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Abstract—This paper details an extension of a Java parallel
programming framework – JPLF. The JPLF framework is a
programming framework that helps programmers build parallel
programs using existing building blocks. The framework is
based on PowerLists and PList theories and it naturally supports
multi-way Divide and Conquer. By using this framework, the
programmer is exempted from dealing with all the complexities
of writting parallel programs from scratch. This extension of the
JPLF framework adds PLists support to the framework and so,
it enlarges the applicability of the framework to a larger set of
parallel solvable problems. Using this extension, we may apply
more flexible data division strategies, and the length of the input
lists no longer has to be a power of two – as required by the
PowerLists theory. In this paper we unveil new applications that
emphasize the new class of computations that can be executed
within the JPLF framework. We also give a detailed description of
the data structures and functions involved in the PLists extension
of the JPLF, and extended performance experiments are described
and analyzed.

Index Terms—parallel computation, divide&conquer, recursive
data structures, performance, framework.

I. INTRODUCTION

The computing world has been undoubtable multi-core for
many years. From high performance computing (HPC) servers,
to personal computers and smartphones, all have multi-core
processors. The world of programming must and has taken
advantage of these multi-core architectures. Developing par-
allel programs from scratch is cumbersome due to many
difficulties that should be carefully treated, such as balanced
decomposition, synchronization, or communication. Because
of this, parallel frameworks, which isolate part of these issues
and help the programmer writing efficient and correct parallel
programs, were developed. These parallel frameworks offer
the programmer some building blocks which can be used to
construct a parallel software, so that the skeleton of the parallel
program is already coded and the programmer only needs to
address the specifics of the problem at hand.

One of the most popular paradigms for developing par-
allel programs is Divide and Conquer where the input data
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is split into parts that are processed in parallel. The JPLF
framework [1] is a parallel framework written in Java that
eases the development of parallel programs by providing
data structures (i.e. lists) that naturally support divide and
conquer computation and functions that take advantage of
these parallel data structures. More specifically, the JPLF is
an implementation in Java of the PowerLists theory [2] and of
some executors required for parallel execution. Powerlists are
data structures (i.e. lists) introduced by J. Misra [2] that have
natural support for Divide and Conquer processing. They offer
a higher level of abstraction because operating on these lists
do not require low-level indexing operations. Their advantage
over regular lists is that they provide two different views over
the underlying data, simplifying the design of the algorithms
working on them. In order to support correctness, algebras
and induction principles are defined on these special data
structures.

The Java programming language was chosen for the im-
plementation due to its popularity, strong object-oriented
paradigm, multi-threading and synchronization support, but
also its good networking facilities. The framework was de-
veloped following object-oriented design principles like sep-
aration of concerns and applying design patterns [3], so
that it would be highly flexible and end easily extensible.
Besides parallel data structures, the JPLF framework also has
parallel execution support for the shared memory systems
(multi-threading), but also MPI support for execution on the
distributed memory systems. Due to its flexible design, other
execution models can be added to the framework.

This paper is an extended version of our work [4] which
presents an extension of the JPLF framework by adding PLists
support. PLists are a generalization of PowerLists introduced
by J. Kornerup [5] that do not have the constraint of the data
size (i.e. length of the list) being a power of two. PLists
bring the advantages of allowing definitions of multi-way
divide&conquer programs, but also (when the arity list is
formed by only one number) definitions of embarrassingly
parallel programs. The current paper emphasizes the appli-
cability of the framework to a larger set of parallel solvable
problems through different data division strategies. We outline
and review the JPLF extension from [4], define and add another
application example of the extension (i.e. Fast Fourier Trans-
form) and we specify new implementation details for achieving
bounded parallelism in the JPLF PList extension. Also, in the
current paper we extend the experimental evaluation by per-
forming additional evaluation tests. Together: PowerList, PList
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with their multidimensional counterparts could be used as a
foundation for a general parallel programming model based
on domain decomposition [6]; this analysis was leaded by the
general characteristics that a model of parallel computation
should have [7].

This paper is organized as follows. In section III we give
a general description of PLists, and a description of the JPLF
design and PList implementation is given in section IV. Sec-
tion V presents some use-cases and the practical experiments
related to them. Related work is presented in section II, the
conclusions together with future work being presented in the
last section (sec. VI).

