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Abstract—In this paper, we estimate Doppler frequency of a 

maneuvering target being tracked by passive radar using two 

types of particle filter, the first is “Maximum Likelihood Particle 

Filter” (MLPF) and the second is “Minimum Variance Particle 

Filter” (MVPF). By simulating the passive radar system that has 

the bistatic geometry “Digital Video Broadcasting-Terrestrial 

(DVB-T) transmitter / receiver” with these two types, we can 

estimate the Doppler frequency of the maneuvering target and 

compare the simulation results for deciding which type gives 

better performance.    
 

Index terms—Passive Radar, Doppler Frequency, Maneuvering 

Target, Maximum Likelihood Particle Filter, Minimum Variance 

Particle Filter. 

 

I. INTRODUCTION 

 

ASSIVE radar is a bistatic radar that detects and tracks 

targets by processing reflections from non-cooperative 

sources of illumination. It has many advantages, such as 

resistant to jammers and does not need a dedicated frequency 

band. This radar is equipped with two antennas: The first 

antenna is the direct antenna that receives the direct signal, 

and the second antenna is the surveillance antenna that 

receives targets’ echoes and multipath signals [1], [2]. The 

direct signal is reconstructed to detect targets’ echoes [3]-[5]. 

Many researches have been conducted studying this radar, 

such as studying and analyzing of signals of non-cooperative 

transmitters (e.g., Frequency Modulation (FM) radio, Global 

System for Mobile communication (GSM), Digital Video 

Broadcasting-Terrestrial (DVB-T), and Digital Audio 

Broadcasting (DAB)) [1], [2], [6]-[9], studying of the 

interference of the direct signal on the surveillance channel 

[10], [11], detection of “maneuvering/non-maneuvering” 

targets [12]-[14], and estimation of their parameters (e.g.,  
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Doppler frequency, velocity, acceleration, and coordinates) 

[2], [15]-[19]. 

Doppler frequency of a non-maneuvering target is estimated 

by applying the Maximum Likelihood method to the output of 

a bank of matched filters, which are tuned to different Doppler 

frequencies [1], [17]. But in the case of a maneuvering target, 

this way is ineffective because the velocity and direction of 

this target change non-linearly during small periods. 

Therefore, non-linear tracking filters should be used, such as 

Extended Kalman Filter (EKF), Unscented Kalman Filter 

(UKF) [20]-[22], and Particle Filter (PF) [22]-[31]. Many 

researches have indicated that the (PF) has better performance 

for estimating parameters that change non-linearly at low 

SNR, because it depends on the Monte Carlo method, [2], 

[22]-[24]. According to the processing method, the (PF) has 

the following two types: MLPF and MVPF [23], [24]. In this 

paper, we estimate the Doppler frequency of a maneuvering 

target by simulating these two types within a passive radar 

system that has the bistatic geometry “DVB-T 

transmitter/receiver”. Then we suggest the optimal application 

for each type by comparing and analyzing the simulation 

results. 

The paper is organized as follows. Section II introduces the 

passive radar system with a maneuvering target. Section III 

illustrates the particle filter with its two types (MLPF and 

MVPF), which will be used for estimating the Doppler 

frequency for the maneuvering target. Section IV shows 

simulating the passive radar system with these two types and 

concentrates on discussing the simulation results. Section V 

concludes the paper.  

 

II. PASSIVE RADAR SYSTEM 

 

It has the following bistatic geometry: one DVB-T 

transmitter and one receiver with two receiving antennas, 

taking into consideration that there is one maneuvering target, 

as shown in Fig. 1 where 𝑇𝑥 is the non-cooperative transmitter, 

𝑅𝑥 is the receiver, 𝑇𝑎 is the maneuvering target, 𝑅1 is the range 

between the transmitter (𝑇𝑥) and the target (𝑇𝑎), 𝑅2 is the 

P 
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Fig. 1. Bistatic geometry of passive radar  

 

effective range, (𝑥𝑎, 𝑦𝑎
, 𝑧𝑎) are the Cartesian coordinates of the 

observed target (𝑇𝑎), D is the distance from the transmitter (𝑇𝑥) 

to the receiver (𝑅𝑥), SC refers to “Surveillance Channel”, and 

DC refers to “Direct Channel”. 

