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Abstract—The AFB BJ+ DAC∗ is the latest variant of asyn-
chronous forward bounding algorithms used to solve Distributed
Constraint Optimization Problems (DCOPs). It uses Directional
Arc Consistency (DAC∗) to remove, from domains of a given
DCOP, values that do not belong to its optimal solution. However,
in some cases, DAC∗ does not remove all suboptimal values, which
causes more unnecessary research to reach the optimal solution.
In this paper, to clear more and more suboptimal values from a
DCOP, we use a higher level of DAC∗ called Full Directional
Arc Consistency (FDAC∗). This level is based on reapplying
AC∗ several times, which gives the possibility of making more
deletions and thus quickly reaching the optimal solution. Ex-
periments on some benchmarks show that the new algorithm,
AFB BJ+ FDAC∗, is better in terms of communication load and
computation effort.

Index Terms—DCOP, AFB BJ+ AC∗, Soft Arc Consistency,
Full Directional Arc Consistency.

I. INTRODUCTION

There are a large number of multi-agent problems that can
be modeled as DCOPs such as meetings scheduling [17],

sensor networks [7], [18], and so on. In a DCOP, variables,
domains, and constraints are distributed among a set of agents.
Each agent has full control over a subset of variables and
constraints that involve them [11]. A DCOP is solved in a
distributed manner via an algorithm allowing the agents to
cooperate and coordinate with each other to find a solution
with a minimal cost. A solution of a DCOP is a set of value
assignments, each representing the value assigned to one of
the variables of that DCOP. Algorithms with various search
strategies have been suggested to solve DCOPs [9], [10].
Among them, there are Adopt [19], BnB-Adopt [25], BnB-
Adopt+ [13], SyncBB [15], AFB [11], [21], AFB BJ+ [23],
AFB BJ+ AC∗ [1]–[3], AFB BJ+ DAC∗ [4], [5], etc.

In AFB BJ+ DAC∗, to find the optimal solution to a
given problem, the agents synchronously exchange a current
partial assignment (CPA) containing their assignments. During
this process, and to reduce the number of exchanges, each
agent uses directional arc consistency (DAC∗) to remove any
suboptimal values in its domain. The positive behavior of
DAC∗ depends closely on DCOP to be solved in terms of
its constraints and costs. This is what sometimes prevents
DAC∗ from behaving better in AFB BJ+ DAC∗ algorithm.
This often occurs in DCOPs where the constraints are sparse
or they are dense but most of their costs are zero. For that,
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we suggest in this paper to upgrade DAC∗ to the next higher
level, which is Full Directional Arc Consistency (FDAC∗).
The new algorithm is called AFB BJ+ FDAC∗ and allows
agents to perform AC∗ multiple times and thus remove more
suboptimal values from their domains.

Our experiments on different benchmarks show the superior-
ity of AFB BJ+ FDAC∗ algorithm in terms of communication
load and computation effort.

This paper is made up of three main sections. Section II
presents an overview of DCOPs, soft arc consistency rules,
AFB BJ+ AC∗ algorithm, and AFB BJ+ DAC∗ algorithm.
Section III gives a description of AFB BJ+ FDAC∗ algo-
rithm. Section IV exposes the experiments carried out on some
benchmarks.

II. BACKGROUND

A. Distributed Constraint Optimization Problem (DCOP)

A DCOP [12] is defined by 4 sets, set of agents A =
{A1, A2, ..., Ak}, set of variables X = {x1, x2, ..., xn}, set
of domains D = {D1, D2, ..., Dn}, each Di is the possible
values of xi in X , and set of soft constraints C = {Cij :
Di ×Dj → R+} ∪ {Ci : Di → R+}. In a DCOP, each agent
is fully responsible for a subset of variables and the constraints
that involve them.

In this paper, while maintaining the generality, we only
consider DCOPs in that each agent is responsible for a single
variable and that every two variables, at most, are linked by a
constraint (i.e., unary or binary constraint) [20].