II. RELATED WORKS

Parallel algorithmic skeletons like pipe, farm, map, reduce,
ease the development of parallel programs because they pro-
vide a higher level of abstraction and they allow defining
high level parallel models [8]. Frameworks like FastFlow [9]
and Stapl [10] that implement parallel algorithmic skeletons
simplifies the application programmer’s job by dealing with
the synchronization issues between sequential parts of the
program and managing parallel processes themselves. Many
of these parallel frameworks are implemented in C++, but
Java is becoming popular in the High Performance Computing
area [11]. Examples of parallel programming frameworks that
implement algorithmic skeletons are: Lithium [12], Calcium
[13] and Skandium [14].

Divide & Conquer is one of the most well known and
used algorithmic skeletons in parallel programming. Different
approaches have been considered to facilitate general and easy
usage of Divide&Conquer pattern in parallel context [15]–
[17]. The Divide & Conquer pattern can either be applied
to the data through domain decomposition or to the functional
tasks. Two parallel data model abstractions are PowerLists and
PLists. They provide natural support for Divide & Conquer
patterns based on the data domain decomposition. Prior ex-
isting work that tries to make use of the PowerList theory
powerful abstraction are [18], [19] and [20]. In [18] authors
introduce transformation rules over PowerLists functions in
order to adapt the PowerLists programs for the massively
data parallel model. [19] shows a functional implementation
of PowerList functions in BSML (Bulk Synchronous Parallel
ML). Also PowerLists have also been used to capture paral-
lelism and recursion succinctly for GPU computing [20].

Java Streams are powerful functional constructs of the Java
programming language that can be used in parallel program-
ming. They are too based on algorithmic skeletons. In [1] a
more detailed comparison between the performance of selected
algorithms’ implementations using Java parallel streams and
the JPLF Powerlist implementation is done.

In communication, more specifically network routing dy-
namic programming algorithms are mostly used (e.g. Dijkstra,
Bellman-Ford). These algorithms can be implemented using
Divide & Conquer [21], [22] and our JPLF framework can be
used to implement the Divide & Conquer programs.

Compared to the aforementioned frameworks, our JPLF
framework has additional support for applications that need

more complicated data decomposition as that represented by
the zip operator (e.g. Fast Fourier Transform).

In addition, with the PLists extension, the performance is
improved while the domain of the applications that could be
defined inside the framework is enlarged.

III. PList DATA STRUCTURES

The PList data structure was introduced in order to develop
programs for the recursive problems which can be divided into
any number of subproblems, numbers that could be different
from one level to another [5]. It is a generalization of the
PowerList data structure, which is a linear data structure whose
elements are all of the same type, and with the length equal to
a power of two. A PowerList with a single element a is called
singleton, and it is denoted by < a >; if two PowerList
structures have the same length and elements of the same
type, they are called similar. Two similar PowerLists can be
combined into a PowerList data structure with double length,
using two constructors: tie (p | q) and zip (p \ q), yielding,
respectively, the concatenation and interleaving of two similar
lists.

For PLists data structures we also have three constructors:
one that creates singletons from simple elements, one based on
concatenation, and the other based on alternative combining
of two or more lists.

The corresponding operators are < .>, (n-way |), and (n-
way \); for a positive n, the (n-way |) takes n similar PList
and returns their concatenation, and the (n-way \) returns their
interleaving.

In PList algebra, square brackets are used to denote ordered
quantification. The expression

[ | i : i ∈ n : p.i] (1)

is a closed form for the application of the n-way operator |,
on the PLists p.i, i ∈ n in order. The range i ∈ n means that
the terms of the expression are written from 0 through n− 1
in the numeric order.

For example, if we have p.i = [i∗3, i∗3+1, i∗3+2] then
we have:

[ | i : i ∈ 3 : p.i] = [0, 1, 2, 3, 4, 5, 6, 7, 8]
[ \ i : i ∈ 3 : p.i] = [0, 3, 6, 1, 4, 7, 2, 5, 8]

(2)

Formally, the PList constructors have the following types:

< . > : X → PList.X.1
[ | i : i ∈ n : .] : (PList.X.m)n → PList.X.(n ∗m)
[ \ i : i ∈ n : .] : (PList.X.m)n → PList.X.(n ∗m)

(3)

where m is the length of the arguments, which are n similar
Plist.