After suppressing the interference in the surveillance 

channel and mitigating multipath signals based on the 

properties of the DVB-T signal that uses the Orthogonal 

Frequency Division Multiplexing (OFDM) modulation 

technique, the echo signal of the observed target is given in 

(1), [2], [23], [25].  

 

𝑌 (𝑡) = 𝐴(𝑡) 𝑒𝑗 ∅(𝑡) 𝑆(𝑡 − 𝜏) + 𝑛(𝑡);     𝑡 = 0: 𝑇𝑝   (1) 

 
where 𝑡 is the discrete time of the observation, 𝑌 is the 

observation signal, 𝐴 is the amplitude, ∅ is the phase, 𝑆 is the 

delayed direct signal with the time delay  (𝜏), 𝑛 is the Additive 

White Gaussian Noise, and  𝑇𝑝 is the duration of the processed 

data window. 

For estimating the Doppler frequency of the maneuvering 

target by the particle filter, we will briefly explain this filter 

and its two types, as presented in the following section. 

 
III. PARTICLE FILTER 

 
It is a filtering method that depends on the Monte Carlo 

approximation and recursive Bayesian estimation. It mainly 

consists of propagating, in a non-linear way, weighted 

particles in a domain of a studied state. With helping of 

observations from a studied system, the weight and state of 

each particle are processed by a method for getting estimation 

results. For effective estimation, a resampling step should be 

applied for re-propagating the particles in a different domain 

for the studied state [26], [27]. This process is achieved by 

processing the output of the following two equations for each 

particle: The state equation and measurement equation, which 

are given in (2) and (3), respectively [26]-[28]. 

𝑥𝑡 = 𝑓 (𝑥𝑡−1) + 𝑣𝑡                                      (2) 

 

𝑍𝑡 = ℎ (𝑥𝑡)                                                 (3)  

 

where (𝑡, (𝑡 − 1)) are the current and previous measurement 

time, respectively, 𝑥 is the state vector (𝑥 ∈ ℝ𝑛𝑥), 𝑓 is a non-

linear function and it is a known function, 𝑣  is the state noise 

vector (𝑣 ∈ ℝ𝑛𝑣);  𝑣~ 𝒩(0, 𝜎𝑣
2), 𝑍 is the measurement signal 

(𝑍 ∈ ℝ𝑛𝑍), and ℎ  is a non-linear function and it is a known 

function. The symbol (𝒩(𝑚, 𝜎2)) denotes the Gaussian 

density function with the mean (𝑚) and variance (𝜎2).  

In the passive radar system, the state vector is                

(𝑥 = [𝐴, ∅, 𝑓𝑑, 𝜏]T), and the dynamics of its parameters are 

given in (4), [2], [23], [25]. 

 

[

𝐴𝑡

∅𝑡

𝑓𝑑𝑡
𝜏𝑡

] =

[
 
 
 
 

𝐴𝑡−1

∅𝑡−1 + 2𝜋𝑓𝑑𝑡−1
𝑇𝑝

𝑓𝑑𝑡−1
 

𝜏𝑡−1 −
𝑓𝑑𝑡−1

𝑓0
𝑇𝑝 ]

 
 
 
 

+

[
 
 
 
 
𝑣𝑡

𝐴

𝑣𝑡
∅

𝑣𝑡
𝑓𝑑

𝑣𝑡
𝜏 ]
 
 
 
 

        (4) 

 

where 𝑓𝑑 is the Doppler frequency, (𝑣𝐴 , 𝑣𝜙 , 𝑣𝑓𝑑 , 𝑣𝜏) are the 

Gaussian noises, 𝑓0 is the carrier frequency, and T denotes the 

transposition. 

The particle filter has two types according to its processing 

method, as presented in the following two subsections. 

