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Abstract—Parallelization has become a universal technique
for computing an intensive scientific simulation to shorten the
execution time of complex problems. It consists of bringing
together the power of several thousand processors to perform
complex calculations at high speed. The choice of the runtime
environment to execute parallel programs significantly influences
the execution time. For this reason, this article aims to materialize
the impact of computing architectures on the performance of
parallel implementations. To better achieve this contribution,
we have implemented the heat equation executed on CUDA
platform and we have compared the results with those of SkelGIS
implementation from the literature. Through the results of the
experiments, we demonstrated that the execution time of the
CUDA implementation on graphics processing unit (GPU) is
almost 100X faster for very large meshes compared to the other
implementations.

Index Terms—CUDA, GPU, Parallel implementation, Parallel
architecture, Heat equation.

I. INTRODUCTION

CCORDING to [1], the computing architecture must

present high-performance functionalities on a large scale,
so as not to be an obstacle to the performance and efficiency
of the program. Because if the execution environment does
not evolve and the deployment time of the application is
long, the profitability of the program is reduced by the
time lost by the execution of the environment. Computing
architectures are today more than ever under pressure to better
serve scientific simulations and new applications requiring
workloads. Processors or Central Processing Unit(CPU) focus
on individual tasks and speed of execution. This makes it
particularly well suited for tasks ranging from serial processing
to running databases. Then the CPU focuses on processing
a task as fast as possible. However, graphics processors or
Graphics Processing Unit(GPU) have evolved to also become
more generalist parallel processing processors to process the
maximum possible tasks or a task for a maximum of data
without exceeding a margin of time. In order to benefit
from the services of these two types of processors, NVIDIA
proposed in 2006 a new parallel programming platform called
CUDA (Compute Unified Device Architecture) which supports
the joint CPU and GPU execution of an application [2]. CUDA
is based on the C language with a handful of extensions of
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certain keywords allowing heterogeneous programs[3]. CUDA
offers simple APIs to manage devices, memory, and more[4].

Parallelization of scientific simulations consist to ameliorate
performance on many different sets of computers[5]. Indeed
many simulations have been some obstacles to be parallelized
because of lack of time to program new parallel algorithm or
lack of powerful hardwires such as GPUs. The well-known
scientific simulation is the heat equation [6] because it is
used generally in various scientific fields such as diffusion
processes in physics, parabolic partial differential equations
in mathematics, Black-Scholes option pricing in finance, and
Brownian motion in probability [7]. The heat equation is the
standard example of physical processes which can be modeled
as a parabolic partial differential equation (PDE) [8], initially
introduced in 1811 by Jean Baptiste Fourier. This problem
can occur in one-dimensional [9], two-dimensional [10], three-
dimensional bioheat equation [11] or n-dimensional [12] phys-
ical objects. Solving the heat equation problems of paramount
importance in physics, applied mathematics, engineering, and
medicine. In a Cartesian mesh (two-dimensional mesh), the
prediction of the temperature distribution with the boundary
conditions will be easier if the size of the domain is very
small (see Figure 1(a)). In this figure, the redness indicates
the temperature at each point, while the blue dots indicate
the cold region. Over time, the heat diffuses into the cold
area and the hot area gradually cools down until the grill
reaches a uniform temperature. However, to iteratively predict
the interior values (i, j) considering a Cartesian mesh of
domain size 10000x10000, with 5000 iterations, the simulation
will be more complicated as the size of the grid increases,
and the the results will be less precise. This is why parallel
implementations of the heat equation become so necessary to
benefit from parallel architectures and have good results.