We consider these notations : Aj is an agent, where j
is its level or rank in the default ordering. (xj , vj) is an
assignment of Aj , where vj ∈ Dj and xj ∈ X . Cij is a
binary constraint between xi and xj . Cac

ij is an identical copy
of the Cij constraint, used in AC∗ process. Cj is a unary
constraint on xj . Cϕ is the global zero-arity constraint that
represents a lower bound of any solution of a given DCOP. Cϕj
is the local zero-arity constraint that represents the contribution
value of Aj in Cϕ (i.e., Cϕ =

∑
Aj∈A Cϕj). UBj is the cost

of the optimal solution reached so far. [A1, A2, . . . , An] is
the lexicographic ordering of agents (the default ordering).
Γ(xj) = {Γ− : xi ∈ X | Cij ∈ C, i < j} ∪ {Γ+ : xi ∈
X | Cij ∈ C, i > j} is the set of neighbors of Aj . Γ−

(resp. Γ+) is the set of neighbors with a higher priority (resp.
with a lower priority). Y = Y j = [(x1, v1), . . . , (xj , vj)] is a
current partial assignment (CPA). v∗j is the optimal value of
Aj . lbk[i][vj ](Y j) are the lower bounds of a lower neighbor
Ak obtained for Y j . GC (resp. GC∗) are the guaranteed
costs of Y (resp. in AC∗). DV als is a list of n arrays
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P. 1: ProjectUnary()
1 β ← minvi∈Di {ci(vi)} ;
2 Cϕi ← Cϕi + β ;
3 foreach (vi ∈ Di) do
4 ci(vi)← ci(vi)− β ;

P. 2: ProjectBinary(xi, xj)
1 foreach (vi ∈ Di) do
2 α← minvj∈Dj {cij(vi, vj)} ;
3 foreach (vj ∈ Dj) do
4 cij(vi, vj)← cij(vi, vj)− α ;

5 if (Ai is the current agent)
6 ci(vi)← ci(vi) + α ;

containing deleted values. Each array, DV als[j], contains two
elements, listV als which is the list of values deleted by Aj

and UnvNbrs which is a counter of the Aj neighbors that
have not yet processed listV als. EV als is a list of arrays
containing extension values.

The guaranteed cost of Y (1) is the sum of cij involved in
Y .

GC(Y ) =
∑

Cij∈C

cij(vi, vj), (xi, vi), (xj , vj) ∈ Y (1)

If a CPA Y comprises a value assignment for each variable
of a given DCOP, then it is called a complete assignment (i.e.,
a solution). This solution is said to be optimal (2) when the
sum of all the constraint costs that it implies is minimal.

Y ∗ = argmin
Y

{GC(Y ) | var(Y ) = X} (2)

Fig.1 shows an example of a DCOP in which each agent
Ai ∈ A = {A1, A2, A3} takes control of a single variable
xi ∈ X = {x1, x2, x3}, each being defined on a domain
of values Di = {0, 1} in D = {D1, D2, D3}. Each pair of
variables in X is connected by a binary constraint Cij ∈ C =
{C12, C13, C23}. The costs of the combinations of values of
each constraint Cij are indicated in the side tables.

x1
x1 x2 c12
0 0 7

x1 x3 c13 C12
0 1 5

0 0 1 1 0 2
0 1 4

C13 x2
1 1 1

1 0 3
1 1 2

C23
x2 x3 c23
0 0 4

x3
0 1 8
1 0 5
1 1 2

Fig. 1. Example of a distributed constraint optimization problem (DCOP).

B. Soft Arc Consistency Techniques

Soft arc consistency techniques are used when solving a
given problem to delete values that are not part of the optimal
solution of that problem. To apply these techniques, we use
a set of transformations known as equivalence preserving

P. 3: Extend(xi, xj , E)
1 foreach (vi ∈ Di) do
2 foreach (vj ∈ Dj) do
3 cij(vi, vj)← cij(vi, vj) + E[vi] ;

4 if (Ai is the current agent)
5 ci(vi)← ci(vi)− E[vi] ;

P. 4: AC∗ ()
1 foreach (Ak ∈ Γ+) do
2 ProjectBinary(xj , xk) ;
3 ProjectBinary(xk, xj) ;

4 foreach (Ak ∈ Γ−) do
5 ProjectBinary(xk, xj) ;
6 ProjectBinary(xj , xk) ;

7 ProjectUnary() ;

transformations. They allow the exchange of costs between
the constraints of the problem according to three manners that
are a binary projection, a unary projection, and an extension.