The PList axioms also define the existence of the unique
decomposition of PList using constructors operators [5].

Functions over PList are defined using two arguments. The
first argument is a list of arities: PosList, and the second is the
PList argument (if there is more than one PList argument they
all must have the same length). Functions over PList are only
defined for certain pairs of these input values; to express the
valid pairs, it is required that the specification of the function
defines the following predicate:
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defined : ((PosList×PList)→ X)×PosList×PList→ Bool (4)

to characterize where the function is defined.
Usually the arity list is formed of the prime factors obtained

through the decomposition of the list length into prime factors.
Still, we may combine these factors, if we find it convenient.

We illustrate functions’ definitions with three examples:
reduction, map and integration through repeated rectangle for-
mula. Another example for Fast Fourier Transform is presented
in order to emphasize the differences between PowerList and
PList functions.

Reduction

This function computes the reduction of all elements of a
PList using an associative binary operator ⊕ :

defined.red(⊕).l.p ≡ prod.l = length.p
red(⊕).[]. < a > = a
red(⊕).(x . l).[|i : i ∈ x : p.i] = (⊕i : 0 ≤ i < x : red(⊕).l.(p.i))

(5)
where prod.l computes the product of the elements of the list
l, length.p is the length of p, [] denotes the empty list, and .
denotes cons operator on simple lists. The function could also
be defined using \ operator.

The addition of numbers is the most popular example of
reduction; we denote sum = red(+).

Map

Map function applies on each element of a PList an unary
function f :

defined.map(f).l.p ≡ prod.l = length.p
map(f).[]. < a > = a
map(f).(x . l).[|i : i ∈ x : p.i] = (f(i) : 0 ≤ i < x : map(f).l.(p.i))

(6)
where prod.l, length.p, [], and . have the same meaning as

for the reduce function. Similar to reduce, this function could
be defined using \ operator, too.

Numerical Integration with the Rectangle Formula

For a function f : [a, b]→ R, the integral

I =

∫ b

a
f.xdx (7)

can be approximated by the following recursion [23]:

QD0
.f = (b− a)f((a+ b)/2)

QDk .f = 1
3
QDk−1

.f + h
∑2m

i=1 f.xi, ∀k > 0
(8)

where h = b−a
3k

, m = 3k−1, and the xi values are computed
by the following formulas:

x1 = a+ h
2

x2 = a+ 5
2
h

x2j+1 = x1 + 2jh
x2j+2 = x2 + 2jh, 1 ≤ j < 3k−1.

(9)

The formula considers at each step a division into 3 equal
parts, and the values of the function in three points of each
interval.

We will define a PList function drept, that computes
(QDk .f), for a given k.

If we consider a division on the interval [a, b] with n = 3k

points, we have the following list:

[x0, . . . , xn−1] = [a0, a0 + h
3k

, . . . , a0 + 3k−1
3k

h],

where a0 = a+ h
2
.

(10)

It can be noticed that at the combine stage 3k−1 points
are used for the computation of (QDk−1

.f) and 2 ∗ 3k−1

intervene in the computation of the second term of the sum
that computes (QDk .f).

The function

drept : Real × PosList× PList.Real.n→ Real (11)

defined by:

defined.sum.l.p ≡ prod.l = length.p
drept.[]. < x >= hk ∗ x
drept.hk.(3 . l).[\i : i ∈ 3 : p.i] =

1
3
∗ drept.(3 ∗ hk).l.(p.1) + hk ∗ sum.(2 . l).(p.0 \ p.2)

(12)

has three arguments; the first hk = b−a
3k

is the division step,
the second is a list form by k values all equal to 3, and the third
is the PList that contains the function values in the specified
points.

