), are considered at
discretization schemes (1/8 - green, 1/16 - purple, 1/32 - red,
1/64 - blue, 1/128 - yellow). All the coloured fields denote
the integration order with lower relative error compared to
considered P = Q order.

For example, consider situation where (P,Q) = (7, 7)
includes 26 integration points calculated at 1/8 discretization
level. At the discretization level 1/32, as shown on Fig. 14b),
all the red coloured fields denote integration orders with lower
relative error compared to (P,Q) = (7, 7). Hence, the number
of integration points in this case seems to be almost halved,
if only the integration points are considered. However, the
more accurate results were obtained at 1/32 discretization
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scheme, were there are 16 times more triangles compared
to 1/8 scheme, if the uniform mesh such as unit cube is
considered. Thus, this would contradict the previous statement
about the achieved savings. However, in many cases, it will not
be possible to have such as uniform mesh, as triangle element
size will be dictated not only by the problem frequency but
also by the geometry of the particular problem. In such cases,
it will be possible and even necessary to use the more adaptive
approach.

Similar results could be obtained for other discretization
schemes. These results suggest that, depending on the dis-
cretization scheme, it is possible to use lower integration order
and thereby, reducing the matrix fill time without actually
sacrificing the solution accuracy.

IV. CONCLUSION

In this paper, the suitability of numerical integration of the
double surface integral on various combinations of coplanar
and orthogonal triangles was investigated using a unit cube
test. Several examples of far triangles and near triangles
sharing an edge are considered at frequencies related to
5G systems. The results show that the numerical solution
at frequencies from the higher GHz range require the use
of higher quadrature orders as well as finer discretization
schemes, resulting in significantly increased requirements for
matrix storage as well as matrix fill time. On the other hand,
at lower GHz range, results suggest that when Dunavant’s
quadrature rules for triangles are utilized, depending on the
discretization scheme, lower integration orders could be used,
thereby facilitating the decrease of matrix fill time without
actually lowering the accuracy of the solution. Further investi-
gation should be carried out to examine how the (P,Q)-square
convergence tests could be facilitated to automate the selection
of the most suitable numerical integration order, both in terms
of accuracy and efficiency.
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