The binary projection (P. 2) is an operation that subtracts,
for a value vi of Di, the smallest cost α of a binary constraint
Cij and adds it to the unary constraint Ci.

The unary projection (P. 1) is an operation that subtracts
the smallest cost β of a unary constraint Ci and adds it to the
zero-arity constraint Cϕ.

The extension (P. 3) is an operation that subtracts, for a
value vi of Di, the extension value (E[vi]) of vi from a unary
constraint Ci and adds it to the binary constraint Cij , with
0 < E[vi] ≤ ci(vi).

All of these transformations are applied to a problem under
a set of conditions represented by soft arc consistency levels
[16], namely:

Node Consistency (NC∗): a variable xi is NC∗ if each value
vi ∈ Di satisfies Cϕ + ci(vi) < UBi and there is a value
vi ∈ Di with ci(vi) = 0. A problem is NC∗ if each variable
xi of this problem is NC∗.

Arc Consistency (AC∗): a variable xi is AC∗ with respect
to its neighbor xj if xi is NC∗ and there is, for each value
vi ∈ Di, a value vj ∈ Dj which satisfies cij(vi, vj) = 0. vj
is called a simple support of vi. A problem is AC∗ if each
variable xi of this problem is AC∗.

Directional Arc Consistency (DAC∗): a variable xi is DAC∗

with respect to its lower neighbor xj(j>i) if xi is NC∗ and
there is, for each value vi ∈ Di, a value vj ∈ Dj which
satisfies cij(vi, vj)+ cj(vj) = 0. vj is called a full support of
vi. A problem is DAC∗ if each variable xi of this problem is
DAC∗ with its lower neighbors xj(j>i).

Full Directional Arc Consistency (FDAC∗): A problem is
FDAC∗ if this problem is AC∗ and DAC∗.

To make any problem AC∗, it is necessary to apply, for
each variable of this problem, a binary projection (P. 2), then
a unary projection (P. 1), and finally a deletion of non-NC∗

values. These three instructions are repeated each time a value
is deleted. In a distributed case, each agent Ai performs AC∗

locally (P. 4) and shares its contribution value stored in Cϕi (P.
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P. 5: DAC∗()
1 foreach (Ak ∈ Γ+) do
2 foreach (vk ∈ Dk) do
3 P [vk]← min

vj∈Dj

{cjk(vj , vk) + cj(vj)} ;

4 foreach (vj ∈ Dj) do
5 E[vj ]← max

vk∈Dk

{P [vk]− cjk(vj , vk)} ;

6 Extend(xj , xk, E) ;
7 ExtV als[jk].put(E) ;
8 ProjectBinary(xk, xj) ;

P. 6: ProcessPruning(msg)
1 if (msg.type = “Ok”)
2 ExtV als← msg.ExtV als ;
3 foreach (Ak ∈ Γ−) do
4 Extend(xk, xj , ExtV als[kj]) ;
5 ExtV als[kj].clear ;

6 DelV als← msg.DelV als ;
7 foreach (Ak ∈ Γ) do
8 foreach (a ∈ DelV als[k].listV als) do
9 Dk ← Dk − a ;

/* -----AC∗----- */
10 ProjectBinary(xj , xk) ;
11 ProjectUnary() ;

/* ------------- */
12 if (Dk is changed)
13 DelV als[k].nbUnvisitedNbrs.decrement(−1) ;
14 if (DelV als[k].nbUnvisitedNbrs = 0)
15 DelV als[k].listV als.clear ;

16 Cϕ ← max {Cϕ, msg.Cϕ}+ Cϕj ; Cϕj ← 0 ;
17 if (Cϕ ≥ UBj)
18 broadcastMsg : stp(UBj) ;
19 end← true ;

20 CheckPruning() ;
21 DAC∗() ; // here FDAC∗ is achieved
22 ExtendCPA() ;

1, line 2) with the other agents in order to calculate the global
Cϕ (i.e., Cϕ =

∑
Ai∈A Cϕi). Each agent Ai keeps locally

for each of its constraints Cij an identical copy marked by
Cac

ij and used in AC∗ procedure. During AC∗, Cac
ij constraints

are changed. To keep the symmetry of these constraints in
the agents, each agent Ai applies, on its copy Cac

ij , the same
action of its neighbor Aj and vice versa (P. 4, line 3, 5) [14].

