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Abstract—Hash functions are used in the majority of security
protocol to guarantee the integrity and the authenticity. Among
the most important hash functions is the SHA-2 family, which
offers higher security and solved the insecurity problems of
other popular algorithms as MD5, SHA-1 and SHA-0. However,
theses security algorithms are characterized by a certain amount
of complex computations and consume a lot of energy. In
order to reduce the power consumption as required in the
majority of embedded applications, a solution consists to exploit
a critical part on accelerator (hardware). In this paper, we
propose a hardware/software exploration for the implementation
of SHA256 algorithm. For hardware design, two principal design
methods are proceeded: Low level synthesis (LLS) and high level
synthesis (HLS). The exploration allows the evaluation of perfor-
mances in term of area, throughput and power consumption.
The synthesis results under Zynq 7000 based-FPGA reflect a
significant improvement of about 80% and 15% respectively in
FPGA resources and throughput for the LLS hardware design
compared to HLS solution. For better efficiency, hardware IPs are
deduced and implemented within HW/SW system on chip. The
experiments are performed using Xilinx ZC 702-based platform.
The HW/SW LLS design records a gain of 10% to 25% in term
of execution time and 73% in term of power consumption.

Index Terms—SHA256, Zynq 7000 based-FPGA, LLS, HLS.

I. INTRODUCTION

Nowadays, the Field-Programmable Gate-Array (FPGA)
is becoming a good alternative to the application-specific
integrated circuit (ASICs) especially when dealing with such
complex implementation like image or signal processing ap-
plications [1]. Indeed, thinks to the progress brought on
programmable circuits, it becomes possible to design a Sys-
tem on Chip (SoC) component based on single or multiple
processors and a programmable logic. This kind of system
could be exploited in a wide range of applications for its
flexibility, short time to market, low power and high capacity
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of integration. In addition, the reconfigurability of FPGA
circuits boosts the designers to implement their own programs
using a Hardware Description Language (HDL) and also to
make several optimizations on the hardware architecture.

For decades, the Low-Level Synthesis (LLS) has been
adopted as a design method for FPGA implementations as
it is more reliable and requires an explicit coding of the
control path. This option leads to better improve design
capabilities by optimizing whatever parameters. Nevertheless,
the designing of the final netlist takes much time an effort,
practically for the case of complex algorithms. At this level,
the hardware developers are front of a new challenge where
many constraints should be taken into account to fulfill the
market requirement. Consequently, it is time to think about
new design methods which can help to economize timing
constraint and facilitate the implementation task on FPGAs.
The solution is to raise the abstraction level from LLS to High
Level Synthesis (HLS) using a specific high level description
language (Matlab, C/C++, etc...). For many reasons, the HLS
becomes more and more useful than LLS [2] [3]. One of the
key benefit of working with HLS is the ability to simulate
multiple algorithms in the shortest times [4]. Moreover,
modern HLS tools such as (Vivado HLS [5], Catapult-C
[6], etc..) are able to provide an estimative report of area
cost, frequency and latency time more quickly. Also, several
optimizations can be exploited at the level of C function to
better improve design performances in term of throughput and
hardware cost. For instance, the usage of pipeline an unroll
pragmas can help to reach higher throughputs at the cost of
increasing logical gates. However, there are some restrictions
that should be held on before working with HLS tools. First,
it is not a simple conversion from high level language to
RTL level. In fact, the code must be re-written with a specific
way to be correctly implemented on FPGA platform. Second,
some particular C instructions based on pointer and recursion
are not synthesizable and can cause memory overhead in
the context of FPGA. All these reasons prevent designers to
go over optimizing more their architectures. Consequently,
the main focus of this work will be devoted to study the
influence of LLS and HLS design methods when facing a
such computational application like cryptographic algorithm.

Most of application domains use secure techniques and al-
gorithms to protect them from attacks while respecting the se-
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Fig. 1. The general model of hash function.

curity requirements. Several security protocol and frameworks
are based on symmetric cryptographic techniques, Asymmetric
cryptographic techniques, hybrid cryptography techniques and
hash functions [7]. Hash functions are the most important
key to keep data safe and secure. They are used as building
blocks in various cryptographic and security services such
as electronic commerce, digital signature and information
authentication. SHA-2 is a family of hash functions that were
designed by the US National Security Agency (NSA), based
on SHA-1 and SHA-0. Like most of the hash functions, the
SHA-2 takes as input a message of arbitrary size and produces
a fixed size output.Fig. 1 represents a general model of this
type of functions [8].

