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Abstract—In this paper, a cloud radio access network (C-RAN)
is considered where the remote radio heads (RRHs) are separated
from the baseband units (BBUs). The RRHs in the C-RAN are
grouped in different clusters according to their capacity while
the BBUs form a centralized pool of computational resource
units. Each RRH services a finite number of mobile users, i.e.,
the call arrival process is the quasi-random process. A new call
of a single service-class requires a radio and a computational
resource unit in order to be accepted in the C-RAN for a generally
distributed service time. If these resource units are unavailable,
then the call is blocked and lost. To analyze the multi-cluster
C-RAN, we model it as a single-rate loss system, show that a
product form solution exists for the steady state probabilities and
propose a convolution algorithm for the accurate determination
of congestion probabilities. The accuracy of this algorithm is
verified via simulation. The proposed model generalizes our
recent model where the RRHs in the C-RAN are grouped in a
single cluster and each RRH accommodates quasi-random traffic.

Index Terms—cloud, radio access, call blocking, product form,
quasi-random.

I. INTRODUCTION

THE cloud radio access network (C-RAN) is considered as
a promising fifth generation (5G) network architecture

which is anticipated to address the increasing demand for
bandwidth-hungry applications, decreased latency (in the order
of a few ms), improved data rate (up to 1 Gbps) and conse-
quently the rapid growth of wireless traffic which is expected
to reach 110 ExaBytes/month by the end of 2023 [1], [2].

The C-RAN architecture includes a large number of base
stations where the remote radio heads (RRHs) are separated
from the baseband units (BBUs) [3]. The BBUs form a cen-
tralized pool of computational resource units (RUs) which is
connected to the RRHs via the common public radio interface
(CPRI) with a high-capacity fronthaul [4].
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To benefit from network function virtualization, we con-
sider virtualized BBU resources (V-BBU) [3] where the BBU
functionality and services have been virtualized in the form of
virtual network functions (VNFs) [5]. We focus on the radio
resource management, a BBU function that can be virtualized
as a VNF, which is responsible not only for the radio resource
allocation but also for the call admission control (CAC) of
mobile users (MUs).

A CAC is a significant quality of service (QoS) mechanism
that gives access to the RUs required by MUs and provides
fairness among different mobile services/applications. Consid-
ering call-level traffic in the C-RAN, such a QoS mechanism
is a bandwidth (resource) sharing policy since it affects
call blocking probabilities (CBP). Generally speaking, it is
desirable to have efficient recursive formulas or convolution
algorithms for the determination of CBP. Such formulas or
algorithms can be helpful in network planning and can be
obtained via teletraffic loss/queueing models [6], [7]. In this
paper, we focus on convolution algorithms which are adopted
in the literature not only in the case of loss/queueing models
whose steady state probabilities have a product form solution
(PFS) but also in the case of non-PFS models (e.g., [8]–
[16]). Such algorithms are advantageous not only due to
their low computational complexity but also because they
can incorporate various resource sharing policies such as the
complete sharing policy, the bandwidth reservation policy and
threshold-based policies (e.g., [17]–[24]).

On the one hand, various aspects of the C-RAN architecture
have been investigated and analyzed the last few years, such
as the capacity demands and possible functional splits on
the fronthaul network [25], [26], energy and cost saving
issues [27], [28], security challenges [29], resource allocation
issues related to RRH selection, spectrum management and
throughput maximization [30], as well as the dimensioning
problem of the necessary number of V-BBU required to handle
a specific number of RRHs [31], [32]. The latter focus only
on the V-BBU and model them as a queueing system in which
the arrival process of jobs follows a batched Poisson process
and the service time is exponentially distributed. On the other
hand, there are very few papers that consider CAC in the
C-RAN and provide analytical formulas or algorithms for the
CBP determination ([33]–[35], [37]–[39]).