In the literature, there is many parallel implementations
proposed to solve the heat equation in many domains [13]. The
majority of these implementations were implemented using
CUDA. However, each paper presented differently his contri-
bution in depending on the handled problem and its mathemat-
ical modeling. For example in [10], the authors proposed a par-
allel solution of the three-dimensional heat equation through
three implementations, namely, CUDA, MPI, and Open Multi-
Processing (OpenMP). The proposed implementations consist
in computing the temperature values on a discrete number of
nodes in the mesh. The results obtained were compared with
general-purpose CFD software to describe the relationship be-
tween the grid size and the execution time of each implementa-
tion. The authors concluded that as the computational domain
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increases, from 100x100x100 to 500x500x500, the running
time gradually increases. Based on these results, the GPU run-
time of the CUDA implementation was the best compared to
MPI and OpenMP. The resolution of the three-dimensional
heat equation was not limited to this contribution, there is
another one that used alternating direction implicit (ADI) [14]
method to split the multidimensional into the three steps. The
authors called these steps X-sweep, Y-sweep, and Z-sweep.
In this paper, the heat equation was implemented using ADI-
CUDA on GPU. To evaluate the proposed contribution, the
authors compared the execution time obtained by ADI-CUDA
implementation with those obtained by ADI implementation.
Through this comparison, ADI-CUDA was the fastest for all
grid sizes, from 10x10x10 to 50x50x50, except the first one
and the speedup up to 11X. The ADI implementation took
a long time because the resolution of multidimensional mesh
was computationally expensive. Nevertheless, the CUDA-ADI
implementation was the most rapidly due to the use of the
local memory of the thread on the GPU. For solving the heat
equation in parallel, [15] proposed a parallel model called
SIPSim (Structured Implicit Parallelism on scientific Simula-
tions). The implementation of this model called SkelGIS was
programmed using C++ Libraries for resolving two cases of
simulations: simulations on two-dimensional meshes particu-
larly heat equation and network simulations. To evaluate the
performance of SkelGIS, the authors compared the execution
time of the proposed implementations with MPIL. As a result,
SkelGIS had better performance than the MPI version to solve
a large mesh size (20000x20000 and 5000 iterations) up to
2048 cores. According to all the experiments carried out,
where the mesh size was smaller than 20000, MPI rarely
had better performance than SkelGIS. The authors concluded
that SkelGIS was quite scalable when an expensive simulation
needs to be calculated.

The organization of this paper is as follows: Section II
describes the main contribution of this paper. Section III
presents the mathematical modeling of the heat equation.
Then, the section IV illustrates the CUDA platform to clar-
ify fundamental components and their impact. Section V is
devoted to the parallel implementations using CUDA and
SkelGIS. The results and discussions are presented in section
VI. Finally, the last section contains the conclusion.

II. OUR CONTRIBUTION

The main contribution of this paper consists to illustrate
the impact of the runtime environment on the efficiency of
parallelization. Because the runtime environment must allow
communications that can be a critical factor in performance
[1]. For example, in GPU, the communication between CPU
and GPU, or the data movement, is an important part of the
calculation. So, many researches evaluated the performance of
CPU-GPU communication [16], [17]. In this paper, the impact
of the runtime environment was evaluated by comparing two
parallel implementations of the heat equation executed on two
different runtime environments. The fist parallel implementa-
tion [15] used a new library SkelGIS to resolve the heat equa-
tion. This implementation was executed on a supercomputer.
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For the second parallel implementation, we had implemented
it using CUDA on GPU. To better achieve the comparison, the
experiences of the first implementation were respected, namely
the mesh size started from 5120x5120 to 20000x20000. By
comparing these two different environments, the main goal
was to know the gain and the performance of each one.

III. MATHEMATICAL MODELING OF THE HEAT EQUATION

The heat equation allows a great improvement in the math-
ematical modeling of the phenomena of temperature propaga-
tion in various fields such as physics, medicine and industry.
The importance of this equation has aroused great interest
from many researchers who have continuously put their efforts
into solving this equation using many numerical methods,
depending on their field of study. Rainer Kress defined the
heat equation [18] as follow: ” The temperature distribution u
in a homogeneous and isotropic heat-conducting medium with
conductivity k, heat capacity ¢ and mass density p satisfies
the partial differential equation™. This equation is written in
the following form:

2 2

ot ox?  0y?
where the function U(x,y,t) designates the temperature at point
(x,y) and at the time iteration t. It should be noted that
the heat equation needs to be discretized through modern
numerical methods according to [19], in particular those
dedicated to the resolution of nonlinear PDEs. The most
appropriate method for solving two-dimensional heat equation
is the FDM [20]. This numerical method is based on the
derivation from Taylors polynomial and used a regular mesh,
typically a Cartesian grid (see Figure 1(b)) to discretize the
spatial domain. The discretization step consists in replacing
the continuous operators with their discrete approaches. The
discretization of the continuous PDE is always replaced by
a numerical approximation as it appeared in figure 2. In
this particular circumstance, the word “discrete” implies that
the numerical solution is defined only in a finite number of
points of the physical space. Then, the calculation step is
done through a numerical implementation of the approximate
equation.