The size of hash is indicated by the suffix: 224 bits for
SHA-224, 256 bits for SHA-256 and 512 bits for SHA-512.For
instance, SHA-256 is a type of secure hash operation under the
SHA-2 [9] banner with digest length of 256 bits. This family
of hashing algorithms uses large digest messages making them
more resistant to possible attacks and allowing them to be used
with big amount of data blocks, up to 2128bits in the case of
SHA-512.

The SHA-256 presents a model of hash algorithm that
posses many computational rounds. In this context, there is a
proliferation of various works which were trying to optimize
the complexity of SHA-256 function using the hardware accel-
erators as provided in [10] and [11]. However, these solutions
suffer from lack of flexibility and performance degradation. To
overcome these deficiencies, two design methods are adopted
in this work based on LLS and HLS synthesis. With system-
on-chip (SoC) designs growing in complexity, system-level
approaches that leverage on HLS and LLS techniques are
becoming the workhorse of current SoC design flows. These
solutions provide reasonable agreements in term of FPGA
resources, throughput and power consumption. To highlight
our contribution, the proposed LLS and HLS accelerators are
integrated in HW/SW context in order to estimate perfor-
mances in term of execution time and power consumption.

The remainder of this paper is organized as follows. Section
II introduces some related works which had implemented
SHA-256 algorithm under FPGA platform. Section III presents
our proposed architectures implemented on the Xilinx ZC
702 evaluation board [12]. The experimental findings of the
HW/SW implementations in term of throughput and power
consumption are discussed in section IV. Finally, the conclu-
sion and the futures works are provided in Section V.

II. RELATED WORKS

Several works had experimented the implementation of
cryptographic hash functions on FPGA-based platform. For
instance, the example given in [13] proposed an improved
schemas of the SHA-256 algorithm implemented on Virtex-
2 XC2VP-7. These designs were based on the rearrangement
technique to compute the inner loop of the SHA-256 hash
function such as computing values in advance and changing
the control path without increasing the clock cycles. In best
case, the maximum throughput achieved in this work was
about 909 Mbps with an efficiency of 0.713 Mbps/ slice.

In [14], the authors reported a parallel architecture for
an efficient usage of encryption/ decryption modules. The
synthesis was done on Virtex 5 based platform which provided
a rate of 405 Mbps for the SHA-256 implementation.

Furthermore, in [15] a design of SHA processor was
described which implemented the three hash algorithms SHA-
512, SHA-512/224 and SHA-512/256 in both Virtex-5 and
Virtex-4 LX FPGA chips. The main purpose of its architecture
is to reuse data to keep a high efficiency, minimize critical path
and reduce the memory access through using cache memory.
The implementation results demonstrated that the proposed
design used fewer resources achieving higher performance and
efficiency. Otherwise; the data transfer speed is around 50
Mbps.

In addition, a multi-mode architecture is presented in [16]
which are able to perform either a SHA-384 or SHA-512 hash
algorithm or to treat two independent SHA-224 and SHA-
256 blocks. The main goal of this approach is to minimize
remarkably the computational overhead with zero time latency
caused by the processing of the input message. However,
the maximum throughput achieved by the SHA-256 hardware
block can only reach 308 Mb/s.

Another VLSI architecture is provided in [17] which
can support three hash functions (256, 384 and 512).The
principal contribution of this work is the allocation of the
same area resources for all hash algorithms which can affect
the speedup of the global design (about 291Mbps in case
of SHA-256). There are also some other works focusing on
SHA-256 hardware implementation such as [18] and [19].
For instance, in [18], authors implemented the SHA-256
secure hash algorithm in both Virtex-5 and Virtex-4 LX FPGA
chips. The purpose of its architecture is to exploit data reuse
technique to keep high efficiency, minimize critical paths and
reduce memory access. The synthesis results using Virtex 5
device demonstrated a fewer FPGA resources in use while the
data transfer speed was around 50 Mbps.