Fast Fourier Transform

Discrete Fourier Transform is an important tool used in
many scientific applications. By this transformation, the poly-
nomial representation with coefficients (ai, 0 ≤ i < n)
is changed to another that consists of a list of n values,
which are the polynomial values in the nth order unity roots
(wj , 0 ≤ j < n). The degree of the polynomial, and so the
number of coefficients – n, leads to three cases:

• n is a power of two – PowerList definition,
• n is a prime number – simple sequential list definition,
• n is a product of different factors – PList definition.
The function root : N → C applied to n returns the

principal nth order unity root:

root.n = e
2πi
n (13)

Case n = 2k

A formula that computes the polynomial value in wj(wj =
(root.n)j) is:

f.wj =
∑2k−1−1

l=0 a2l ∗ e
2πijl

2k−1 + e
2πij

2k
∑2k−1−1

l=0 a2l+1 ∗ e
2πijl

2k−1 ,

where 0 ≤ j < n
(14)

PowerList data structures can be used, in this case, for the
parallel program specification. An additional function is used;
it returns a PowerList of the same length as p, containing
the powers of x from 0 up to the length of p. Its PowerList
definition is:

powers.x.[a] = [x0]
powers.x.(p \ q) = powers.x2.p \ < x∗ > .(powers.x2.q))

(15)
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where < x∗ > means the function that multiplies each list
element with x (it is a specialization of the map function).

The function fft : PowerList.C.n → PowerList.C.n
can be defined as:

fft. <a> = <a>
fft.(p \ q) = (r + u ∗ s) | (r − u ∗ s) (16)

where
r = fft.p, s = fft.q
u = powers.z.p, z = root. (length. (p \ q))

The case n prime
In this case, it is necessary to directly and sequentially

compute the polynomial values:

fft : ParList.C.n→ ParList.C.n
fft.p = vp.p.(powers.z.p)

(17)

where vp is a function that compute the values of a polynomial
(the first argument) on a list of points (the second argument):

vp.p.[v|w] = vp.p.v|vp.p.w
vp.(a . p). <x>= a+ x ∗ vp.p. <x>
vp. <a> . <x>= a

(18)

The case n = r1 ∗ · · · ∗ rk
If n is not a power of two, but is a product of two numbers

r1 and r2, the formula from the first case can be generalized
in this way:

f.wj =
∑r1−1

k=0

{∑r2−1
t=0 atr1+ke

2πijt
r2

}
e

2πijk
n ,

0 ≤ j < n.
(19)

So, a recursive algorithm, that combines r1 FFT, can be
used. Recursively, this can be generalized for a product of
type n = r1 ∗ · · · ∗ rk.

Therefore, for the specification of the parallel algorithm, it
is possible to use the decomposition in prime factors n = r1 ∗
· · · ∗ rk. In this case the PList data structures are appropriate
to be used, with a PosList formed by the prime factors of n:
[r1, r2, . . . , rk] .

In this case, we have a new expression for fft, based on
PList structural induction principle:

fft : PosList× PList.C.n→ PList.C.n
defined.fft.l.p ≡ (prod.l = length.p)

fft. <x> [\i : i ∈ x : [a.i]] = [|j : j ∈ x : (+i : i ∈ x : a.i ∗ z(i∗j))],
fft.(x . l).[\i : i ∈ x : p.i] = [|j : j ∈ x : (+i : i ∈ x : r.i ∗ u.i.j)],
where

(20)

r.i = fft.l.(p.i)

u.i.j =< z(ij∗
n
x
)∗ > .powers.(zi).l

z = root.n, n = length.[\i : i ∈ x : p.i]

IV. PList IMPLEMENTATION IN JPLF FRAMEWORK

The JPLF framework provides general support in Java for
computing PowerList functions and starting from now also
PList functions.

The framework has several important components with
different, but yet interconnected, responsibilities. Their respon-
sibilities are for:

• structures implementations,
• functions implementations,

• functions executors.
This separation of concerns allows us to modify them inde-
pendently, offering the possibility of extension by providing
new or improved ways for execution, for storage, or allowing
other data structures to be included.

IBasicList is a type used for working with simple basic
lists and it is also used as a unitary supertype of the specific
types. They are also used for defining sequential nonrecursive
functions, which will be specializations of BasicListFunction
or BasicListResultFunction. They facilitate the definition of
functions on lists that are based on iterations.

A. PList Implementations

When a PList is decomposed, the result is formed of a set
of similar sublists. In order to avoid element copy, the storage
of all sublists remains the same as that of the initial list, and
only the storage information is updated. For each list l, the
storage information SI(l) is composed of:

• reference to the storage container base,
• the start index start (inclusive),
• the end index end (inclusive),
• the incrementation step incr.