In the same way, we can make any problem DAC∗. But in
this case, we must first extend (P. 3), for each variable, from
its unary costs to its binary costs, the minimum cost required
to perform again AC∗ by its lower neighbors (P. 5).

By executing AC∗ and DAC∗ successively for each variable,
we can make the problem FDAC∗.

C. AFB BJ+ AC∗ Algorithm

Each agent Aj carries out the AFB BJ+ AC∗ [3] [2] ac-
cording to three phases. First, Aj initializes its data structures
and performs AC∗ to delete suboptimal values from its domain
Dj . Second, Aj chooses, for its variable xj , a value from
its previously filtered domain Dj in order to extend the CPA

P. 7: CheckPruning()
1 foreach (a ∈ Dj) do
2 if (cj(a) + Cϕ ≥ UBj) ∨

((Aj = A1) ∧ (lb(Y ∪ (xj , a)) ≥ UBj))
3 Dj ← Dj − a ;
4 DelV als[j].listV als.add(a) ;

5 if (Dj is changed)
6 DelV als[j].nbUnvisitedNbrs← Aj .nbNbrs;
7 foreach (Ak ∈ Γ−) do
8 ProjectBinary(xk, xj) ;

9 if (Dj is empty)
10 broadcastMsg : stp(UBj) ;
11 end← true ;

Y j by its value assignment (xj , vj). If Aj has successfully
extended the CPA, it sends an ok? message to the next
agent asking it to continue the extension of CPA Y j . This
message loads the extended CPA Y j , its guaranteed cost (3),
its guaranteed cost of AC∗ (4), the Cϕ, and the list DV als.

GC(Y j)[j] = GC(Y j−1) +
∑

(xi,vi)∈Y j−1 | i<j

cij(vi, vj) (3)

GC∗(Y j)
(xi,vi)∈Y j−1

= GC∗(Y j−1) + cj(vj) +
∑

Cac
ij ∈C

cij(vi, vj) (4)

In case Aj fails to extend the CPA, either because it doesn’t
find a value that gives a valid CPA, or because all the values
in its domain are exhausted, it stops the CPA extension and
sends a back message, containing the same data structures as
an ok? message excluding GC and GC∗, to the appropriate
agent. If such an agent does not exist or the domain of Aj

becomes empty, Aj stops its execution and informs the others
via stp messages. A CPA Y j is said to be valid if its lower
bound (5) does not exceed the global upper bound UBj , which
represents the cost of the optimal solution achieved so far.

LB(Y j)[i] = GC(Y j)[i] +
∑

Ak>Aj

LBk(Y
j)[i] (5)

Third, Aj evaluates the extended CPA by sending fb?
messages, which hold the same data structures as an ok?
message excluding Cϕ and DV als, to unassigned agents
asking them to evaluate the CPA and send the result of the
evaluation. When an agent has completed its evaluation, it
sends the result directly to the sender agent via an lb message.
The evaluation is based on the calculation of appropriate lower
bounds for the received CPA Y i. The lower bound of Y i (6) is
the minimum lower bound over all values of Dj with respect
to Y i.
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P. 8: AFB BJ+ FDAC∗ ()
1 UBj ← +∞ ;
2 v∗j ← empty ;
3 Y ← [] ;
4 GC[i..j − 1]← [0, ..., 0] ;
5 lbk[0][vj ]

(Ak>Aj)∧(vj∈Dj)

← minvk∈Dk {cjk(vj , vk)} ;

6 mustSendFB ← True ;
7 Cϕ ← 0; Cϕj ← 0 ;
8 GC∗[i..j − 1]← [0, ..., 0] ;
9 ∀a ∈ Dj , cj(a)← 0 ;

10 AC∗() ;
11 if (Aj = A1)
12 Cϕ ← Cϕ + Cϕj ;
13 Cϕj ← 0;
14 CheckPruning() ;
15 DAC∗() ; // here FDAC∗ is achieved
16 ExtendCPA() ;

17 while (¬end) do
18 msg ← getMsg() ;
19 if (msg.UB < UBj)
20 UBj ← msg.UB ;
21 v∗j ← vj ;