On the other hand, a Totally Self-Checking (TSC) design
was implemented in [19] on Virtex 5 XC5VLX330 FPGA
device. Hence, the different components of the SHA-256
function such as the Rotation/Shift registers and Multiplexers
as well as the counter and addition components should obey
to the described TSC rules. Moreover, a TSC system, even
though it introduces a penalty in performance and in area
consumption, is more efficient in term of throughput compared
to the existing solutions as it can produce a throughput level
up to 3.88 Gbps.
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In contrast, the HLS was adopted as a design method in
diverse fields such as financial [20], video coding [21] and
stereovision [22] algorithms. Nevertheless, the number of
published works of secure algorithms admitting HLS method
is relatively tenuous. In this case, the hardware proposed in
[23] is designed using Vivado HLS tool under Xilinix Zynq
7000 SoPC. After adding the suitable optimizations, it was
capable to operate 1088 bits in 70 clock cycles.

At light of the above finding, we note that the recourse
proposed solutions are entirely developed in hardware which
allows achieving higher throughputs at the cost of affecting
the flexibility of the design. Therefore, it is necessary to make
into account the synchronization between hardware IP and bus
interface throughputs when dealing with processor and FPGA.
In this context, the next section will be devote to develop the
hardware implementation of the SHA256 hash functions using
low-level and high-level design methods under Zynq 7000 SoC
platform.

III. TOWARD EFFICIENT HW/SW IMPLEMENTATION

Several design methods can be explored to perform the
implementation of the SHA-256 hash function. Usually, the
SW solutions are more flexible and don’t require a lot of time
to verify and validate the IP which is not the case of the HW
implementation. This last is more tended to satisfy real time
constraint at low power cost rather than software at the cost
of increasing the simulation time. In order to ensure the best
trade-off between flexibility and performances, the HW/SW
concept is considered as a best solution which combines a
microprocessor system and a programmable logic both in the
same chip.

Thereby, this section discusses the different proposed solu-
tions (SW, HW and SW/HW) for the implementation of the
SHA-256 hash algorithm. After studying the whole operation
of the hash function, this last is implemented in SW environ-
ment using ARM Cortex A9 processor in order to estimate
the most consuming part in the SHA-256 function. Based on
profiling results, diverse hardware solutions are developed for
the implementation of the critical function.

A. SHA-256: Specification and Complexity

The concept of cryptographic hash function consists of
assigning a single relationship between the input message and
the hash value. The ideal cryptographic hash algorithm should
satisfy some criteria. At first, it should be hard or infeasible to
invert a hash function in such a way that the hash output value
h produces an input message M such that H(M) = h. Second,
given an input m1, it is difficult to produce the same hash value
with another input value m2. This feature refers to a weak
collision resistance. The iterative structure is another property
specific to hash security functions where the hash value of
the current block is computed using the digest message of
the previous block [24]. This leads to make the compression
function output more secure and collision resistant. Thanks to
these advantages, hash functions are today widely exploited
in real life applications such as MD5 [25] and SHA-1 [26].
However, before proceeding any implementation task, it is

TABLE I
SECURE HASH ALGORITHMS CHARACTERISTICS.

Algorithms Word Message size Block Digest Digest rounds
(w) (m) number

SHA-1 32 264 512 160 80
SHA-256 32 264 512 256 64
SHA-512 64 2128 1024 512 80

necessary to present the secure hash algorithm characteristics
as mentioned in table I below.

The different steps followed to generate the digest message
using SHA-256 hash algorithm are explained as follow:

SHA-256 operates in the same manner as MD5 and SHA-
1. The length of input message is first padded in such away
the result length is a multiple of 512 bits. Second, it is parsed
into 512-bits blocks M (1), M (2)...,M (N). The message blocks
are computed sequentially one by one, starting from an initial
hash value H(0) as given in equation 1

H(i) = H(i−1) + CM (i)(H(i−1)) (1)

where C is the compression function, + means word-wise mod
232 and H(i) is the hash of M.