 

A. MLPF 

 

It depends on moving the particles’ distribution toward the 

region of highest likelihood by using the (EKF) [29], [30]. It is 

achieved by implementing the following steps, taking into 

consideration that (𝑝) is the Probability Density Function [25], 

[26], [28], [31]. 

a) Initialization: Propagating particles with different states 

and equal weights. The initial weights are as follows: 

(𝑤𝑡=0
𝑖 = 1/𝑁𝑠), where 𝑁𝑠 is the number of particles and 𝑖 

is the index of these particles; 𝑖 = 1:𝑁𝑠. See the red 

particles in Fig. 2. 
 

b) Calculating the current weights of the particles at the time 

(𝑡) by the following equation, taking into consideration the 

green particles in Fig. 2. 

 

𝑤𝑡
𝑖 = 𝑤(𝑡−1)

𝑖 ∗ 𝑝(𝑌𝑡/𝑥𝑡
𝑖) = 𝑤(𝑡−1)

𝑖 ∗ 𝒩(𝑌𝑡 − ℎ (𝑥𝑡
𝑖),  𝑅𝑡)    

= 𝑤(𝑡−1)
𝑖 ∗ 𝒩(𝑌𝑡 − 𝑍𝑡

𝑖 ,  𝑅𝑡)                                 (5)    

 

where (𝑤𝑡
𝑖 , 𝑤(𝑡−1)

𝑖 ) are the current and previous weight for 

the particle (𝑖), respectively, and  𝑅𝑡 is the covariance 

matrix [25], [28], [31]. 
 

c) Normalizing the calculated weights by the following 

equation:  

 

𝑤𝑡
𝑖 = 𝑤𝑡

𝑖/∑𝑤𝑡
𝑖

𝑁𝑠

𝑖=1

                                           (6) 

d) The studied state is estimated by the following equation: 

 

�̂�𝑡 = ∑(𝑤𝑡
𝑖 ∗ 𝑥𝑡

𝑖)

𝑁𝑠

𝑖=1

                                           (7) 
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e) Resampling: The particles that have high weights are 

selected for propagating new particles with different states 

and equal weights; {𝑤𝑡
𝑖 = (1/𝑁𝑠);  𝑖 = 1: 𝑁𝑠}. See the 

green and black particles in Fig. 2. 
 

f) Re-implementing the steps (b → e) at each observation 

time (𝑡). 

 

 
Fig. 2. Initial and resampled particles in case of MLPF 

 

B. MVPF 

 

It depends on analyzing the state probability of each particle 

by the Cumulative Distribution Function (CDF) [23], [24]. It 

is achieved by implementing the following steps [23], taking 

into consideration that (F) denotes the CDF.  

a) Initialization: Propagating particles with different states 

and equal weights; (𝑤𝑡=0
𝑖 = 1/𝑁𝑠, 𝑖 = 1:𝑁𝑠). See the red 

particles in Fig. 3. 
 

b) Calculating the state probability of each particle at the time 

(𝑡) by the following equation: 

 

P𝑡𝑢𝑛𝑛𝑜𝑟
𝑖 = F (𝑌𝑡 − ℎ (𝑥𝑡

𝑖)) = F( 𝑌𝑡 − 𝑍𝑡
𝑖 )      (8) 

 

where P𝑡𝑢𝑛𝑛𝑜𝑟
𝑖  is the state probability of the particle (𝑖). 

 

c) Resampling: The output of the CDF is sampled at the 

initial probability (1/2𝑁𝑠) with the sampling resolution 

(1/𝑁𝑠). The resulting states and probabilities are the states 

and un-normalized weights of the resampled particles, 

respectively. See the green particles in Fig. 3, which 

illustrates this process.  
 

d) The studied state is estimated by the following equation: 

 

�̂�𝑡 = ∑(P𝑡𝑛𝑜𝑟
𝑖 ∗ �̈�𝑡

𝑖)

𝑁𝑠

𝑖=1

                                       (9) 

where (�̈� 
𝑖 , P𝑡𝑛𝑜𝑟

𝑖 ) are the state and normalized weight for 

the resampled particle (𝑖), respectively. 

e) Updating the normalized weights of the resampled particles 

to (1/𝑁𝑠). See the black particles in Fig. 3. 
 

f) Re-implementing the steps (b → e) at each observation 

time (t), [23]. 
 