22 if (msg.Y is stronger than Y )
23 Y ← msg.Y ;
24 GC ← msg.GC ;
25 clear irrelevant lb() ;
26 reset Dj ;

27 switch (msg.type) do
28 case ok? do
29 mustSendFB ← True ;
30 GC∗ ← msg.GC∗ ;
31 ProcessPruning(msg) ;

32 case back do
33 Y ← Y j−1 ;
34 ProcessPruning(msg) ;

35 case fb? do
36 GC∗ ← msg.GC∗ ;
37 foreach (vj ∈ Dj) do
38 cost← Cϕ +GC∗(Y j−1) + cj(vj) ;
39 if (cost ≥ UBj)
40 Dj ← Dj − vj ;

41 sendMsg : lb
to Ai

(lbj(Y
i)[], msg.Y ) ;

42 case lb do
43 lbk(Y

j)← msg.lb ;
44 if (lb(Y j) ≥ UBj)
45 ExtendCPA() ;

46 case stp do
47 end← true ;

LBj(Y
i)[h]

(h≤i<j)

= min
vj∈Dj

{ ∑
(xk,vk)∈Y h

(k≤h)

ckj(vk, vj)+

i−1∑
k=h+1

(h<k<i)

min
vk∈Dk

{ckj(vk, vj)}+ cij(vi, vj)+

∑
xk∈Γ+(xj)

(k>j)

min
vk∈Dk

{cjk(vj , vk)}
}

(6)

P. 9: ExtendCPA()

1 vj ← argmin
v
′
j∈Dj

{
lb(Y ∪ (xj , v

′
j))

}
;

2 if (lb(Y ∪ (xj , vj)) ≥ UBj) ∨
(Cϕ +GC∗(Y j−1) + cj(vj) ≥ UBj)

3 for i← j − 1 to 1 do
4 if (lb(Y )[i− 1] < UBj)
5 sendMsg : back

to Ai

(Y i, UBj , DelV als, Cϕ) ;

return ;

6 broadcastMsg : stp(UBj) ;
7 end← true ;

8 else
9 Y ← {Y ∪ (xj , vj)} ;

10 if (var(Y ) = X)
11 UBj ← GC(Y ) ;
12 v∗j ← vj ;
13 Y ← Y j−1 ;
14 CheckPruning() ;
15 ExtendCPA() ;

16 else
17 sendMsg :

ok?
to Aj+1

(Y,GC,UBj , DelV als, ExtV als, Cϕ, GC∗) ;

18 ExtV als.clear ;
19 if (mustSendFB)
20 sendMsg : fb?

to Ak
k>j

(Y, GC, UBj , GC∗) ;

21 mustSendFB ← false ;

D. AFB BJ+ DAC∗ Algorithm

The AFB BJ+ DAC∗ [4] algorithm follows the same steps
as AFB BJ+ AC∗ algorithm except that it performs DAC∗

instead of AC∗. With AC∗, we can find for each value of a
given agent the corresponding simple support in the domains
of its lower and higher neighbors. While with DAC∗ which is
the next level of AC∗ and the best in reducing the domains of
a given DCOP, we can find for each value of a given agent
the corresponding full support in the domains of its lower
neighbors only (§II-B).

III. THE AFB BJ+ FDAC∗ ALGORITHM

In AFB BJ+ FDAC∗ algorithm, instead of using AC∗ and
DAC∗ separately as in previous versions, we use FDAC∗

which provides the same effect of both together.
FDAC∗ as mentioned in section II-B is executed by exe-

cuting AC∗ and DAC∗ successively. This allows getting for
each domain value of each variable simple support in the
domains of its higher neighbors (Γ−) and full support in
the domains of its lower neighbors (Γ+). With FDAC∗, we
can continuously exchange costs between agents, from unary
constraints to binary ones and vice versa. This allows the unary
costs of each agent and the global zero-arity constraint (Cϕ)
to be continuously updated. So, with these updates, we can
significantly reduce the agent domain. In short, FDAC∗ is a
technique that allows agents to choose more precisely the best
values for their variables by removing more and more invalid
values in their domains.
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The skeleton of AFB BJ+ FDAC∗ algorithm is different
from those of AFB BJ+ AC∗ and AFB BJ+ AC∗ in two
things:

The first one is the DAC∗ procedure (P. 5), which is
responsible for finding, for each value of an agent, its full
support in the domains of its lower neighbors. In DAC∗

procedure, only a part of the unary costs of a given agent
is transferred to its lower neighbors as extension values, not
the total of those costs as in AFB BJ+ DAC∗ algorithm. This
is so that the AC∗ condition that this agent must keep with its
higher neighbors is not violated (P. 5, line 2-5) [16].