There are three schemes of FDM [22], firstly, the forward
time centered space (FTCS) or explicit scheme which is con-
sidered as the least complex method based on the mathematical
discretization for solving PDE through algebraic equations
[10]. Then, the backward time centered space (BTCS) or im-
plicit scheme is more complicated than the precedent scheme.
Finally, Crank-Nicolson scheme which combined between
both precedent scheme. Therefore, this paper aimed to use
the explicit scheme [21] to approximate the derivative at each
mesh point in order to obtain the discrete-space model.

The type of mesh considered in this paper is Cartesian, with
x; = 1Az, y; = jAy and t, = nAt. To discretize the partial
derivatives in time of the left hand side of (1), we use the right
hand side approximation, then we have :

aU(xl) yj,tn) - U(xiaijtn + At) - U(l'iaijtn)
ot - At

2
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Fig. 1. Cartesian mesh, (a) with heat transfer, (b) with boundaries condition.

The right hand side of (1) is approximated with the central
approximation of second derivatives to get :

82U($iayj7tn> N
0x2 -
Uz + Az, yj,tn) — 2U (24,5, tn) + Uz — Az, y;,ty,)
Ax?
3

aQU($i, Y, tn) ~
0y?

Ay?

“)

Both the time and space derivatives are replaced by finite

differences, we are using U(x;,y;,t,) = UJ"; to simplify the
writing. Then, Equation (1) is approximated with :

n+1 n
Ui — Ul _

At
1y = 205 Uy Ul = 2055 + U
Ax? Ay?

Rearranging Equation (5) by supposing that Ax = Ay we
obtain the equation as follows:

UMt = (1= 4NUP; + AUP UMy + Uy + U )

=1
(6)
_ At
where \ = Az < 0.5.
Finite Solution
Continuous  Difference Discrete Method U’-t-appmximatiurl
PDEfor —————————* Difference — & b

to Uix, y.t)

Uix. y.t) Equation

Fig. 2. Relationship between continuous and discrete problems[21].
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IV. CUDA PLATFORM

This section presents a detailed study on the CUDA platform
used including a description of its parallel architecture, a
presentation of its essential components, and above all an
overview of the impact shown by the purpose of the software.

A. CUDA Architecture

The CUDA architecture is based on three hierarchical parts
that help the programmer to use efficiently all the computing
capacities of the graphics card. The CUDA architecture divides
a hierarchical structure into grids, blocks, and threads, as
shown in figure 4. CUDA names the function which will be
executed in parallel kernel. This function is always started by
the CPU and executed by the GPU. When running a kernel
a set of threads is assigned and organized into one, two, or
three-dimensional thread blocks. Each block in a grid contains
the same number of threads, which will be sent to different
cores of the same streaming multiprocessor (SM) and will be
executed in parallel (see figure 3); while different blocks can
also be executed on different SMs in parallel. The blocks are
grouped in a one, two, or three-dimensional grid. Blocks are
organized in an array (1D or 2D or 3D) of threads, each block
has a unique (blocked) block ID in a grid. Threads execute
the instructions specified by the kernel function; each thread

Thread

|I| Executed by

Thread Block

Fig. 3. Grid execution on GPU.

Streaming Multiprocessor [SM)

GPU
Executed by E - E

Executed by .
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Fig. 4. CUDA architecture: thread, block and grid.

has a unique thread ID (Threadldx) in a block. This article
used the NVIDIA GeForce GTX 750Ti GPU which is based
on the maxwell architecture with five SM, each comprising
128 streaming processors (SP). In order to run a kernel on the
GPU, the CPU allocates the necessary memory on the GPU
and then transfers the data to the allocated memory. Then the
CPU can call and run the kernel on the GPU. Finally, the
results are returned to the CPU.

CUDA threads can access data from several types of memo-
ries while they are running, as shown in figure 5. Each thread
in a block has its own registers used to store data relating
to threads, frequently used by the thread such as the counter.
Registers represent a quick space in the memory hierarchy but
have little space. Each block in a grid has fast shared memory,
but its size is smaller than the overall memory; it is commonly
used for communication between threads of the same block.
There is also constant memory. This is read-only memory
space accessible by all threads in the grid. All threads in a
grid have access to global memory; it is the slowest memory
but has the largest size. This memory allows communication
between all the blocks of the grid and the transfer of data
between CPU and GPU.