In [33], all RRHs form a single cluster in the C-RAN. The
latter accommodates calls of a single service-class that arrive
in the system according to a Poisson process. A new call
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requires a computational RU from the V-BBU and a radio
RU from the serving RRH. If both RUs are available, then
the new call is accepted in the serving RRH and remains
in the system for a generally distributed service time. Oth-
erwise, call blocking occurs. The analytical model of [33],
named single-class-single-cluster (SC-SC) model, is based on
a multidimensional reversible Markov chain which leads to a
PFS for the steady-state probabilities. The PFS leads to an
accurate CBP calculation either via the complex procedure of
enumeration and processing of the system’s state space or via
recursive formulas. In [34], [35], the SC-SC model is extended
to include the case of overlapping cells via the notion of a
direct routing network [36]. In [37], a convolution algorithm
is proposed for the CBP determination of the SC-SC model. In
[38], the SC-SC model is extended to include the case where
the RRHs can be grouped in multi-clusters (SC-MC model).
In that case, the RRHs that belong to a cluster have the same
amount of radio RUs. Recently, the authors have extended the
SC-SC model to include the case of a quasi-random call arrival
process [39]. This process appears when the RRHs serve calls
generated by a finite number of MUs. In that sense, the quasi-
random process is smoother than the Poisson process (where
calls are generated by an infinite number of users) [7]. We
name the model of [39], finite SC-SC (f-SC-SC) model.

In this paper, we focus on the models of [38] and [39].
More precisely, we extend the SC-MC model of [38] by incor-
porating the quasi-random call arrival process. The proposed
model, named finite SC-MC (f-SC-MC) model, generalizes the
f-SC-SC model of [39], since it covers the more complicated
multi-cluster case. Our contribution is three-fold: 1) we review
the SC-MC model, provide some corrections for the CBP
formulas (presented in [38]) which are necessary for their
implementation and propose a convolution algorithm for the
CBP calculation, 2) we propose the f-SC-MC model, analyze it
via a multidimensional reversible Markov chain and show that
a PFS exists for the steady-state probability distribution and
3) we propose a convolution algorithm (which is based on the
proposed PFS) for the exact determination of the congestion
probabilities in the f-SC-MC model and compare the results
with those obtained via the SC-SC model of [33], the SC-MC
model of [38] and the f-SC-SC model of [39]. Simulation
results verify the accuracy of all models.

The remainder of this paper is as follows: In Section II, we
review the SC-MC model and propose a convolution algorithm
for the calculation of CBP. In Section III, we present the
proposed f-SC-MC model and a 3-step convolution algorithm
for the determination of the various performance measures.
In Section IV, we present analytical and simulation results
for the congestion probabilities of the f-SC-SC and the f-
SC-MC models and compare them with the corresponding
analytical results of [33] and [38], respectively. We conclude
in Section V.

II. REVIEW OF THE SC-MC MODEL

A. The Analytical Model

Consider the C-RAN of Fig. 1 where the RRHs are sep-
arated from the V-BBU. There exist Z different classes of

RRHs. Each class z (z = 1, . . . , Z) forms a cluster of Mz

RRHs. A RRH that belongs to class z has Cz radio RUs which
are allocated to the serving calls of the MUs. The V-BBU has
a capacity of T computational RUs.

Similar to the SC-SC model of [33], new calls arrive in
the C-RAN according to a Poisson process. Let λz be the
arrival rate of new calls in a serving RRH of class z. The
call admission mechanism is as follows: a new call requires
a computational RU from the V-BBU and a radio RU from
the serving RRH of class z. If both RUs are available, then
the new call is accepted in the serving RRH for a generally
distributed service time with mean µ−1. Otherwise, the call is
blocked and lost.
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Fig. 1. The SC-MC model.

Let nz,m be the number of in-service calls in the m-th RRH
that belongs to class z (z = 1, . . . , Z and m = 1, . . . ,Mz).
Then, the number of calls serviced in all RRHs of all Z
classes is expressed by the steady-state vector n = (n1,1, . . . ,
n1,M1

, . . . , nz,1, . . . , nz,Mz
, . . . , nZ,1, . . . , nZ,MZ

) and the cor-
responding steady-state probability distribution, P (n) has the
following PFS [38]:

P (n) = G−1

(
Z∏
z=1

Mz∏
m=1

α
nz,m
z

nz,m!

)
(1)

where: αz = λz/µ is the offered traffic-load (in erl)
in every RRH that belongs to class z, G ≡ G(Ω) =∑

n∈Ω

∏Z

z=1

∏Mz

m=1 α
nz,m
z /nz,m! and Ω is the system’s state

space given by Ω = {n : 0 ≤ nz,1, . . . , nz,Mz
≤ Cz, 0 ≤∑Z

z=1

∑Mz

m=1 nz,m ≤ T}.
Based on P (n), we can determine the total CBP, Bz,tot, of

calls serviced in a RRH of class z via:

Bz,tot = Bz,r +Bc (2)

where: Bz,r, Bc refer to the blocking caused due to insufficient
radio and computational RUs, respectively.

