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Abstract—Leukocytes, or white blood cells (WBCs), are micro-
scopic organisms that fight against infectious disease, bacteria,
viruses and others. The manual method to classify and count
WBCs is tedious, time-consuming and may have inaccurate
results, whereas the automated methods are costly. This research
aims to automatically identify and classify WBCs in a microscopic
image into four types with higher accuracy. BCCD is the used
dataset in this study, which is a scaled-down blood cell detection
dataset. BCCD is firstly preprocessed by passing through various
processes such as segmentation and augmentation; then, it is
passed to the proposed model. Our model combines the advantage
of deep models in automatically extracting features with the
higher classification accuracy of traditional machine learning
classifiers. The proposed model consists of two main stages:
a shallow tuning pre-trained model and a traditional machine
learning classifier on top of it. In this study, ten different pre-
trained models with six types of machine learning are used.
Moreover, the fully connected network (FCN) of pre-trained
models is used as a baseline classifier for comparison. The
evaluation process shows that the hybrid of MobileNet-224 as a
feature extractor and logistic regression as classifier has a higher
rank-1 accuracy of 97.03%. Besides, the proposed hybrid model
outperformed the baseline FCN by 25.78% on average.

Index Terms—Deep learning, feature extraction, classification,
white blood cells (WBCs).

I. INTRODUCTION

WHite blood cells (WBCs), or leukocyte cells, serve
as the armed forces of our body against infectious

disease. WBCs have five consequential types that could be
differentiated according to their shape and size, the presence
of granules in their cytoplasm, and the number of lobes in
their nucleus. WBCs can be categorized as cells that contain
granules, including neutrophils, basophils and eosinophils, and
cells without granules, including monocytes and lymphocytes
[1], [2].

The density of WBCs in the bloodstream contributes an
insight into the state of our immune system and any possible
risks. A significant change in the WBC count comparable
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Fig. 1. WBC analysis example shows the variation in the number of white
blood cells between normal blood and blood with leukemia [3].

to the baseline is commonly a sign that the human body
is currently being affected by an antigen. Furthermore, a
change in a particular type of WBC usually relates to a
particular type of antigen. For example, the malfunctioning
of the immune system could be indicated in leukemia patients
by a higher level of lymphocytes in the bloodstream, as shown
in Fig. 1. Moreover, an increase in the eosinophil counts
is a sign of people fighting allergies as these WBCs are
key to fighting allergens. Consequently, the count of WBCs
in the bloodstream can provide a person with a compelling
quantitative picture of his/her health.

Therefore, considerable research has been done on the
classification and counting of WBCs due to their significance
for the medical analysis field. A typical image classification
system includes multiple phases: image preprocessing, seg-
mentation, feature extraction, and finally, the classifier.

The feature extraction phase is one of the significant steps
that strongly affect the performance of the classification sys-
tem. The extracted features from an image could be global or
local [4]. The global features represent the whole aspects of
an image by one-dimensional vectors such as color, texture,
or shape. Moreover, local binary patterns (LBP), histogram of
oriented gradients (HOG) and color histograms could be used
as global feature descriptors. Conversely, the local features
only extract features from a set of regions of interest (ROI).
Scale-invariant feature transform (SIFT), Speeded-Up Robust
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Fig. 2. Deep models sections: The convolutional layers act as feature
extractors, and the fully connected layers act as classifiers [7].

Features (SURF), and Oriented FAST and Rotated BRIEF
(ORB) could be used as local feature descriptors.

The commonly extracted features, for the WBCs, can be
categorized into geometrical, textural, intensity and color
based features [5]. The geometrical features are related to
the shape of the cell and nucleus. They may include area,
perimeter, number of nuclei, orientation and compactness.

Over the last few decades, the extraction of features was
hand-crafted, requiring a high level of expertise and taking
a lot of time and effort. Nowadays, deep learning models
use end-to-end feature extraction and classification, which
outperform the hand-crafted methods. Instead of depending on
domain expertise to extract features, deep neural networks ex-
tract these features automatically from images in hierarchical-
based techniques. Lower layers learn low-level features such
as edges and corners, whereas the middle layers learn features
like color and shape. Higher layers learn high-level features
describing the object in the image [6]. These deep models
consist of convolutional layers that act as feature extractors
and fully connected layers that act as classifiers, as shown in
Fig. 2.