Generally, the SHA-256 can be expressed in form of
four functions. Indeed, the ’sha256 init’ function initial-
izes the eight 32bits variables H(0), H(1), H(2), H(3),
H(4), H(5), H(6), H(7) for use with ’SHA256 Update’ and
’SHA256 final’. The ’SHA256 final’ is called when all data
has been added via ’SHA256 Update’ and loads a message
digest. On the other hand, the ’SHA256 Transform’ is used
by ’SHA256 Update’ and ’SHA256 final’ to hash the 512-bit
input blocks and build the core of the algorithm. Fig. 2 shows
the pseudo codes description of the SHA-256 functions.

1) Preprocessing(Overview): As prior hash algorithms,
SHA-256 is computed as follow: the hash message is first
padded so that the final length (L) will be a multiple of 512
bits [27]. Then, a single 1-bit is append in the end of the
message followed by K zero bit, where k refers to the smallest
positive solution to the equation L+K+1=448 mod 512. A 64-
bit representation of L is added to the result of the padding.
For instance, taking an example of a message (8-bit ASCII)
”abc” which has the length equal to 8×3=24. This latter is
padded to a 1, then (448-(24+1))=423 zero bits and finally to
its length to get the 512-bit binary message as presented in
Fig. 3 [28].

This message is parsed into individual N=512 bit blocks
M (1), M (2),..,M (N) and then passed to the message expander.

2) Hash Operation(Overview): A set of logical functions
are used in the SHA-256 algorithm and operate on 32-bit
words [29]. These functions are illustrated in equations 2, 3,
4, 5, 6 and 7

Ch(x, y, z) = (x ∧ y)⊕ ( x ∧ z) (2)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (3)∑
0

(x) = S2(x)⊕ S13(x)⊕ S22(x) (4)
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void sha256_init(SHA256_CTX 
*ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}

void sha256_update(SHA256_CTX *ctx,const unsigned char 
data[], size_t len)
{
Unsigned int i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->state, ctx->data,ctx->state);
ctx->bitlen += 512;
ctx->datalen = 0;

}
} }

void sha256_final(SHA256_CTX *ctx, unsigned char hash[])
{          unsigned int i;

i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {

ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;}

else {   ctx->data[i++] = 0x80;
while (i < 64)

     ctx->data[i++] = 0x00;
    sha256_transform(ctx,ctx->state, ctx->data,ctx->state);
    memset(ctx->data, 0, 56);}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->state,ctx->data,ctx->state);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}

}

Fig. 2. Code description of the SHA-256 functions.

01100001 011 00010  01100011 1  00...0  0...011000 

423 64

Fig. 3. Preprocessing of the SHA-256.

∑
1

(x) = S6(x)⊕ S11(x)⊕ S25(x) (5)

δ0 = S7(x)⊕ S18(x)⊕R3(x) (6)

δ1 = S17(x)⊕ S19(x)⊕R10(x) (7)

where ⊕ , ∧ and ∼ are respectively the bitwise XOR, the
bitwise AND and NOT while R and S represent the right shift
and right rotation by n bits.

Fig. 4 illustrates the different steps proceeded in order to
hash a message M which contains N blocks: Where Wu is
the expanded message blocks (W0 , W1 , W63) which are
computed as given in equations 8 and 9, while Ku is a
sequence of 64 constants used to initialize hash values:

Wu =Mu; (u = 0..15) (8)

 

 

 

For i=1 to N { 

1. Initialize a, b, c, d, e, f, g, h variables with the  𝑖 − 1 𝑠𝑡 intermediate hash value. 

a← H₀ 𝑖−1  

b←H₁ 𝑖−1  

 

 

h←H₇ 𝑖−1  

 

2. Apply the SHA_256 compression function to update  a, b,.....h values. 

For u =0 to 63{ 

Compute Ch(e,f,g), Maj(a,b,c), Ʃₒ(a), Ʃ₁(e), and Wᵤ 

T₁  ← h+ Ʃ₁(e) + Ch(e, f, g) + Kᵤ + Wᵤ 

T₂  ←Ʃₒ(a) + Maj(a,b,c) 

h  ←  g 

g  ←  f 

f   ←  e 

e   ← d + T₁  

d  ←  c 

c   ←  b 

b   ←  a 

a   ← T₁ + T₂ 

} 

3. Compute the  𝑖 𝑡ℎ  intermediate hash value H(𝑖) 

H₁ 𝑖 ←  a + H₀ 𝑖−1  

H₂ 𝑖   ←   b + H₁ 𝑖−1  

 

 

H₈ 𝑖 ←  h + H₇ 𝑖−1  

} 

 

H(𝑁) = (H₀ 𝑁 , H₁ 𝑁 , …… . . H₇ 𝑁 )is the hash of M. 