The values of Bz,tot can be computed either via a brute-force
evaluation method (see Section II-B) or via a recursive method
(see Section II-C) proposed in [38] or via a convolution
algorithm (see Section II-D) proposed herein.
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B. The Brute Force Evaluation Method

The values of Bz,r can be computed via (1) as follows:

Bz,r=
1

G

αCz
z

Cz!

∑
n∈Ωz,1,Cz

<T

 Z∏
w=1,
w 6=z

Mw∏
m=1

α
nw,m
w

nw,m!

( Mz∏
m=2

α
nz,m
z

nz,m!

)
(3)

where: Ωz,1,Cz
<T = {Ωz,1,Cz ∩ Ω<T}, Ωz,1,Cz = {n : nz,1 =

Cz}, Ω<T = {n :
∑Z

z=1

∑Mz

m=1
nz,m < T}.

Equation (3) gives the values of Bz,r for the 1st RRH of
class z. However, since we have assumed that the RRHs of
class z are identical and have the same offered traffic-load αz
and the same capacities Cz, then (3) refers to the blocking
caused due to insufficient radio RUs in any RRH of class z.

Similarly, by denoting as Ω=T = {n :
∑Z

z=1

∑Mz

m=1 nz,m =
T}, the values of Bc are given by:

Bc =
∑

n∈Ω=T

P (n) (4)

C. The Recursive Evaluation Method

The determination Bz,r and Bc according to the recursive
method of [38], requires the following functions:

CR(T,M) =
∑

n∈Ω=T

Z∏
z=1

Mz∏
m=1

α
nz,m
z

nz,m!
(5)

RR(T,M) =
∑

n∈Ω<T

Z∏
z=1

Mz∏
m=1

α
nz,m
z

nz,m!
(6)

where: M = (M1, . . . ,Mz, . . . ,MZ)
T is a column vector of

length Z.
The recursive calculation of CR(T,M) and RR(T,M) is

based on (7) and (8), including some necessary corrections
(for their software implementation) compared to the formulas
that appear in [38]:

CR(T,M)=


α
X2,z
z /X2,z!, for M=ez
X2,z∑
i=X1,z

αi
z

i!
CR(T−i,M−ez), for M>ez

(7)
where: ez = (0, . . . , 0, 1, 0, . . . , 0)T is a column vector
of length Z with 1 in element z and 0 elsewhere, while
X1,z = max[0, T − (Mz − 1)Cz −

∑
w 6=zMwCw] and X2,z =

min[Cz, T ].

RR(T,M)=


1, for T=1

RR(T+1,M)−CR(T,M), for 2≤T≤
Z∑
z=1

MzCz

Z∏
z=1

(
Cz∑
i=0

αi
z

i!

)Mi

, for T=
Z∑
z=1

MzCz+1

(8)
Based on (7), (8), the values of Bz,r and Bc can be

computed via (9) and (10) respectively:

Bz,r =
αCz
z

Cz!

RR(T − Cz,M − ez)

RR(T + 1,M)
(9)

Bc =
CR(T,M)

RR(T + 1,M)
(10)

Regarding the computational complexity of the previous
recursive method, it is proved that it is upper bounded by
the term

(
(max

z
Cz)

2 +max
z
Cz

)
M 2. The latter is based

on the assumption that T ≤
∑Z

z=1
MzCz. In the case of

T >
∑Z

z=1MzCz, which results in an overprovision of the
computational RUs, a large pool approximation is proposed
for the determination of blocking probabilities.

The previous method leads to an efficient way for the
computation of Bz,r and Bc and consequently Bz,tot (via (2)).
However, it is not clear how: i) the calculation of the occu-
pancy distribution of the computational RUs will be achieved
and ii) this method can be extended when non-Poisson arrival
processes should be studied. Finally, note that in the particular
case of T >

∑Z

z=1MzCz, the model behaves as M individual
Erlang B loss systems of capacity Cz (z = 1, . . . , Z) radio
RUs and offered traffic-load equal to αz. In that case, Bc = 0
and Bz,r = ECz

(αz) where ECz
(αz) is the Erlang B formula.

The recursive evaluation method of (8) and (9) is not defined
when T >

∑Z

z=1MzCz. The previous drawbacks can be dealt
with the proposed convolution algorithm that follows.