From a given list with storage information SI(list) being
{base, start, end, incr}, the tie and zip deconstruction
operators create a number of lists that have the same stor-
age container – base and correspondent updated values for
(start, end, incr). For example if we split a PList into 3
sublists (provided that its length is divisible by 3), these are
characterized by the following storage information:

Op. Sublist SI
tie left base,start, (start+end)/3,incr

middle base,(start+end)/3,2/3(start+end),incr
right base,2/3(start+end),end,incr

zip left base,start, end-2*incr,incr*3
middle base,start+incr,end-incr,incr*3
right base,start+2*incr,end,incr*3

As for PowerLists, there are two specializations of the PList

type: TiePList and ZipPList. The operator type used for
splitting a PList is determined by the specific type of that
PList which could be either TiePList or ZipPList, and this
enables polymorphic definitions of the splitting and combining
operations.

B. PList Functions

A PList function expresses the specific computation by
using tie or zip deconstruction operators for splitting the PList
arguments, and its definition is directed by the two specific
cases – the base case (for singletons) and the inductive case
(for non-singleton lists). The correctness of the functions is
proved using the associated structural induction principle.

All PList functions specify how the PList arguments are split
and also, if it is the case, how a PList result is constructed from
similar PLists (combine function). This specification is based
on a sequence of deconstruction/construction operators that is
an ordered list op_args with values from the set {tie, zip}.

We consider functions for which a certain PList argument
is always split by using the same operator (and so it preserves
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its type – a TiePowerList or a ZipPowerList). Also, if the
result is a PList, this is constructed at each step by using the
same operator. Based on this assumption, in the framework,
the construction and deconstruction operators are not explicitly
specified for each function; instead they are implied by the
PList types – if they are TiePLists, the tie operator is used,
and if the type is ZipPLists then the zip operator is used.
So, it is very important when a specific function is called, to
prepare it in such a way that the types of the arguments are
the types implied by the specific op_args sequence. The PList

class provides two methods toTiePList and toZipPList that
transforms a general PList into a specific one which has
specific implementation for splitting and construction.

The result of a PList function could be a simple ob-
ject or a PList data structure. The differentiation between
these two cases is done by considering the following two
types: PFunction (functions that return simple objects) and
PResultFunction(functions that return PLists).

The PFunction class defines the template method compute

that implements the divide&conquer solving strategy. The fol-
lowing code snippet (Code 1) shows the code of the template
method compute defined for PFunction:

public Object compute() {
if (test_basic_case()) {

this.result = basic_case();
}
else {

//split the argument
split_arg();
//create the sub_functions
List<PFunction<T>> sublists_functions =

create_sublists_function();
//set the partial results
List<Object> res_sublist =

new ArrayList<Object>();
for (int i=0; i<sublists_functions.size();i++)
{

res_sublist.add(
sublists_functions.get(i).compute());

}
//combine the partial results
this.result = combine(res_sublist);

}
return this.result;

}

Code 1: The code of the template method compute of the class
PFunction.

For a new function, the user should provide implementations
for the following methods:

• basic_case,
• combine,
• create_sublists_function().

Still, it is not mandatory to provide implementations for all
of them, their implicit definitions could be used. For example,
for map (the function that applies an atomic function on
each element of the list) we have to give a definition only
for basic_case(), while for reduce we have to provide an
implementation only for combine().

Using this design, new PList functions could be defined by
extending the PFunction or PResultFunction classes.

C. Multithreading Executors

The sequential execution of a PList function is done sim-
ply by invoking the corresponding compute method (i.e. the
method depicted in Listing Code 1).

The parallel execution is based on executors, and this allows
modifications or specializations.

For PList specialized executor classes are created –
FJ_PFunctionExecutor and FJ_PFunctionComputationTask:

• The class FJ_PFunctionExecutor provides now an im-
plementation based on the ForkJoinPool Java executor
but others could be considered, too.

• In the context of FJ_PFunctionExecutor executor,
the FJ_PFunctionComputationTask class extends the
RecursiveTask class, and provides the parallelization
mechanism by overriding the method compute.

The implementation of the compute method of the
FJ_PFunctionComputationTask class relies on the fact that
the PLists functions are defined based on the Template Method
pattern as seen in Listing Code 2. Its implementation follows
the same skeleton as that used by the compute method defined
for any PList function.