The main contributions of the paper can be summarized as
the following:

- A two-stage hybrid classification system is proposed. The
first stage uses a pre-trained model to produce the feature
vector to avoid the artifacts of manual feature extraction.
This feature vector is fed to the next stage, which consists
of a traditional classifier to enhance the classification
accuracy.

- We have studied the performance of the proposed two-
stage model by varying ten pre-trained models as feature
extractors in the first stage, and six traditional classifiers
in the second stage. The results of different classifiers
are compared to a baseline classifier (i.e., pre-trained
convolutional neural network with a fully connected
layer).

- The proposed hybrid model always outperforms, on
average, the classical pre-trained models with a fully
connected layer with four classifiers: logistic regression,
random forest, k-nearest neighbors (KNN) and linear
discriminant analysis (LDA).

This paper is organized as follows: Section II reviews some
of the recent related research that has been done on WBCs with
different datasets and medical images. The proposed approach
and dataset are introduced in Section III. Section IV states
all experiments and results that have been done on WBC
dataset and the explanation and discussion of these results.
The conclusion of the paper can be found in Section V.

II. RELATED WORK

Many related works have been conducted over the decades
to classify WBCs. A wide variety of related work has been
considered. Firstly, the traditional methods for extracting fea-
tures with machine learning techniques are introduced. Then,
the new attempts with deep neural models are clarified.

Yampri et al. [8] extracted the features by combining
eigenvalue and parametric feature detection. They reached
92% in their classification using 50 images for testing. Falcon
et al. [9] extracted from manually segmented nucleus the shape
features (contour-based and region-based). The first descriptor
concentrates on the boundary lines of the nucleus, whereas the
other considers the whole area of the segmented nucleus. Five
classifiers – multi-layer perceptron, pair-wise support vector
machine (SVM), KNN, PART, and C4.5 with five-fold cross-
validation – were used. All classifiers achieved a classification
rate of over 96%. Habibzadeh et al. [10] segmented low-
resolution images, extracted three different sets of features,
and applied SVM as a classifier. The first set is composed of
a feature vector of shape, intensity and texture features. The
second set is developed by applying the dual-tree complex
wavelet transform (DT- CWT) to have robust and invariant
characteristics of the segmented image. The third set builds
a lower-dimensional feature vector by applying the kernel
principal component analysis (K-PCA) to the feature vector
of the first set. The best classification rate was achieved by
the second set, i.e., DT-CWT, with SVM with 84% classi-
fication rate. Su et al. [5] extracted geometrical, color and
local-directional-pattern (LDP)-based texture features from
the segmented cell. These features were fed into traditional
neural networks. They reached 99.11% overall correctness
over 450 images for testing. Gautam et al. [11] extracted
only the geometric shape-based features from the segmented
images and applied a classification rule to classify the type of
WBC. They reached 73% overall performance on a set of 63
images for testing. Prinyakupt et al. [12] used a greedy search
algorithm called sequential forward selection to extract several
features from the segmented nucleus and cytoplasm regions.
They reached 98% and 94% for classification using linear
and naive Bayes (NB) classifiers, respectively. Ravikumar et
al. [13] classified the WBCs using relevance vector machine
(RVM) with a testing efficiency of 91%. They applied this
method on three feature vectors based on 62 images for
training and 23 images for testing. Ravikumar [14] extended
his work and used the fast relevance vector machine (Fast-
RVM) to detect the WBCs. This technique reduces the effects
of illumination and staining effectively. Furthermore, it reduces
the computational time. Sarrafzadeh et al. [15] worked on
seven categories of texture features with LDA, KNN and NB

38 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 16, NO. 1, MARCH 2020



classifiers. The best classification rate was 85.53%. It was
achieved with a combination of RICLBP features for the LDA
classifier.