D. The Proposed Convolution Algorithm

In order to efficiently determine Bz,tot as well as the occu-
pancy distribution of the computational RUs, we propose the
following convolution algorithm:
Step 1
For each class z of RRHs (z = 1, . . . , Z) determine the
occupancy distribution of each of the Mz RRHs, qz,m(j),
where m = 1, . . . ,Mz and j = 1, . . . , Cz, via:

qz,m(j) =

{
αj
z

j!
qz,m(0), for j = 1, . . . , Cz

0, for j = Cz + 1, . . . , T
(11)

The values of qz,m(j) can be normalized via the con-
stant Gz,m=

∑Cz

j=0 qz,m(j) and are denoted via q′z,m(j) =
qz,m(j)/Gz,m.
Step 2
Following the successive convolution of all RRHs (of all
classes Z), apart from the (z, 1) RRH, determine the aggre-
gated occupancy distribution:

Q(−(z,1)) =

= q′1,1∗. . .∗q′1,M1
∗. . .∗q′z,2∗. . .∗q′z,Mz

∗. . .∗q′Z,1∗. . .∗q′Z,MZ

(12)

The convolution operation between two occupancy distribu-
tions q′z,u and q′z,w is given by:

q′z,u∗q′z,w=


q′z,u(0)·q′z,w(0),

1∑
x=0

q′z,u(x)·q′z,w(1−x),

. . . ,

T∑
x=0

q′z,u(x)·q′z,w(T−x)


(13)

Since this convolution may not lead to a normalized
distribution, it is recommended to normalize the results of
(12) via the normalization constant, Gz,u,w.
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Step 3
Compute Bz,tot based on the normalized values obtained from
the convolution operation of step 2, as follows:

Bz,tot=Bz,r+Bc=
1

G

(
q′z,1(Cz)

T−1−Cz∑
r=0

Q′(−(z,1))(r)+q(T )

)
(14)

where: q′z,1(Cz) refers to the case of unavailable radio RUs
in the (z, 1) RRH (already determined in step 1), Q′(−(z,1))(r)
are the normalized values of Q(−(z,1))(r), while q(T ) refers
to the un-normalized probability of unavailable computational
RUs, given by q(T ) =

∑T

r=0Q
′
(−(z,1))(r)·q′z,1(T−r) and G is

the normalization constant of the final convolution operation
Q′(−(z,1)) ∗ q′z,1 determined via (13).

The notation of (14) leads to the values of Bz,tot for the
1st RRH of class z. Since we have already assumed that all
RRHs of the same class z have the same capacity Cz and the
same offered traffic-load αz, it is obvious that (14) refers to
the Bz,tot of any RRH of the same class z.

Based on the convolution algorithm, we can obtain the
occupancy distribution of the computational RUs, as follows:

q′(0)=Q′(−(z,1))(0) · q′z,1(0)/G, j=0

q′(j)=

j∑
r=0

Q(−(z,1))(r)
′ · q′z,1(j − r)/G, j=1, . . . , T (15)

where: G is the normalization constant of the final convolution
operation Q′(−(z,1)) ∗ q′z,1.

Regarding the computational complexity of (13) for the SC-
MC model, it is in the order of O(T 2) while the corresponding
complexity in order to obtain the values of (15) is in the order
of O(MT 2).

Note that when Z = 1, then all RRHs form a single cluster
in the C-RAN and we have the SC-SC model. In that case, the
interested reader may resort to [33] and [39] for the analysis of
the brute force evaluation and the recursive evaluation methods
of this model. Herein, we only present the corresponding 3-
step convolution algorithm for the CBP calculation [39]:
Step 1
For each of the M RRHs of the C-RAN, determine the
occupancy distribution qm(j), where m = 1, . . . ,M and
j = 1, . . . , C, via:

qm(j) =

{
αj

j!
qm(0), for j = 1, . . . , C

0, for j = C + 1, . . . , T
(16)

The normalized values of qm(j) are expressed as q′m(j) =
qm(j)/Gm where Gm=

∑C

j=0 qm(j).
Step 2
Following the convolution of all RRHs, apart from the 1st
RRH, determine the aggregated occupancy distribution:

Q(−1) = q′2 ∗ . . . ∗ q′m ∗ . . . ∗ q′M (17)

where the convolution of q′u and q′w is given by (13).
Step 3
Calculate the values of the total CBP, Btot, according to the
normalized values obtained in step 2, as follows:

Btot=Br+Bc=G
−1

(
q′1(C)

T−C−1∑
r=0

Q(−1)(r)+q(T )

)
(18)

where: q′1(C) expresses the case where there are no radio
RUs available in the 1st RRH while q(T ) expresses the
(un-normalized) probability that all computational RUs are
unavailable, given by q(T ) =

∑T

x=0
Q(−1)(x)·q′1(T−x) and G

is the normalization constant of the final convolution operation
Q(−1) ∗ q′1 given via (13).