B. Software Impact

The paper [10] developed a three-dimensional code to nu-
merically solve the heat conduction equation on three parallel
platforms which are MPI, OpenMP, and CUDA. The paper
performed a comparison of computing time on the three par-
allel computing platforms over the serial program in different
grid sizes ranging from 100x100x100 up to 500x500x500. The
results of this article showed that the time taken by CUDA
was always the best compared to that of MPI and OpenMP,
for example in the case of large grid CUDA executed the
program in 109.36(s) on the other hand, MPI in 511.27(s) and
OpenMP in 454.8(s).

The use of CUDA is not limited to solving the heat
equation [14][15][11] but several works that have used CUDA
to solve other problems namely the parallel implementation
of the hybrid intuitionistic fuzzy edge detection algorithm
[23], the routing based on the neural network thanks to the
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Thread Block (3,1)

Thread Thread

Thread

Blockiz,0)

Block(3, 1]

parallelism exploit [24], the calculation of the correlation
function of ensembles of Pseudo-random sequences formed
automatically by CUDA program [25], and optimization of
tasks that require massively parallel calculations to produce an
effective implementation of the integral image algorithm[26].

V. PARALLEL IMPLEMENTATIONS

This section presents two different implementations of the
two-dimensional heat equation. The parallel implementation
via the CUDA platform is the contribution of this paper, Com-
pared with the SkelGIS implementation that was published in
the literature[15].

A. CUDA Implementation

This section presents the CUDA implementation of the
two-dimensional heat equation. According to (6), the parallel
implementation [27] for solving the heat equation will be more
practical using CUDA (see algorithm 1).

From the algorithm 1, the symbols Temp,;;, Temp,, ..,
represent in (6), respectively, U{fj, Uf;r L The symbols
i,j represent x and y. For the neighbours Temp, [east],
Temp,, [west], Temp, [north|, and Temp,,[south| rep-
resent, respectively, Uﬁu,j’ Ui"_Lj, Ui’}jH, and Ui’fj_l. A
CUDA program is sorted into a host program, comprising at
least one successive thread executing on the host CPU, and
at least one parallel kernel which is suitable for execution on
a parallel processing device as a GPU. The parallel imple-
mentation of the heat equation using CUDA starts with many
initialization such as the size of the mesh (with x and y),
the number of Jacobi iterations, the temperature condition and
declaration of pointers to Host (CPU) and peripheral memories
(GPU). Then, for the computation, the code contains two
allocations: an allocation of an array on the Host and a memory
allocation on the Device to copy the data from the Host to the
Device. In addition, lines 7 and 8 of the algorithm 1 consist
in assigning a 2D distribution of CUDA ”threads” within each
CUDA ”block” and calculating the number of blocks in the
CUDA ~grid”. The main loop of the program is the Laplace
function (see Algorithm 1) which calculates the values of the
heat equation at each Jacobi iteration. The Laplace function,
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Fig. 5. CUDA Memories ([11]).

which predicts the propagation of heat, has been declared as
a kernel.

Algorithm 1 : CUDA implementation of the heat equation (6)
1: Identify mesh size and a number of Jacobi iterations.
2: Initialize the condition of temperature
3: Declaration of the pointer to Host (CPU) memory and
pointers to Device (GPU) memory.
4: Allocate and initialize an array on the host for pre-
computation.
5: Allocate Memory on Device.
6: Copy data from CPU memory to GPU memory.
7: Assign a 2D distribution of CUDA “threads” within each
CUDA ”block”.
8: Calculate the number of blocks in CUDA ”grid”.
9: function LAPLACE(*T'emp,, 4, *T'emp,,.,,)
10: 1 = blockIdx.x x blockDim.x + threadldx.x ;
11: 7 = blockIdx.y = blockDim.y + threadldx.y ;
12: current =i+ 7 x NX;
13: north =i+ (j+ 1) * NX;
14: south =i+ (j — 1)« NX;
15: east = (i+ 1)+ j*x NX;
16: west = (i— 1)+ 7% NX;
17: A = 0.05;
18: if i(0 && i(NX — 1 && j{0 && j(NY — 1 then
19: Temp,.p[this] = (1 — 4X) Temp,,[this] +
M Temp,qleast] + Temp,qlwest] +Temp,q[north] +
Temp,,4[south))
20: end if
21: end function
22: Copy the final array from Device to Host.
23: Release the Allocated Memory on Device and host.

A kernel runs a consecutive scalar program on all parallel
threads. The threads of the same block cooperate via shared
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memory and synchronization barriers. Each thread sorts how
much it changes and updates the value in the corresponding
memory location. When all the threads have finished updating
their point, we move on to the next iteration. Finally, the
program copies the final table from the device to the host
and frees the memory allocated on the device and the host.