D. Recursion Depth

A special attribute recursion_depth is used by
FJ_PFunctionComputationTask to control the creation
of the parallel tasks – at each level after new tasks are forked
to be executed in parallel, this parameter is decreased and
when it is equal to 0 sequential computation is called (the
compute method of the function).

This is visible in the code from listing 2.

E. List Transformer

Another way of reducing the parallelism, besides using the
recursion_depth special attribute, is to transform the list
argument into lists of sublists. If each sublist is a BasicList,
the computation for these basic lists is performed sequentially.

These newly created sublists can be created using the tie

or zip operators and as such, they can be tie-type lists or zip-
type lists. Please remember that after applying these operators,
the storage of the elements remains the same, only lists
information is changed.

If we use the tie operator in order to transform a PList of n
elements into a PList of p BasicLists, it is not mandatory to
have p|n, but if we use zip instead, this condition is required.

V. APPLICATIONS AND EXPERIMENTS

All the experiments presented in this section have been
performed on a machine that supports a high level of paralleli-
sation: an IBM x3750 M4 system equipped with 64 gigabytes
of RAM and 4 Intel Xeon E5-4610 v2 @ 2.30GHz CPUs
(each CPU having 8 cores). This system is running CentOS 7,
a 64 bit kernel and Java 8. Each of the following tests has been
repeated 5 times, the average execution time being considered.

To demonstrate de usability of our PLists implementation
and to test the performance of our framework, the following
applications were considered: Map, Reduce, and Repeated
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protected Object compute() {
Object result = null;
if (this.function.test_basic_case()) {

result = this.function.basic_case();
} else {

if (this.recursion_depth == 0) {
//sequential execution if recursion_depth=0
result = this.function.compute();

} else {
//split the argument
this.function.split_arg();
//create the sub_functions
List<PFunction<T>> sub_functions =
this.function.create_sublists_function();

// wrap the sub_functions into executor
tasks

List<FJ_PFunctionComputationTask<T>>
sub_func_exec=
new ArrayList<

FJ_PFunctionComputationTask<T>>();
for ( PFunction<T> f : sub_functions) {

sub_func_exec.add(
new FJ_PFunctionComputationTask<T>

(f, this.recursion_depth - 1));
}
// fork the tasks
for (int i=1; i<sub_func_exec.size(); i++){

sub_func_exec.get(i).fork();
}
// set the partial results into sub_results
// ....
// combine the partial results
result=this.function.combine(sub_results);

}
}
return result;

}

Code 2: The code of the template method compute of the class
FJ_PFunctionComputationTask.

Rectangle Formula. For each of the above aforementioned
applications, we have considered three cases for the evaluation:

1) sequential execution;
2) unbounded parallel execution – multithreading execution

for which parallel tasks are created until the base cases
are attained;

3) bounded parallel execution – multithreading execution for
which the number of parallel tasks is bounded through
one of the following two mechanisms:

a) the initial list is transformed into a list of BasicLists
b) the parallel recursion depth is set to a lower value than

the maximal recursion depth.

A. Reduce

The Reduce operation described in terms of the PList theory
is specified in Eq. 5 in Section III. The red function can be
described using either the tie or zip operator.

In the Reduce class implementation, two methods are over-
ridden, combine() and basic_case(). The combine() method
is overriden so that it applies the associative operator on the
results obtained by performing the computation on each sublist
through recoursive calls. And the basic_case() method is
overriden just for the case when the list argument is a list of

BasicList sublists and the Reduce computation is performed
sequentially on each BasicList.

For Reduce we conducted several experiments:
1) PLists of random 10 × 10 matrices of real numbers,

the length of the PLists are multiples of 5000, bounded
parallelism is obtained by converting the initial PList
argument to a list with BasicList sublists (Fig. 1);

2) PLists of random 100×100 matrices of real numbers, the
length of the PLists are powers of 2, bounded parallelism
is obtained by converting the initial PList argument to a
list with BasicList sublists (Fig. 2);

3) PLists of random 10 × 10 matrices of real numbers,
the length of the PLists are powers of 3: 37, 38, .., 312,
bounded parallelism is obtained by converting the initial
PList argument to a list with BasicList sublists (Fig. 3);

4) PLists of random 10 × 10 matrices of real numbers,
the length of the PLists are powers of 3: 37, 38, .., 312,
bounded parallelism is obtained by limiting the parallel
recursion depth (Fig. 4 and 5).