To determine the occupancy distribution of the computa-
tional RUs, we can use the formulas:

q′(0) = Q(−1)(0) · q′1(0)/G, j = 0

q′(j) =

j∑
z=0

Q(−1)(z) · q′1(j − z)/G, j = 1, . . . , T (19)

where: G is the normalization constant of the final convolution
operation Q(−1) ∗ q′1.

III. THE PROPOSED FINITE SC-MC MODEL

A. The Analytical Model

In the proposed f-SC-MC model, calls arrive in the m-th
RRH that belongs to class z (z = 1, . . . , Z and m = 1, . . . ,
Mz), according to a quasi-random process with mean arrival
rate λz,m = (Nz,m − nz,m)vz,m, where Nz,m is the finite
population of MUs that can be served by the m-th RRH of
class z, nz,m is the number of in-service calls in the m-th RRH
of class z and vz,m is the mean call arrival rate per idle MU
in the m-th RRH of class z. The offered traffic-load per idle
MU in the m-th RRH of class z, is αz,m,idle = vz,m/µ. Note
that if Nz,m → ∞, for z = 1, . . . , Z and m = 1, . . . ,Mz

and the total offered traffic-load remains constant, then the
call arrival process becomes Poisson. In that case, the SC-MC
model results. Similar to the SC-MC model an arriving call
requires a radio RU from the serving RRH and a computational
RU from the V-BBU. If these RUs are available then the
new call is accepted in the serving RRH and remains for a
generally distributed service time with mean µ−1. Otherwise,
call blocking occurs.

Let the number of in-service calls in all RRHs be described
by the steady-state vector n = (n1,1, . . . , n1,M1

, . . . , nz,1, . . . ,
nz,Mz , . . . , nZ,1, . . . , nZ,MZ

). Also denote the steady-state vec-
tors n+

z,m = (n1,1, . . . , n1,M1
, . . . , nz,1, . . . , nz,m + 1, . . . ,

nz,Mz
, . . . , nZ,1, . . . , nZ,MZ

), n−z,m = (n1,1, . . . , n1,M1
, . . . ,

nz,1, . . . , nz,m − 1, . . . , nz,Mz
, . . . , nZ,1, . . . , nZ,MZ

) and let
Pfin(n), Pfin(n

−
z,m), Pfin(n

+
z,m) be the probability distributions

of states n,n−z,m and n+
z,m, respectively. Assuming that states

n−z,m,n,n
+
z,m belong to the state space Ω, we present in Fig. 2

the state transition diagram for the m-th RRH of the class z
of the proposed model.

Based on Fig. 2 and since the corresponding Markov
chain is reversible, we can write the following local balance
equations for states: a) n−z,m and n (see (20)) and b) n and
n+
z,m (see (21)) where z = 1, . . . , Z and m = 1, . . . ,Mz:

(Nz,m − nz,m + 1)vz,mPfin(n
−
z,m) = nz,mµPfin(n) (20)

(Nz,m − nz,m)vz,mPfin(n) = (nz,m + 1)µPfin(n
−
z,m) (21)
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n−z,m n n+
z,m

(Nz,m−nz,m+1)vz,mPfin(n
−
z,m) (Nz,m−nz,m)vz,mPfin(n)

(nz,m+1)µPfin(n
+
z,m)nz,mµPfin(n)

Fig. 2. State transition diagram for the m-th RRH of class z of the f-SC-MC
model.

The system of local balance equations is satisfied by the
following PFS for z = 1, . . . , Z, m = 1, . . . ,Mz and n ∈ Ω:

Pfin(n) = G−1

(
Z∏
z=1

Mz∏
m=1

(
Nz,m

nz,m

)
α
nz,m

z,m,idle

)
(22)

where: G ≡ G(Ω) =
∑

n∈Ω

∏Z

z=1

∏Mz

m=1

(
Nz,m

nz,m

)
α
nz,m

z,m,idle and
Ω is the set of all possible states given by Ω = {n : 0 ≤
nz,1, . . . , nz,Mz

≤ Cz, 0 ≤
∑Z

z=1

∑Mz

m=1 nz,m ≤ T}.
In a system that services quasi-random traffic, we distin-

guish CBP in call congestion (CC) and time congestion (TC)
probabilities. The latter refer to the proportion of time the
system is congested. On the other hand, CC probabilities
coincide with CBP. CC probabilities are only slightly lower
than TC probabilities in quasi-random loss models, especially
if the number of traffic sources is high [7]. Assuming Poisson
arrivals (i.e., the call arrival process adopted in the SC-MC
model), TC and CC probabilities coincide (PASTA property,
[7]).