 

} 

Fig. 4. The steps proceeded to hash a message.
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Sha256_final Sha256_transform

Fig. 5. Time distribution in (%) on ARM Cortex A9 processor for SHA-256
functions.

Wu = δ1(Wu−2)+Wu−7+δ0(Wu−15)+Wu−16; (u = 16..63)
(9)

3) Complexity Analyzes: In order to identify which part of
SHA-256 algorithm is most consuming, a profiling is carried
on SHA-256 software code using ’xtime 1.h’ library under
Standalone hosted on the ARM Cortex A9 processor operating
at 667 MHz. Fig. 5 reports the time distribution in percentage
for SHA-256 functions.

According to results supplied in Fig. 5, it is evident that
the ’SHA256 Transform’ function is the most complex and
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Fig. 6. The block diagram of the proposed architecture.

consumes about 47% of the total execution time required for
SHA-256 algorithm. Thus, it is enough to design efficient
hardware architecture for ’SHA256 Transform’ function in or-
der to ensure a trade-off between flexibility and performances.

B. Hardware exploration of ’SHA256 Transform’ block

As the ’SHA256 Transform’ function is the most time
consuming function in the SHA-256 algorithm, we present
in this section two hardware implementations based on low
level architecture and high level architecture in order to
find the optimal solution in term of throughput and power
consumption.

1) Low level proposed architecture: The block diagram
of the proposed low level architecture is detailed in Fig. 6.
The proposed hardware architecture is dedicated to support
’SHA256 Transform’ function.

This design supports a set of components designed as
follow:

• Input/output registers: A 512 bits register per block
which is organized in form of 16 inputs coded within
32 bits. Then, the 8×32 bits digest message generated
in the output constitutes the hash value which is the
concatenation of (H(i)

0 , H(i)
1 ,........H(i)

7 ).
• The compression engine: this unit is responsible for

computing intermediate hash values (a, b,...g, h). Given
the expanded message Wu, the constant values Ku and the
32-bits initialized registers (a to h), compute T1 and T2
values used to update A and E registers. Afterwards, the
shift registers is used to update the remaining registers in
each clock cycle. To accomplish this task, we exploit the
pre-calculated functions

∑
0(a),

∑
1(e), Maj(a,b,c) and

Ch(e,f,g).
• Wu unit: presented in Fig. 7, generates the Wu used by

the round computation. For the first 16 rounds (W0 to
W15), they are transmitted to the compression engine as
input1, input2,...., input16 to provide the first values of
Wu. After that, Wu is computed recursively using its
previous values Wu−2, Wu−7, Wu−15 and Wu−16. This
calculation requires the estimation of δ0(Wu) and δ1(Wu)
values.

Fig. 7. Implementation of Wu unit.
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Fig. 8. The total clock cycles required for the hash operation.

• ROM memory: It is used to store 64 Ku constant values
where the total size of the ROM is about 64×32 bits.

• The control unit: The whole operation of the control unit
is explained in Fig. 8. In fact, the 16 words representing
the 512 bits input message require 16 clock cycles
to be transferred to the Wu unit. Simultaneously, the
calculation of the intermediate registers (a, b, c...h) are
carried on which values are updated in each clock cycle.
Furthermore, the pipeline process is applied between the
compression engine that is responsible for loading (a, b,
c ... and h) values and the Wu computing unit. At all, 65
clock cycles are enough to load the digest message which
is the concatenation of H0 ‖ H1 ‖ H2 ‖ H3 ‖ H4 ‖ H5 ‖
H6 ‖ H7.