The second is the condition (P. 7, line 2) that allows the
first agent to permanently delete the values having a global
lower bound exceeding the global upper bound and the values
that it has already evaluated. This condition remains correct
only for the first agent according to the static order of agents.
This is because the first agent does not have a previous agent,
which allows it to permanently delete any value that proved
to be inconsistent.

A. Description of AFB BJ+ FDAC∗

The AFB BJ+ FDAC∗ (P. 8) is performed by each agent
Aj as follows :
Aj starts with the initialization step (P. 8, line 1-10) in which

it performs the AC∗ (P. 4). If Aj is the 1st agent (P. 8, line 11),
it filters its domain by calling CheckPruning() (P. 7), then
performs DAC∗() (P. 5) after AC∗ to ensure the achievement
of the FDAC∗, and finally calls ExtendCPA() to generate a
CPA Y .

Next, Aj starts processing the messages (P. 8, line 17). First,
it updates UBj and v∗j (P. 8, line 21). Then, Aj updates Y
and GC and erases all unrelated lower bounds if the received
CPA (msg.Y ) is fresh compared to the local one (Y ) (P. 8,
line 22). Thereafter, Aj restores all temporarily deleted values
(P. 8, line 40).

When receiving an ok? message (P. 8, line 28),
Aj authorizes the sending of fb? messages and calls
ProcessPruning() (P. 6).

When calling ProcessPruning() (P. 6), Aj deals initially,
for ok? messages only, with extensions of its higher neighbors
(P. 6, line 1-5). Afterward, it updates its DV als, then its
neighbors’ domains separately in order to keep the same
domains as these agents (P. 6, line 6-9). After that, it performs
once more the AC∗ (P. 6, line 10-11). Next, Aj decrements
the unvisited neighbors of Ak, DV als[k].UnvNbrs, and then
checks whether it is the last visited neighbor of this agent Ak

in order to reset its list of deleted values DV als[k].listV als
(P. 6, line 12-15). Then, Aj updates its global Cϕ (P. 6,
line 16). If Cϕ exceeds the UBj , Aj turns off its execution
and notifies the others (P. 6, line 17-19). Finally, Aj calls
CheckPruning() to prune its domain, DAC∗() (P. 5) to
achieve FDAC∗, and ExtendCPA() to extend the received
CPA (P. 6, line 20-22).

When calling DAC∗() (P. 5), Aj performs the proper ex-
tensions from Cj to each Cij (P. 5, line 6-7). To do that, Aj

calculates, for each value vj of Dj , its extension value (P. 5,
line 4-5) based on the prior computation of the values of the

TABLE I
TOTAL OF MESSAGES (msgs) SENT AND NON-CONCURRENT CONSTRAINT

CHECKS (ncccs) FOR SOFT GRAPH COLORING, p1 = 0.4

ncccs msgs
n 6 8 10 12 14 6 8 10 12 14

AFB BJ+ 920 3,015 10,975 29,681 163,841 97 437 1,970 6,142 35,715
AFB BJ+ AC∗ 518 1,588 7,231 22,454 134,629 69 320 1,758 5,601 33,841
AFB BJ+ DAC∗ 450 951 5,218 15,909 127,919 57 234 980 3,631 21,160
AFB BJ+ FDAC∗ 389 733 4,112 13,501 122,811 41 191 723 2,101 17,020
BnB-Adopt+ DP2 544 4,018 129,967 171,125 32,402,765 136 1,262 34,772 356,984 7,215,399