B. The Proposed Convolution Algorithm

For the efficient calculation of the TC probabilities BTC
z,r ,

BTC
c (and consequently the total TC probability BTC

z,tot =
BTC
z,r +BTC

c ) which refer to the proportion of time that there
exist insufficient radio and computational RUs, respectively,
we exploit the fact that the f-SC-MC model has a PFS and
propose the following 3-step convolution algorithm:
Step 1
For each class z of RRHs (z = 1, . . . , Z) determine the
occupancy distribution of each of the Mz RRHs, qfin,z,m(j),
where m = 1, . . . ,Mz and j = 1, . . . , Cz, via:

qfin,z,m(j)=

{(
Nz,m

j

)
αjz,m,idleqfin,z,m(0), for j=1, . . . , Cz

0, for j=Cz + 1, . . . , T
(23)

The values of qfin,z,m(j) can be normalized by the normal-
ization constant Gfin,z,m=

∑Cz

j=0 qfin,z,m(j) and are denoted via
q′fin,z,m(j)=qfin,z,m(j)/Gfin,z,m. Note that the first step of the
proposed convolution algorithm treats each RRH individually
from the rest RRHs. This treatment does not lead to exact TC
probabilities unless the model has a PFS for the steady-state
probabilities.
Step 2
Following the successive convolution of all RRHs (of all

classes Z), apart from the (z, 1) RRH, determine the aggre-
gated occupancy distribution:

Qfin,(−(z,1)) =q
′
fin,1,1 ∗ . . . ∗ q′fin,1,M1

∗ . . . ∗ q′fin,z,2 ∗ . . .
∗ q′fin,z,Mz

∗ . . . ∗ q′fin,Z,1 ∗ . . . ∗ q′fin,Z,MZ

(24)

The convolution operation between two occupancy distribu-
tions q′fin,z,u and q′fin,z,w is given by (13).
Step 3
Calculate the values of BTC

z,tot based on the normalized values
obtained from the convolution operation of step 2, as follows:

BTC
z,tot=G

−1
fin

(
q′fin,z,1(Cz)

T−Cz−1∑
r=0

Q′fin,(−(z,1))(r)+qfin(T )

)
(25)

where: q′fin,z,1(Cz) refers to the case of unavailable radio
RUs in the (z, 1) RRH (already determined in step 1),
Q′fin,(−(z,1))(r) are the normalized values of Qfin,(−(z,1))(r),
while qfin(T ) refers to the un-normalized probability
of unavailable computational RUs, given by qfin(T ) =∑T

r=0Q
′
fin,(−(z,1))(r) ·q′fin,z,1(T −r) and G is the normalization

constant of the final convolution operation Q′fin,(−(z,1)) ∗ q′fin,z,1

determined via (13).
As far as the CC probabilities for a call in the m-th RRH of

class z are concerned, they are determined for a system with
Nz,m − 1 traffic sources.

The occupancy distribution of the computational RUs can
be obtained as follows:

q′fin(0) = Qfin,(−(z,1))(0) · q′fin,z,1(0)/Gfin, j = 0

q′fin(j) =

j∑
r=0

Qfin,−(z,1)(r) · q′fin,z,1(j − r)/Gfin, j = 1, . . . , T

(26)

where: Gfin is the normalization constant of the final convolu-
tion operation Qfin,(−(z,1)) ∗ q′fin,z,1.

Note that when Z = 1, then all RRHs form a single
cluster in the C-RAN and we have the f-SC-SC model. In that
case, the interested reader may resort to [39] for the analysis
of the model. Herein, we only present the corresponding
3-step convolution algorithm for the calculation of the TC
probabilities [39]:
Step 1
For each of the M RRHs, calculate the occupancy distribution
qfin,m(j), where m = 1, . . . ,M and j = 1, . . . , C, via:

qfin,m(j) =

{(
Nm

j

)
αjm,idleqfin,m(0), for j = 1, . . . , C

0, for j = C + 1, . . . , T
(27)

The normalized values of qfin,m(j) are expressed as
q′fin,m(j)=qfin,m(j)/Gfin,m where Gfin,m=

∑C

j=0 qfin,m(j).
Step 2
Following the successive convolution of all RRHs, apart from
the 1st RRH, determine the aggregated occupancy distribution:

Qfin,(−1) = q′fin,2 ∗ . . . ∗ q′fin,m ∗ . . . ∗ q′fin,M (28)

Taking into account two occupancy distributions q′fin,u and
q′fin,w, their convolution operation is given by (13).
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PFS
(eq. (22)) (eqs. (23)-(26))

Fig. 3. The proposed methodology in the f-SC-MC model.