The maximum throughput achieved by the proposed design is
computed as given in equation 10

δ =MB × freq/C (10)

where δ is the maximum throughput, MB is the message block
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TABLE II
COMPARISON STUDY WITH PREVIOUS WORKS.

Designs FPGA Area Freq. Throughputs
(Slice) (MHZ) (Mbps)

Ignacio Virtex-2 1274 115.46 909.48
et al. [13] XC2VP-7
Mihai Virtex 5 - 125 420

et al. [14] XC5VFX100T
Sang −H. Virtex-5 1080 129 826
et al. [15]
Ryan Virtex 1306 77 308

et al. [16] 200/400XCV
Nicolas Virtex 2384 74 291
et al. [17] v200pq240 (CLBs)
Rommel Virtex-4 LX 422 50.06 91
et al. [18] Virtex-5 VLX 139 64.45 117.8
Harris Virtex -5 9012 112 3880

et al. [19] XC5VLX330
Proposed XC7Z020 1305 135 1063
solution

size, freq is the operating frequency and C is the total clock
cycles.

Table II summarizes the FPGA resources, the operating fre-
quency and the throughput results of the proposed architecture
which was implemented in XC7Z020 Zynq [30] device and
simulated using ModelSim tool.

The synthesis results show that our design offers a through-
put factor 14% to 88% better than [13], [14], [15], [16], [17]
and [18]. Further, the area cost of our design presents an
enhancement of about 85% relative to [19].

The next section will be devoted to develop the high level
proposed architecture. The main objective of this study is to
determine which design method among LLS and HLS provides
better performances in term of area cost, throughput and power
consumption.

2) High Level Proposed Architecture: In this section, the
HLS synthesis is adopted as a design method in order to
improve design performances in term of area cost and through-
put factor. At this stage, the Vivado HLS tool is exploited
as a tool to develop several optimized hardware solutions
for ’SHA256 Transform’ function using Zynq 7000 FPGA
platform. In the top level function, we use two 32 bits input
vectors which are data1[8] and data[16] to store respectively
the first eight initial values (H(0)

0 , H(0)
1 , H(0)

2 , H(0)
3 , H(0)

4 ,
H

(0)
5 , H(0)

6 , H(0)
7 ) and the 16 words representing the 512 bits

input message. In the output, the hash message is loaded into
8×32 bits RAM memory block. The block diagram of the
proposed HLS architecture is illustrated in Fig. 9.

To improve design productivities, two hardware solutions
are elaborated by adding optimized pragmas incrementally to
the design.

• #Solution 1: In this first experiment, the SW code of
’SHA256 Transform’ function is kept in initial condition
without adding any optimization. Besides, the hardware
design is synthesized under Zynq 7000 FPGA using
Vivado HLS tool. Indeed, the experimental results sup-
plied in table III, prove that FPGA implementation is
shared between 339 SLICE, 1036 LUT, 5 BRAM and
1322 FF with an operating frequency equal to 222 MHz.

Convert C to 

RTL

SHA256_transform 

C function

SHA256_transform 

RTL description

/******FUNCTION DEFINATION***********************//
void sha256_transform( unsigned int data1[8],unsigned int
data[16],unsigned int ss[8])
{
WORD reg[8], i, j,t1, t2, m[64];

int n=0;
sha256_transform_label0:for (i = 0;i < 16; i++){

m[i] =data[i];
}
sha256_transform_label1:for (  ; i < 64; i++){
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];

}
sha256_transform_label2:for (n=0;n<8;n++){
reg[n]=data1[n];
}
………

…………………….

Fig. 9. The HLS proposed architecture.

Otherwise, the maximum throughput achieved by this
solution can reach 96 Mbps.

• #Optimized solution: In the second experiment, the UN-
ROLL directive is applied to the external loops of the
computation and scheduling equations. This optimization
leads to reduce latency time and improve maximum
throughput achieved by the hardware design. Although
this technique has reduced the Latency with a profit
up to 87% compared to #Solution 1, it comes with a
penalty in area cost. On the other hand, we conclude,
from Table III, that the manual solution possesses 15% to
90% higher throughput compared to #Optimized solution
and #Solution 1 respectively and also it uses 80% fewer
area resources relative to #Optimized solution.