Bounded parallelism was obtained in figures Fig. 1, Fig. 2
and Fig. 3 by converting the initial PList argument to a list with
BasicList sublists, while the bounded parallelism used in Fig.
4 and Fig. 5 was obtained by limiting the parallel recursion
depth.

For example:
- if the number of BasicLists inside the PList argument is

equal to 61 the arity list is equal to [611], and so 61
parallel tasks are split from the first level. Each task will
compute sequentially the corresponding sum.

- if the number of BasicLists inside the PList argument is
equal to 64 the arity list is equal to [26], and then the
PList will be split as a PowerList.

- if the number of BasicLists inside the PList argument is
equal to 100 the arity list is equal to [22, 52], and then
there will be 2 levels that do the splitting into two equal
size lists, and other two levels with a splitting operations
into five sublists.

The figures Fig. 1 and Fig. 2 depicts the obtained speedups,
which are computed as: speedup = Tsequential/Tparallel,
where Tsequential is the execution time of the sequential
computation, and Tparallel is the execution time of parallel
computation.

Since for matrix addition the sequential computation is more
efficient if an iterative (non-recursive) variant is considered,
the bounded parallelism in this case was based on transforming
the initial list of matrices into a Plist of BasicLists of
matrices.

Theoretically, for the addition of a list of matrices the
sequential computation is more efficient if an iterative (non-
recursive) variant is considered, the bounded parallelism based
on transforming the initial list of matrices into a Plist of
BasicLists of matrices, should lead to better performance.

In Fig. 3 we plot the results obtained in an experiment with
10×10 matrix additions. The initial PList argument has the list
length as powers of 3. We can see in this figure the execution
time (in seconds) for sequential execution, unbounded parallel
execution and bounded parallel execution with several values
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Fig. 1. Reduce - matrix addition: 10×10 matrices. speedup_t corresponds to
unbounded parallelism variant, speedup_n correspond to bounded parallelism
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Fig. 2. Reduce - matrix addition: 100 × 100 matrices. speedup_t corre-
sponds to unbounded parallelism variant, speedup_n correspond to bounded
parallelism variant with PList with n elements of type BasicList.

of the number n of BasicLists that the initial PList argument
is split into. We can see that the parallel executions are much
better than the sequential one, and the differences between
unbounded parallelism and the bounded parallelism variants
are not very high.

Fig. 4 shows the results of another experiment similar
to the previous one: 10 × 10 matrix additions, initial PList
argument has the list length as powers of 3. But this time
bounded parallelism execution is obtained by limiting the
parallel recursion depth (which is still powers of 3 – the
number written in brackets in this figure). We can see here
that unbounded parallel execution and all variants of bounded
parallel execution performed better than sequential execution
as expected. Experiment 4 emphasizes the fact that bounding
the parallelism just by setting parallel recursion depth, doesn’t
limit the performance very much, especially for the cases when
the list length is not very big. In order to compare unbounded
parallelism with bounded parallelism, we replotted the same
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Fig. 3. Reduce - execution times for 10×10 matrices addition. OX axis shows
the list length as powers of 3: 37, 38, .., 312. Bounded parallelism is obtained
by splitting the initial PList argument into n (n is power of 3) elements of
type BasicList.
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Fig. 4. Reduce - execution times for 10 × 10 matrices addition. OX axis
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data without the sequential execution time in Fig. 5. We can
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tial execution. OX axis shows the list length as powers of 3: 37, 38, .., 312.
Bounded parallelism is obtained by limitting the parallel recursion depth.
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Fig. 6. Map – applying squaring on each element of a list of 100× 100 ma-
trices. speedup_t corresponds to unbounded parallelism variant, speedup_n
correspond to bounded parallelism variant with PList with n elements of type
BasicList.

see here that for list lengths larger than 310 bounded paral-
lelism has greater performance that unbounded parallelism and
the bound level seems to matter: the 33 bounded parallelism
obtained the smallest execution time (except the value obtained
for list length 312) – which makes sense because 27 is the
bound level closest to the number of actual cores in the system
(i.e. 32).