Step 3
Calculate the values of the total TC probability, BTC

tot , based
on the normalized values obtainedin step 2, as follows:

BTC
tot =B

TC
r +BTC

c =G−1
fin

(
q′fin,1(C)

T−C−1∑
r=0

Qfin,(−1)(r)+qfin(T )

)
(29)

where: q′fin,1(C) expresses the case where there are no radio
RUs available in the 1st RRH while qfin(T ) refers to the (un-
normalized) probability that there all computational RUs are
unavailable, given by qfin(T ) =

∑T

x=0Qfin,(−1)(x) · q′fin,1(T −
x) and Gfin is the normalization constant of the convolution
operation Qfin,(−1) ∗ q′fin,1 determined via (13).

The occupancy distribution of the computational RUs can
be obtained as follows:

q′fin(0) = Qfin,(−1)(0) · q′fin,1(0)/Gfin, j = 0

q′fin(j) =

j∑
r=0

Qfin,(−1)(r) · q′fin,1(j − r)/Gfin, j = 1, . . . , T

(30)

where: Gfin is the normalization constant of the final convolu-
tion operation Qfin,(−1) ∗ q′fin,1.

Figure 3 summarizes the proposed methodology which is
required in order to determine TC probabilities in the f-SC-MC
model. Initially, it is important to have a PFS for the steady-
state probabilities of the proposed model. Due to the fact that
the model can be analyzed via a reversible Markov chain,
we can obtain the PFS of (22). Based on the PFS, we can
propose a convolution algorithm for the exact determination
of TC probabilities.

IV. NUMERICAL RESULTS

In this section, we present two application examples. In
the first example, we provide analytical and simulation TC
probabilities results of the f-SC-SC model of [39] and the
corresponding analytical results of the SC-SC model of [33].
In the second example, we provide analytical and simulation
TC probabilities results of the proposed f-SC-MC model and
the corresponding analytical results of the SC-MC model
of [38]. Simulation results are based on the Simscript III
simulation language [40] and are mean values of 7 runs. In
each run, two hundred million calls are generated while the
first 5% of these generated calls are not considered in the TC
probabilities results so as to account for a warm-up period.
In addition, we do not present reliability ranges in the figures
of this section, in order to increase their readability. These
reliability ranges are less than two order of magnitude.

In the first example, consider a C-RAN of M = 6 RRHs in
the form of a single cluster. All RRHs have the same capacity
C = 5 radio RUs. On the other hand, the V-BBU consist

of T computational RUs. We consider two values of T : 1)
T = M · C = 30 and 2) T = 24. Regarding the number of
finite sources (or MUs) per RRH, we consider three values:
a) N = 10, b) N = 50 and c) N = 100 sources [39]. In each
of the M RRHs, let the offered traffic-load per idle MU be
αm,idle = αm/N where αm expresses the value of the Poisson
traffic. Contrary to the initial values of αm chosen in [39]
(αm = 2.0 erl for m = 1, . . . , 6), herein we choose αm =
3.0 erl for m = 1, . . . , 6.

In the x-axis of Figs. 4-7, the value of αm increases in
steps of 0.2 erl. So, point 1 is: (α1, α2, α3, α4, α5, α6) = (3.0,
3.0, 3.0, 3.0, 3.0, 3.0) while point 11 is: (α1, α2, α3, α4, α5,
α6) = (5.0, 5.0, 5.0, 5.0, 5.0, 5.0). Contrary to the results
presented in [39], the values of αm chosen herein help us
investigate an offered traffic-load region that leads to higher
TC probabilities results (compare Figs. 3-6 of [39] with the
corresponding figures of this example).

Fig. 4. TC probabilities (Br) for all values of N .