On the other hand, we evaluate the power consumption of
the different proposed solutions. From table III, it is evident
that our proposed solution consumes less power than #Solution
1 and #Optimized solution. This is explained by the fact that
the operating frequency of the manual approach is fewer than
the HLS solutions. Consequently, it can be noticed that the
proposed manual architecture is more efficient than HLS cases
as it provides the best trade-off between FPGA resources and
throughput.

After achieving all hardware acceleration tasks, section 4
will be reserved for the study of the developed solutions in
such an SW/HW environment. In fact, a deeply evaluation of
design performances in terms of FPGA resources, execution
time, and power consumption will be detailed.

IV. SW/HW SOLUTIONS EXPLORATION AND
PERFORMANCE EVALUATION

To highlight the influence of hardware acceleration in terms
of time, area cost and power consumption, the SW/HW
concept is adopted as a design method. This solution exploits
the Zynq SoC architecture which incorporates an ARM Cortex
A9 [31] processor operating at 667 MHz and a programmable
logic (PL). The communication between the processor and
PL is ensured through an AXI4-Stream protocol controlled
by the TDATA, TVALID, TLAST and TREADY signals
[32]. In case of HLS design method, the streaming interface
is developed based on #Optimized solution which provides
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TABLE III
IMPLEMENTATION RESULTS OF THE HLS SOLUTIONS UNDER FPGA PLATFORM.

Designs FPGA Area BRAM FF Freq. Through. Power
(Slice) (MHz) (Mbps) (Watt)

#Solution1 XC7Z020 339 5 1322 222 96 0.052
#Optimized XC7Z020 6367 0 25190 181 917 0.041

solution
#Proposed XC7Z020 1305 - 2583 135 1063 0.022
solution

SAXI_LITE

CLK

RST

M0_TDATA

INTERRUPT

S0_TDATA

Hardware IP

Stream interface

Fig. 10. Connection between hardware IP and AX4-Stream interface.

Fig. 11. The AXI4-stream behavior.

the best trade-off between throughput and area cost. The
different signals used to control the transfer status between
the processor and the stream interfaces are detailed in Fig. 10.
The AXI4-stream uses between 2 and 9 signals to ensure the
communication between master and the slave protocols. The
main used signals are TVALID which indicates the presence
of data, the TREADY flag is equal to 1 when it is ready to
receive the data and the TLAST signal notifies the end of
the frame. This behavior is explained in Fig. 11. On the other
hand, the work presented in [33] proved that the AXI4-Lite bus
performances are limited since it provides a sequential transfer
of only 32-bit data. This generates a huge communication
time and makes the transfer a bit slow. However, In case of
the streaming interface, it is just enough to fix the maximum
packet size depending on input message. Afterwards, the 8
bits input data are concatenated within 32 bits registers and
then communicated in form of train to the DDR memory.

A synthesis results of the proposed hardware IPs
with HLS (#SHA256 Transform HLS) and LLS
(#SHA256 Transform LLS) design methods connected

TABLE IV
IMPLEMENTATION RESULTS OF THE PROPOSED STREAMING INTERFACES.

Designs FPGA LUT BRAM FF Freq.
(MHz)

#SHA256 XC7Z020 21197 2 19212 175
Transform HLS
#SHA256 XC7Z020 3358 0 3400 135

Transform LLS
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Fig. 12. The block diagram of the SW/HW LLS design.

to the streaming interface is presented in table IV.
From this implementation results, we confirm that the

#SHA256 Transform LLS solution provides a gain of about
84% in LUT compared to #SHA256 Transform HLS so-
lution while the operating frequency of the #SHA256 Trans
form HLS is 22% better than the #SHA256 Transform LLS.

Furthermore, the full SW/HW designs of the SHA-256
algorithm are carried out in Standalone execution mode using
the Xilinx ZC702 board. Indeed, the SW/HW LLS design,
given in Fig. 12, includes one DMA channel configured in
read/write mode connected to #SHA256 Transform LLS IP.

This routing provides a direct access to the DDR external
memory in order to read and write data. However, since the
#SHA256 Transform HLS stream interface requires two input
vectors, the SW/HW HLS design uses two DMA channels to
connect the #SHA256 Transform HLS stream interface. The
first DMA is configured in read/write mode while the second
is operating in write mode only as detailed in Fig. 13 below.