Nowadays, deep learning models obtain promising results in
classifying and recognizing objects in the medical image field.
Fu et al. [16] applied a multi-scale and multi-level convolu-
tional neural network (CNN) with a side-output layer to learn a
rich hierarchical design and utilized a conditional random field
(CRF) to model the long-range interactions between pixels.
Datasets provide two manual segmentations generated by two
different experts for each image. Their proposed technique
accuracy reached 95%. Shahin et al. [17] proposed an identifi-
cation system for WBCs based on deep CNN. Two approaches
based on transfer learning were used. Transfer learning based
on deep activation features and fine-tuning of existing deep
networks were combined. Two thousand five hundred fifty-one
images from three different public WBC datasets were used.
The dataset contains five healthy WBC types. The best overall
accuracy achieved was 96.1%. Rajaraman et al. [18] used deep
learning techniques to diagnose malaria in blood cell images.
The researchers used the CNN-based deep learning model as a
feature extractor. To improve disease screening, the researchers
classified uninfected and parasitized cells. Experimentally, the
optimal model layers for feature extraction were determined
from the underlying data. They prove that the use of pre-
trained CNNs is an auspicious tool for feature extraction. The
researchers conclude that the best result was 95.7% accuracy
using ResNet-50. Mehdi et al. [19] classify WBCs into four
primary types – neutrophils, eosinophils, lymphocytes and
monocytes – by consecutive deep learning framework. Using
ResNet V1 50, their framework detects, on average, 100%,
whereas alternative ResNet V1 152 and ResNet got promising
results with 99.84% and 99.46% accuracy rate, respectively.
Their experiment used 3,000 epochs to fine-tune all layers,
trained on 11,200 samples, and evaluated 1,244 WBCs. Liang
et al. [20] propose a framework that combines the CNN with
the recurrent neural network (RNN) to deeply understand the
image content and learn the structured features of images.
The best performance of this framework reaches 90.97%
when combined with Xception and long short-term memory
(LSTM).

III. MATERIALS AND METHODS

In this section, the dataset and the proposed model config-
uration are introduced.

A. Dataset
The dataset used in this paper is BCCD, which is publicly

offered by Kaggle [21]. It contains 12,500 images with di-
mensions of 320x240 pixels each. The images are classified
into only four classes: eosinophil, lymphocyte, monocyte and
neutrophil. Each class has approximately 3,120 images –2,500
for training, and 620 for testing.

B. Proposed Model Configuration
Fig. 3 shows the proposed model architecture. It consists

of four main building blocks: image preprocessing, feature
extraction, classification and performance evaluation.

Firstly, the WBC images are segmented as in Sec. III-B1.
Then, the segmented images are passed to our hybrid model.
The proposed model consists of two stages: feature extraction
using a pre-trained model as in Sec. III-B2 and, on top of
it, the classification as in Sec. III-B3. Finally, the results are
evaluated using multiple metrics as in Sec. III-B4.

1) Image Preprocessing: The used WBC images are pig-
mented with a distinct color to segment them from other
components. Thresholding is the simplest technique of seg-
mentation, which is computationally inexpensive and fast [22].
Firstly, WBCs are located using global thresholding technique.
Then, WBCs are centered within the cropped 200x200 images,
as shown in Fig. 4. The correctly segmented images are then
split into 90% for training and 10% for testing before they are
passed to the next step.

2) Features Extraction Using Pre-trained Model: The com-
plex feature extraction process needs domain expertise. In
this paper, pre-trained models are used to learn these features
in a hierarchical structure. However, instead of building and
training these models from scratch, the pre-trained weights
trained on the ImageNet dataset are initially used, but with all
layers left unfrozen in the training of our models since medical
images need different weights. This method’s effectiveness is
already demonstrated by [23] in medical image analysis.

The last fully connected layer of each pre-trained model is
removed to reach the feature vector, then the rest of the model
is treated as a fixed feature extractor from the pre-trained
model for the new dataset [24]. These extracted features will
be used as input for the next stage in our hybrid model.

In this paper, ten pre-trained deep learning models are
independently used as feature extractors on correctly seg-
mented images. Eight main models: VGG-16, VGG-19 [25],
ResNet-50 [26], DenseNet-121, DenseNet-169 [27], Inception-
V3 [28], Inception-ResNet-V2 [29] and Xception [30]. Two
recent models with lightweight architecture: 1.0 MobileNet-
224 [31] and Mobile NASNet-A [32].