For bounded parallelism, the best choice for the number of
elements of type BasicList depends on:

• the initial list length,
• the possibility to obtain balanced length sublists,
• the decomposition into prime factors of the length of

resulted Plist – the resulted arity list;
• the correlation between the maximal number of parallel

recursive tasks and the number of the hardware cores.

B. Map

Map emphasizes simple parallel computation, and the cor-
respondent PList function has been defined in Sec. III. The
example considers matrices of size 100 × 100 for which we
apply square operation (power of two) for each element. Fig.
6 emphasizes the results obtained for the executions with
unbounded parallelism and with different levels of bounded
parallelism – the initial lists being transformed into a PList

with different numbers of BasicList elements. For the Map
experiments, the number of parallel tasks is bounded in the
same way as for the Reduce tests, because as in the matrix
addition case the sequential computation of map is more
efficient for large data sets if done iteratively (non-recursive).
We can notice in this figure, as we saw for the Reduce
experiments that for large data sets or if the basic_case
and/or the combine functions are computational intensive, the
difference in performance between bounded and unbounded
parallelism variants is not significant.

C. Repeated Rectangle Formula

As we have seen in Sec. III we have a simple PList
function definition that approximates an integral using the
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repeated rectangle formula (eq. 8-9). This example emphasizes
a multi-way divide&conquer program where the division has
to be done always in 3 parts (subproblems). For this case
the basic_case and combine functions are not computational
intensive (this is important because in parallel cases we have
to consider the overhead time of task creation, that we try to
keep it lower than elementary operations).

The results of the experiments done for this example are
illustrated in the Fig. 7.

The variant that considers bounded parallelism is based
on the limitation of the parallel recursion depth. For
the presented test the recursion_depth argument in the
FJ_PFunctionExecutor constructor, has been set to 4 levels. We
may notice that for large sets of data the bounded parallelism
variant becomes better since the overhead due to the task
creation is limited.

In Fig. 8 we can see the effect of different parallel recursion
depths on the performance of bounded parallel execution over
unbounded parallel execution. We can see in this figure that
all recursion depth levels for bounded parallelism achieved an
execution time much less than the one obtained by unbounded
parallel execution and there is no exact recursion depth level
which performed significantly better than the others (although
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we can see that the recursion depth level of 4 achieved the
worse results - we have no explanation why this happened).

VI. CONCLUSIONS

The PList theory is very powerful, being an extension and
a generalization of the PowerList theory. PList data structures
can be split into a different number of sublists, and the func-
tions defined on them specify multi-way divide-and-conquer
algorithms, which allows not only splitting a problem into a
number of subproblems greater than two, but also variants for
which at each level a different number of subproblems are
split. For some problems this ability is mandatory – as it is
the case of Repeated Rectangle Formula, or the case of Fast
Fourier Transform with arbitrary factors. But, this ability is
very important also for the cases when splitting can be done in
any number of subproblems (e.g. map and reduce functions),
because it allows choosing the best variant from the perfor-
mance point of view. The fact that a PList data structure can be
constructed in two different ways, differentiate this from other
list based data structures that rely on simple concatenation
for building new instances. From the implementation point
of view, the fact that at each step a list can be split into a
different number of sublists (and so subproblems), brings a
degree of flexibility that is useful when one has to choose the
most performant partition of the problem. In extremis, the arity
list could be considered as being formed of only one element
equal to the size of list. In this way, any computation that fits
into the “embarrassingly parallel” pattern might be defined
based on this theory. One special feature of the described
framework is its capability to accept different recursion levels
of parallelisation. In this way, the number of tasks that are
executed in parallel is controlled, with direct impact on the
practical performance. Another extremely important feature of
the framework is its ability to work with lists of lists. It allows
different combinations of list types, the programmer being
able to combine the associated computation paradigms. For
example, a BasicList of PowerLists or PLists elements allows
SEQ-PAR computation, vice-versa being also possible - PAR-
SEQ computation, if PowerList (or a PList) of BasicLists is
used. By using different list types, different types of execution
are performed. This combination can also be done on different
or multiple levels, increasing in this way the possibility to
express different types of computation.
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