The next stage of this project consists of comparing the dif-
ferent proposed design methods (SW, SW/HW HLS, SW/HW
LLS) in term of time and power consumption. As a first
experiment, we study the impact of only ’SHA256 transform’
accelerators on execution time without including the whole
SHA-256 chain. Then, the experimental results are compared
to the SW implementation as presented in Fig. 14. The general
formula followed to evaluate the execution time ”DTime” in
microsecond is provided in equation 11:
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Fig. 13. The block diagram of the SW/HW HLS design.
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Fig. 14. Execution time of the SHA256 Transform implementations.
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Fig. 15. Execution time results of the SHA-256 algorithm.

DTime = 1.0× (End− Start)/(CNT/1, 000, 000) (11)

where end is the end time, start is the start time, and CNT =
100,000,000/2.

As shown in Fig. 14, the execution time for the developed
SW/HW LLS and SW/HW HLS solutions is reduced by nearly
43% and 35% respectively compared to SW case.

In the second experiment, we evaluate the execution
time of the whole SHA-256 chain after adding the
’SHA256 Transform’ accelerators designed with LLS et HLS
methods as illustrated in Fig. 15.

The experimental results prove that the execution time of the
SW/HW LLS solution is 10% and 25% better than SW/HW
HLS and SW designs respectively.
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SW/HW HLS
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Fig. 16. Power consumption comparison.

To evaluate the performance, we study of the influence of
the proposed design methods on the power consumption con-
straint as detailed in Fig. 16. In fact, the Xilinx fusion digital
power designer is adopted as a tool to measure accurately
the consumed power of the different proposed solutions after
connecting a USB interface adapter to the board.

From Fig. 16, the calculated results of the SW/HW solutions
seem to be equal. In addition to that, they allow a gain up to
73% relative to SW implementation.

Regarding all obtained results including the FPGA area,
the throughput factor, the execution time and the power
consumption, we confirmed that the SW/HW LLS solution
managed to report an efficient acceleration for the SHA-256
hash algorithm while maintaining low power consumption.

V. CONCLUSION

Hash functions are central to compute signatures and MACs
that allow users to verify authenticity and integrity of data. In
this paper, we focused on the implementation of the SHA-256
hash algorithm under ZC 702 platform. After profiling the
SHA-256 software, the ’Sha256 Transform’ function seemed
to be the critical unit with 47% of the total execution time.

Two solutions were introduced for the algorithm accelera-
tion, the first one by using the LLS design method and the
second one by exploiting the HLS technique. The analysis of
the hardware implementations showed that the LLS solution
possesses a 15% higher throughput and up to 80% less area
cost rather than the HLS case. In addition, the developed
hardware solutions are incorporated in SW/HW environment
using the ARM cortex A9 processor operating at 667 MHz
and an AXI4-Stream connected to a Direct Memory Access
channel. Then, the SW/HW HLS design is compared to the
SW and the SW/HW LLS solutions in term of time and
power consumption. The experimental results proved that the
SW/HW LLS design provided the best compromise Area/
Performance while maintaining a low power consumption ratio
relative to SW/HW HLS and SW cases. Indeed, the execution
time is reduced by 25% with 73% lower power consumption
compared to the SW case which makes it a suitable choice
for hardware acceleration. Consequently, we conclude that the
hardware acceleration is able to produce a remarkable gain
in term of energy and time response. This contribution will
underline the importance of such co-design optimizations in
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order to improve the embedded system architecture across the
traditional boundaries of hardware and software. Also, it lets
the developers to think about design in terms of a trade-off
between performance and flexibility.

Although the amelioration performed by our work, the
results still average, which push us to think of better way to
optimize the accelerator to cost less resource. As future works,
we will migrate to a more sophisticated processor from RISC-
V to have better results. In addition to that, we will study
other recent hash algorithms using HW/SW design method
in order to estimate implementation constraints and compare
results with the SHA-256 proposed solution. Furthermore, we
can also exploit reconfigurable methods as a solution to avoid
memory overhead and decrease power consumption.
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