B. SkeLGIS Implementation

SkelGIS is a library proposed by [15] to furnish a program-
ming interface based on C++ libraries, to hide parallelism for
a non-computer scientist and to generate parallel code. The
author chose the C++ language to implement SkelGIS due to
its advanced characteristics to enable an important abstraction
level while producing efficient codes. For producing the final
program, SkelGIS uses MPI. SkelGIS library relies on the
Structured Implicit Parallelism on scientific Simulation model
(SIPSim) to solve PDEs. This model is an implicit parallel
solution that hides parallelism to offer to users an easy
development tool based on sequential programming. In order
to generate the final parallel program, SIPSim takes care of
three important tasks, namely the distribution of data, the
execution of the algorithm, and communications.In this model,
these tasks came true through four main components such as
distributed data structures (DDS), distributed data mapped to
DDS (DPMap), applicators/operations, and interfaces.

The DDS represented the data structure of the mesh and
to make access to the elements of the mesh more efficient.
DDS used a partitioning approach to distribute mesh between
processors. The partitioning aimed to resolve automatically
the sub-element of the problem. The utilization of the load
balancing of data between processors was for achieving a good
efficiency. The load-balancing [28] problem has been handled
through many theses of the literature.

The DPMap aimed to map data on the model when some
DDS was available. Data mapped on DDS defined the quan-
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tities to simulate, like the concentration, the pressure, and the
flow. DPMaps Instantiations are the most widely used by users.

Appliers and operations were developed as functions to
follow interchanges between processors before executing the
sequential program of the user. The parallelization of this
program followed the Bulk Synchronous Parallel (BSP) model
[29] that is generally utilized to implement SPMD programs.
According to this model, each processor used the numerical
data stored in its local memory.

The interfaces provided sequential interfaces for the imple-
mentation of the mesh. The authors proposed three types of
interfaces: iterators, get/set and neighborhoods. In the SIPSim
model, an iterator was almost as assimilated as an iterator in
C ++ STL that iterated through a DDS. The user instantiated
the iterator to manipulate a set of mesh values and the get/set
interface was used to handle the data values. The proposed
parallelism model is flexible because it is made of various data
structures. To evaluate the performance of this model, SkelGIS
was executed to solve two different aspects of simulations :
simulations of two-dimensional mesh and multiphysics simu-
lations connected through a network. Regarding the scalability
of the proposed tool, the experiments was performed on two
different clusters.

Algorithm 2
equation[15]
1: include SkelGIS library.
2: function MAIN(int argc, char** argv)
3: Initialisation of the library by INITSKELGIS;
: Declaration of the head with HEAD type;

: Main function in SkelGIS to solve heat

4
5: Initialisation of the head;

6: DMatrixz < double,1 > m(head,0);
7: m.setGlobal MiddleV alue(1);

8 DMatrix < double,1 > m2(head, 0);
9 for (1i=0;1<100;i++) do

10: Called Laplacien function;
11: DMatrixz < double,1 > m3(head,0);
12: m = m?2;

13: m2 = m3J;

14: end for

15: ENDSKELGIS;
16: end function

Algorithm 2 illustrates the SkelGIS program to solve the
two-dimensional heat equation. From the equation (2), the
results of the computation at time n+1 was based on these
at time n. According to line 6 and line 8, the code necessitate
two matrices to recover the input and output of the function.
There is a main loop (lines 9 to 14) that consist of manipulate
the size of the mesh and call the Laplacian function to compute
in each time iteration the numerical value of the equation (2).

VI. RESULTS AND DISCUSSIONS
The parallel implementation of the heat equation was exe-
cuted on an NVIDIA GeForce GTX GPU with 1280 CUDA
cores and 10606 GB. Concerning the accompanied CPU is
an Intel i7-4770k with 4 cores at a speed of 3.50 GHz and
8 threads. Table II presents the execution times performed to
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solve the heat equation according to four experiments (see
table I). The first experiment was a mesh of 5120x5120 with
5000-time iterations. In this experiment, the CUDA program
was only executed in 8.85(s) on GPU with 1280 cores, but
MPI and SkelGis with 2048 cores executed, respectively, in
67.49(s) and 103.363(s). In the second experiment, the domain
size remains the same as the precedent experiment with a
change in the number of iterations which will become 20000.
The execution time was multiplied by 4 as the case of the
number of iterations. In the two last experiments, the time
iterations stay fixed and the domain size will be changed. As
a result, the domain size had more effect on the result than the
time iterations. In addition, always the CUDA program was
executed in the best time, for example in the first experiment
SkelGIS was executed by 2048 cores but CUDA was executed
with just 1280 cores, SkelGIS took a long time 103.363(s)
compared to CUDA 8.85(s).