Figure 4 shows the simulation and analytical TC probabil-
ities of Br for all values of N as well as the corresponding
TC probabilities for the SC-SC model of [33], assuming that
T = 30. Figure 5 presents the corresponding results of Bc.
In both figures, we observe that: a) the existing SC-SC model
leads to higher TC probabilities compared to those obtained
via the f-SC-SC model of [39], especially when N = 10 or
50 sources, b) increasing N leads to TC probabilities which
are closer to those obtained according to the SC-SC model (in
which N is infinite due to the Poisson call arrival process) and
c) simulation results are very close to the analytical results.
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Fig. 5. TC probabilities (Bc) for all values of N .

Fig. 6. TC probabilities (Br) for all values of N and T .

Figure 6 presents the simulation and analytical TC prob-
abilities of Br for all values of N and both values of T .
We observe that a decrease in T results in a decrease of
Br especially for high values of the offered traffic-load.
This behavior can be explained as follows: a decrease in T
leads many new calls to blocking due to the unavailability
of computational RUs, and therefore the number of available

Fig. 7. TC probabilities (Bc) for all values of N and T = 24.

radio RUs increases.
Figure 7 presents the simulation and analytical TC proba-

bilities of Bc for all values of N and T = 24. We observe that
the decrease of T to 24 units, results in a remarkable increase
of Bc (compare Figs. 5 and 7) which reveals that particular
attention is required when choosing the value of T especially
if it is much lower than M · C.

Fig. 8. TC probabilities (B1,r) for different values of N (class z = 1).

In the second example, consider a C-RAN of Z = 3 classes
of RRHs. The first class includes M1 = 10 RRHs of capacity
C1 = 8 radio RUs. The second class includesM2 = 5 RRHs of
capacity C2 = 12 radio RUs. Finally, the third class includes
M3 = 2 RRHs of capacity C3 = 15 radio RUs. The V-BBU
consists of T = 90 computational RUs. Regarding the number
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of finite sources for the m-th RRH (of each class z = 1, 2, 3),
we consider the values: a) Nz,m = 20, b) Nz,m = 50 and c)
Nz.m = 100 sources. The offered traffic-load per idle MU in
each of the M RRHs is αz,m,idle = αz/Nz,m where αz refers
to the value of the Poisson traffic. Initially, we assume that
α1 = 2.0 erl for each RRH of the first class (m = 1, . . . , 10).
Similarly, let α2 = 4.0 erl for each RRH of the second class
(m = 1, . . . , 5) and α3 = 6.0 erl for each RRH of the third
class (m = 1, 2).

Fig. 9. TC probabilities (B2,r) for different values of N (class z = 2).

In the x-axis of Figs. 8-10, the value of αz increases in
steps of 0.2 erl. So, point 1 is: (α1, α2, α3) = (2.0, 4.0, 6.0)
while point 11 is: (α1, α2, α3) = (4.0, 6.0, 8.0).

Figures 8-10 present the analytical and simulation TC
probabilities of BTC

z,r (depicted for presentation purposes as
Bz,r ) for each class z and the three values of Nz,m (depicted
for presentation purposes as N ). For comparison, we also
include the corresponding TC probabilities for the SC-MC
of [38]. In all figures, we observe that: a) the existing SC-
MC model provides much higher TC probabilities compared
to those obtained via the f-SC-MC model, especially when
the values of N are low (e.g., when N = 20 or 50 sources),
b) increasing N results in TC probabilities which are closer
to those obtained via the SC-MC model (where by definition
N is infinite) and c) simulation results are very close to the
analytical results

V. CONCLUSION

In this paper we propose a new loss model, named f-SC-MC
model, for the analysis of a C-RAN that accommodates quasi-
random traffic which is smoother than the classical Poisson
process considered in [33], [38]. Two different cases are
considered regarding the grouping of RRHs. The single cluster
case, proposed in [39] and the multi-cluster case proposed

Fig. 10. TC probabilities (B3,r) for different values of N (class z = 3).

herein. The latter generalizes the model of [39] since it
assumes that RRHs are grouped in different clusters according
to their capacities in radio RUs. Our first major contribution
is to show that the steady-state probabilities of the proposed
model in the multi-cluster case (f-SC-MC model) have a
PFS. This is an essential step in order to proceed with our
second major contribution which is a convolution algorithm
for the exact determination of TC probabilities in the f-SC-
MC model. Indeed, the first step of the proposed convolution
algorithm treats each RRH individually from the rest RRHs.
This treatment does not lead to exact TC probabilities unless
the model has a PFS for the steady-state probabilities. The
accuracy of the proposed algorithm is verified via simulation
and found to be very satisfactory. As a future work we intend
to study call arrival processes that are burstier than the Poisson
process such as the batched Poisson process [41]–[44].
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