TABLE II
TOTAL OF MESSAGES (msgs) SENT AND NON-CONCURRENT CONSTRAINT

CHECKS (ncccs) FOR SOFT GRAPH COLORING, p1 = 0.7

ncccs msgs
n 6 8 10 12 14 6 8 10 12 14

AFB BJ+ 3,885 12,555 81,753 554,524 3,107,810 363 1,370 10,810 79,748 470,466
AFB BJ+ AC∗ 2,292 8,654 63,544 467,559 2,677,628 298 1,249 10,055 75,373 448,832
AFB BJ+ DAC∗ 1,421 5,019 59,214 349,706 1,651,628 189 867 7,283 65,893 332,850
AFB BJ+ FDAC∗ 912 3,105 57,905 280,711 1,011,208 101 751 5,117 60,295 295,702
BnB-Adopt+ DP2 11,199 267,981 10,247,929 98,450,964 100,000,042 2,153 49,883 1,606,033 12,940,164 11,736,067

A B C D
0

200

400

600

800

1,000

case

nu
m

be
r

of
m

es
sa

ge
s

AFB BJ+

AFB BJ+ AC∗

AFB BJ+ DAC∗

AFB BJ+ FDAC∗

BnB-Adopt+-DP2

A B C D
0

2,000

4,000

6,000

case

nu
m

be
r

of
nc

cc
s

AFB BJ+

AFB BJ+ AC∗

AFB BJ+ DAC∗

AFB BJ+ FDAC∗

BnB-Adopt+-DP2

Fig. 2. Total of messages (msgs) sent and non-concurrent constraint
checks (ncccs) for meetings scheduling

later projections on its lower neighbors (P. 5, line 2-3) [16].
Once completed, Aj performs a binary projection to keep the
symmetry of Cac

ij constraints (P. 5, line 8). It should be noted
that the direction taken into account by each agent Aj for the
extension of its costs is towards its lower neighbors (Γ+(xj)).

When calling CheckPruning() (P. 7), Aj deletes any value
from its domain for which the sum of the Cϕ with the unary
cost of this value exceeds UBj . If Aj is the first agent, it also
deletes any value whose global lower bound exceeds UBj and
any value has already been evaluated (P. 7, line 2-3). With each
new deletion, Aj initializes the number of its neighbors not yet
visited (P. 7, line 5-6). Then, it performs a binary projection
to keep the symmetry of Cac

ij constraints (P. 7, line 8). If Aj

domain becomes empty, Aj turns off its execution and notifies
the others (P. 7, line 9-11).
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Fig. 3. Total of messages (msgs) sent and non-concurrent constraint
checks (ncccs) for sensors network

When calling ExtendCPA() (P. 9), Aj looks for a value
vj for its variable xj (P. 9, line 1). If no value exists, Aj

returns to the priority agents by sending a back message to the
contradictory agent (P. 9, line 2-5). If no agent exists, Aj turns
off its execution and notifies the others via stp messages (P. 9,
line 6-7). Otherwise, Aj extends Y by adding its assignment
(P. 9, line 9). If Aj is the last agent (P. 9, line 10) then a new
solution is obtained and the UBj is updated, which obliges
Aj to call CheckPruning() to filter again its domain and
then ExtendCPA() to proceed the search (P. 9, line 11-
15). Otherwise, Aj sends an ok? message loaded with the
extended Y to the next agent (P. 9, line 17) and fb? messages
to unassigned agents (P. 9, line 20).

When Aj receives an fb? message, it filters its domain Dj

with respect to the received Y (P. 8, line 36-40), calculates the
appropriate lower bounds (6), and immediately sends them to
the sender via lb message (P. 8, line 41).

When Aj receives an lb message, it stores the lower bounds
received (P. 8, line 43) and performs ExtendCPA() to modify
its assignment if the lower bound calculated, based on the cost
of Y (5), exceeds the UBj .

B. Correctness of AFB BJ+ FDAC∗

Theorem 1. AFB BJ+ FDAC∗ is guaranteed to calculate the
optimum and terminates.

Proof. The AFB BJ+ FDAC∗ algorithm overrides its previ-
ous versions by performing both AC∗ and DAC∗, which is
essentially just a set of cost extensions performed between
an agent and its neighbors after performing AC∗. These

extensions have already been proved which are correct in [16]
[8], and they are executed by the AFB BJ+ FDAC∗ without
any cost redundancy (P. 3, line 4), (P. 5, line 8), and (P. 6, line
1-5).