The main objective of this comparison was to evaluate the
efficiency of the three platforms by solving the heat equation
under the same experiments. In general, the domain size
had a great influence on the execution time. The results of
SkelGIS Library presented in table II was published by [15].
The results of SkelGIS and MPI were similar compared to
those obtained by CUDA. We can concluded some important
results. Firstly, the SkelGIS version becomes less efficient than
the MPI version in the three experiments. But, for the last
experiment, SkelGIS had better performances than the MPI.
This point confirms that SkelGIS is very compatible when a
costly simulation should be computed. The figure 6 shows
the evolution of the execution time of each implementation
according to the four experiments presented in the table I.
The graphical curves on the left show a comparison between
CUDA and other implementations running in an environment
containing 1024 cores. According to the presented results,
whereas the size of the experiments increases, whereas the
execution time increases very significantly. On the other hand,
the CUDA implementation shows its performance and its
speed of execution, which does not exceed 100(s). In this
case, SkelGIS was better than MPI. The graphical curve on
the right shows the execution in an environment containing
2048 cores for the case of MPI and SkelGIS. However
the CUDA implementation always runs on an environment
containing only 1280 cores. There is a great similarity between
the results presented through these graphical curves and the
previous ones. The only clear difference is that this time MPI
is faster than SkelGIS. However, in both cases, the CUDA
implementation running on a GPU gave the best results.

TABLE I
EXPERIMENTS EVALUATED ON CUDA, MPI AND SKELGIS
IMPLEMENTATIONS

Experiments | Time iterations | Domain size
EXP1 5000 5120x5120
EXP2 20000 5120x5120
EXP3 5000 10000x10000
EXP4 5000 20000x20000




356

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

TABLE 11
COMPARISON BETWEEN EXECUTION TIME CUDA, SKELGIS AND MPI
CUDA (s) SkelGIS Library (s)([15]) MPI [15]
Cores=1280 | Cores=2048 | Cores=1024 | Cores=2048 | Cores=1024
EXP1 | 8.85 103.363 155.85 67.49 144.26
EXP2 | 35.24 407.73 602.66 273.785 557.621
EXP3 | 34.62 3196.71 5127.93 2930.48 5739.552
EXP4 | 141.11 10986.8 19821.3 11867.4 22299.1
.
% 000,00 E
o EXP1 EXP 2 EXP3 o EXP1 EXP 2 EXP 3
Experiments Experiments
—e—CUDA (1280) SkelGIS (1024) MPI (1024) —e— CUDA (1280) SkelGIS (2048) MPI (2048
Fig. 6. Progress of the execution time, according to the three implementations
Finally, we notice that the difference between execution ACKNOWLEDGMENT

times obtained using the CUDA version and those using the
SkelGIS version is very vast. Always the execution time of the
CUDA code was faster than the SkelGIS and MPI, especially
in the two last experiences. We deduce that the GPU with
CUDA offers high performance at a very low cost because
the GPU approach is a general-purpose unit for resolving a
given complex problem. GPU computing aims to reach the
highest performance for data-parallel problems via a massive
parallel program that is carried out on the GPU. However,
SkelGIS was slow because its overheads were brought by
additional interfaces and objects used to hide the parallelism.
This library was executed on a Curie supercomputer in CEA’s
Very Large Computing Centre (TGCC). The hardware of the
cluster contained a Sandy Bridge processor with 2.7 GHz, 16
cores/Node, and 64 GB as the memory size by the node.

VII. CONCLUSION

In this paper, we focused on the effectiveness of parallel
computing for solving scientific simulations on GPU. We
chose the heat equation as an application simulation. For
solving this differential equation, the explicit scheme of the
FDM was used for the discretization. Then, the numerical
implementation of the discrete form of the equation was done
using CUDA. We performed a comparative study based on the
literature to assess the proposed implementation and its perfor-
mance. Through the execution of the different implementations
(CUDA, SkelGIS and MPI), using several experiments, we
deduce that our proposed implementation gave efficient results,
thanks to the use of the GPU architecture. In spite of the
parallelism for the other implementations of the literature, the
chosen execution environment badly influenced the results.
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