 
Fig. 3. Initial and resampled particles in case of MVPF 

 

By focusing on Fig. 2 and Fig. 3, we notice that the variance 

between the resampled particles is equal in the case of MLPF 

and unequal in the case of MVPF. Therefore, MVPF has an 

additional advantage compared with MLPF, as presented later. 

To illustrate the difference between MLPF and MVPF, we 

will suppose the following estimation with 𝑁𝑠 =
28 (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠). We want to estimate the real Doppler 

frequency that equals (-781.8 (Hz)) by these two types, taking 

into consideration the proposed probability density for the 

weights of the processed particles, as shown in Fig. 4 and Fig. 

5. By simulating the mentioned estimation, we notice that the 

resampled particles are distributed only around the real 

Doppler frequency (main event) in the case of MLPF, as 

shown in Fig. 4, whereas they are distributed around the main 

event and sudden event in the case of MVPF, as shown in 

Fig. 5. The sudden event cannot be observed in the case of 

MLPF, thus using (MVPF) will improve the performance of 

the passive radar for tracking targets in sudden environments. 

 
Fig. 4. Resampled particles in case of MLPF 
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Fig. 5. Resampled particles in case of MVPF 

 

IV. SIMULATION AND RESULTS 
 

A.  Simulation 
 

MATLAB software is used for simulating the particle filter 

with the passive radar system that consists of the DVB-T 

transmitter, Additive White Gaussian Noise channel with one 

maneuvering target, and receiver, as shown in Fig. 1. For 

simplicity, we consider that the parameters of the state vector 

(𝐴 , ∅  𝑎𝑛𝑑 𝜏 ) are determined at each measurement time. 

This simulation is achieved with the technical 

characteristics for the transmitter, receiver and target, as listed 

in Table I. 
 

TABLE I 

TECHNICAL CHARACTERISTICS FOR TRANSMITTER, RECEIVER AND TARGET 
 

1/4 Guard interval  50 (KW) ERP  

D
V

B
-T

 T
r
a

n
sm

it
te

r
 

1.1 (ms) 
Duration of 

OFDM symbol  

474 

(MHz) 

Carrier 

frequency  

(0, D, 0) 
Cartesian 

coordinates 
8 (MHz) Bandwidth 

 5 (Km) D 
 8K mode 

/ 64QAM 

Transmission 

mode/ 

modulation 

1 (dB) Losses (𝐿𝑡)   7/8  Code Rate 

85 (𝑚𝑠)  

Time difference 

between two 

consecutive 

observations 

22 (dB) 

Surveillance 

antenna gain 

(𝐺𝑟𝑆𝐴
) 

R
e
c
ei

v
e
r

 

2.2 (ms) TP 2.5 (dB) 
Gain of direct 

antenna 

1 (dB) Losses (𝐿𝑟) (0, 0, 0) 
Cartesian 

coordinates 

2 (dB) Noise Figure (𝐹𝑟) 1.82 (𝐻𝑧2) 𝜎𝑣𝑓𝑑

2  

(9, 8, 3.5) 
(𝐾𝑚)  

Initial coordinates 6 (𝑚2) 
Monostatic 

RCS 

T
a

rg
et

 

 

We consider that the observed target moves according to the 

path shown in Fig. 6, and its velocity changes according to 

Fig. 7. Therefore, the signal-to-noise ratio (SNR) of the 

target’s echo signal changes according to Fig. 8, taking into 

consideration that the mentioned target is detected with a false 

alarm probability (10−4 ). The indicated parameter (SNR) is 

given in (10), [2], [7]. 
 