IV. EXPERIMENTAL RESULTS

In this section, we experimentally compare
AFB BJ+ FDAC∗ algorithm with its previous versions,
AFB BJ+, AFB BJ+ AC∗, and AFB BJ+ DAC∗, and
with BnB-Adopt+ DP2 algorithm [6], which is its famous
competitor. Three benchmarks are used in these experiments:
soft graph coloring, meetings scheduling, and sensors
network. All experiments were performed on DisChoco 2.0
platform [22], in which agents are simulated by Java threads
that communicate only through message passing.

Soft graph coloring [25]: are defined by (n, c, p1), which
are respectively the number of nodes (i.e., variables), the num-
ber of possible colors of each node, and the constraint density.
The constraints are applied to adjacent nodes. We evaluated
two classes of instances (n = 6 .. 14, c = 8, p1 = 0.4) and
(n = 6 .. 14, c = 8, p1 = 0.7). For the constraint costs, they
were randomly selected from the set {0, . . . , 100}. For each
p1, we randomly generated an average of 30 instances.

Meetings scheduling [23]: are defined by (m, p, ts), which
are respectively the number of meetings (i.e., variables), the
number of participants, and the number of time slots for each
meeting. Each participant has a private schedule of meetings
and each meeting takes place at a particular location and at
a fixed time slot. The constraints are applied to meetings that
share participants. We have evaluated 4 cases A, B, C, and D,
which are different in terms of meetings/participants [17].

Sensors network [7]: are defined by (t, s, d), which are
respectively the number of targets (i.e., variables), the number
of sensors, and the number of possible combinations of 3
sensors reserved for tracking each target. A sensor can only
track one target at most and each combination of 3 sensors
must track a target. The constraints are applied to adjacent
targets. We have evaluated 4 cases A, B, C, and D, which are
different in terms of targets/sensors [17].

To compare the algorithms, we use two metrics which are
the total of messages exchanged (msgs) that represents the
communication load and the total of non-concurrent constraint
checks (ncccs) that represents the computation effort.

In tables I and II, we display respectively the results of
experiments carried out on coloring problems of sparse (p1 =
0.4) and dense (p1 = 0.7) graphs. The comparison of these
results shows an improvement of AFB BJ+ FDAC∗ algorithm
reaching 4,000 messages (resp. 5,000 checks) in the sparse
case, and reaching 30,000 messages (resp. 600,000 checks) in
the dense case. As for BnB-Adopt+ DP2 algorithm, it remains
largely delayed compared to the other algorithms.

Regarding meetings scheduling problems (Fig. 2), the re-
sults show a clear improvement of AFB BJ+ FDAC∗ com-
pared to others, whether for msgs or for ncccs. But with re-
gard to sensors network problems (Fig. 3), BnB-Adopt+ DP2
algorithm retains the pioneering role, despite the superiority
of AFB BJ+ FDAC∗ algorithm to its previous versions.
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By analyzing the results, we can conclude that the
AFB BJ+ FDAC∗ is better than its prior versions, because
of the existence of Full Directional Arc Consistency (FDAC∗)
that allows agents to reapply AC∗ multiple times and thus
remove more suboptimal values. Regarding the superiority
of BnB-Adopt+ DP2 over AFB BJ+ FDAC∗ in sensors net-
work problems, this is mainly due to the arrangement of the
pseudo-tree used by this algorithm that corresponds to the
structure of these problems, as well as the existence of DP2
heuristic that facilitates the proper choice of values.

V. CONCLUSION

In this paper, we have introduced the AFB BJ+ FDAC∗

algorithm. It relies on Full Directional Arc Consistency
(FDAC∗) to further reduce the agent domains of a given DCOP
and thus quickly reach its optimal solution. FDAC∗ makes
it possible to perform more cost extensions from each agent
to its neighbors. This allows reapplying over and over again
the AC∗, which increases the number of deletions carried out
by each agent and thus accelerates the process of solving
a problem. Experiments on some benchmarks show that the
AFB BJ+ FDAC∗ algorithm behaves better than its previous
versions. As future work, we propose to generalize the use
of soft arc consistency in its different levels with DCOP
algorithms.
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