𝑆𝑁𝑅 =
𝑃𝑡𝐺𝑡𝐺𝑟𝑆𝐴

𝜆2 𝜎𝑅𝐶𝑆

(4𝜋)3 𝐾 𝑇0 𝐵 𝐹𝑟 𝐿𝑡 𝐿𝑟  𝑅1
2 𝑅2

2        (10) 

 

where 𝑃𝑡 is the transmitted power (watt), 𝐺𝑡 is the transmitter 

antenna gain, 𝜆 is the transmitter wavelength (m), 𝜎𝑅𝐶𝑆 is the 

bistatic radar cross section (m2), K is Boltzmann’s constant, 

𝑇0 is the effective noise temperature, and B is the receiver 

bandwidth (Hz).  

 
Fig. 6. Path of observed target  

 
Fig. 7. Velocity of observed target as a function to time 

 
Fig. 8. SNR of target’s echo signal as a function to time 

282 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 16, NO. 4, DECEMBER 2020 



B. Results and Notes 

 

We performed the estimation of the Doppler frequency of 

the maneuvering target by MLPF and MVPF for the following 

two cases: (𝑁𝑠 = 5) and (𝑁𝑠 = 15). In the first case (𝑁𝑠 = 5), 

the estimation accuracy was 2.4 (Hz) for MLPF and 4.3 (Hz) 

for MVPF, as shown in Fig. 9. In the second case (𝑁𝑠 = 15), 

the resulting accuracy was 2.1 (Hz) for MLPF and 3.2 (Hz) for 

MVPF, as shown in Fig. 10.  

Note: Estimation accuracy is related to the standard 

deviation of estimation errors, as given in (11), [29]. 

 

𝜎𝐸𝑆 = √
1

𝑀 − 1
∑(𝑑𝑖 − 𝜇)2

𝑀

𝑖=1

                    (11) 

 

where 𝜎𝐸𝑆 is the Estimation Accuracy of a studied parameter, 

𝑀 is the number of observations, 𝑑 is the estimation error that 

has the equation: (𝑑𝑖 = 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖), and 𝜇 

is the mean of estimation errors. 

 

 
Fig. 9. Real and estimated Doppler frequency (Ns=5) 

 

 
Fig. 10. Real and estimated Doppler frequency (Ns=15) 

 
By focusing on Fig. 9 and Fig. 10, we notice the following 

points: First, MLPF and MVPF have convergent performance 

in terms of estimation accuracy, and their performance is 

improved by increasing the number of particles. Second, 

MLPF has less complexity than MVPF because particles by 

MVPF are resampled based on calculating and analyzing the 

state probability of each particle, consequently the complexity 

of MVPF is increased by increasing the dimension of the state 

vector. Finally, these two types are suitable for tracking 

maneuvering targets, but the type (MVPF) has better 

performance for tracking these targets in the sudden 

environments, such as Decoy Flares or sudden crash of 

airplanes, because using this type leads to observe states that 

have low probabilities.  

Note: The author of [2] had estimated the Doppler 

frequency of a maneuvering target by (MLPF) when he 

estimated target coordinates (at SNR=3dB) in the case of 

passive radar with multiple (DVB-T) transmitters and a 

receiver. The estimation accuracy in his case was 

approximately 2 (Hz), taking into consideration that the 

number of particles larger than our case. The lower value for 

the parameter (SNR) in [2] does not affect the comparison 

with the simulation results, because the particle filter can 

effectively estimate parameters that change very non-linearly 

at low SNR, [23], [24]. 

 

V. CONCLUSION 

 

In this paper, the estimation of Doppler frequency of a 

maneuvering target has been performed by using the two types 

of particle filter: Maximum Likelihood Particle Filter and 

Minimum Variance Particle Filter. The characteristics of each 

type were checked by simulating a passive radar system that 

has the bistatic geometry (a DVB-T transmitter and a 

receiver). The simulation results have illustrated the efficiency 

of each type in terms of estimation accuracy, complexity, and 

a suitable application. 
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