3) Classification: The previously extracted feature vector
from each pre-trained model is then passed to one of these
classifiers: traditional classifiers and fully connected network
(FCN) classifiers.

a) Traditional classifiers: Six traditional machine learn-
ing classifiers have been chosen to cover popular algorithms
of classification [33] and that exist in scikit-learn tool [34]
for machine learning in Python. Logistic regression (LR), and
LDA are used as linear classifiers. KNN, NB and decision
tree (DT) are used as nonlinear classifiers. Finally, random
forest is used as an ensemble classifier. The default parameters
are used for the six classifiers. LR has L2 norm penalty, 1.0
for inverse regularization strength (C), L-BFGS optimizer for
multiclass problems, and 0.0001 tolerance (tol) for stopping
criteria. LDA has a singular value decomposition (svd) solver,
which is recommended for data with a large number of features
and 0.0001 (tol). KNN has 5 neighbors to use, ‘uniform’
weights, 30 leaf size, and the distance ‘Minkowski’ metric
with p = 2, which is equivalent to the standard Euclidean
metric. The Gaussian NB is used with the 1e-9 portion, of the
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Fig. 3. The proposed model architecture: The main phases used for classification and evaluation of WBC augmented BCCD dataset.

Fig. 4. (a) Original image with dimensions 320x240. (b) Segmented image
with dimensions 200x200.

largest variance of all features, that is added to variances for
calculation stability (var smoothing). Both DT and RF have
‘Gini impurity’ criterion to measure the quality of a split,
whereas DT has ‘best’ splitter to choose the best split and
RF has 100 trees in the forest.

b) Fully connected classifier: FCN is used as our base-
line classifier. The FCN is put on top of the pre-trained
extraction stage, and finally, a softmax classifier is added.
Many experiments are performed in this step to find the FCN,
which has the highest accuracy. The used fully connected
classifier stage consists of these consecutive layers: dense
layer with 512 neurons with ‘relu’ activation function, dense
layer with 256 neurons with ‘relu’ activation function, dropout
layer with 0.5, and finally a dense layer with four neurons
with softmax activation function. Then, the model is trained
for 20 epochs using ‘Adam’ optimizer as there is not more
improvement in the training and validation accuracies. The
batch size and learning rate are, respectively, eight and 1e-7
with decay 1e-7/20, which are empirically determined for the
FCN to get the best results for classification with the majority

of pre-trained models.
4) Performance Evaluation: In these experiments, the per-

formance of each pre-trained model with the six classifiers is
evaluated using multiple metrics: accuracy, precision, sensi-
tivity (recall), specificity, F1-score, rank-1 accuracy, receiver
operating characteristic (ROC) curve, and area under the
ROC curve (AUC). For each WBC type, the corresponding
predictions are classified into four categories: true positive
(TP), false positive (FP), true negative (TN) and false negative
(FN).

The accuracy, calculated by using (1), is equivalent to the
entirety of TP and TN separated by the aggregate number
of leukocytes. The precision, calculated by using (2), is the
ratio of correctly predicted true positive to the total predicted
positive, i.e., TP and FP. The sensitivity refers to the true
positive rate and is equivalent to the proportion of TP to
the entirety of TP and FN. It is calculated by using (3). In
contrast, the specificity refers to the true negative rate and
is equivalent to the proportion of TN to the entirety of TN
and FP. It is calculated by using (4). F1-score, calculated by
using (5), determines the accuracy based on both precision and
sensitivity.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

FP + TN
(4)
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Fig. 5. ROC curve analysis of WBCs classifications into (eosinophil, lymphocyte, monocyte, neutrophil). Proposed model used 10 pre-trained models as a
feature extractor and logistic regression as a classifier. AUC values are included.

F1− score = 2
Recall × Precision

Recall + Precision
=

2TP

2TP + FP + FN
(5)

The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold
settings, whereas AUC measures the entire two-dimensional
area underneath the ROC. A test with no overlap in the two
distributions has a ROC curve that passes within the upper
left corner (100% sensitivity, 100% specificity). Therefore, the
closer the ROC curve is to the upper left corner, the higher
the overall accuracy of the test [35].

IV. RESULTS AND DISCUSSION

As shown in Fig. 3, there are multiple phases that our
WBC augmented dataset passed through for classification and
evaluation.

a) Preprocessing and overall results: Firstly, the input
images of the used dataset are preprocessed, as in Sec. III-B1.
The used technique for segmentation is based on considering
the highest connected regions with pigmented color as the
region of interest (i.e., the wanted WBCs). Sometimes, the
highest connected regions are not the required cells, as there
are other pigmented parts in images as the unsegmented parts

in Fig. 4. In that case, these images are excluded. The correctly
segmented 9,760 images are then split into 8,784 images for
training and 976 images for testing. Secondly, one of the ten
chosen pre-trained deep models, mentioned in Sec. III-B2, is
applied separately on training images as a feature extractor.
The extracted feature vector differs in length between pre-
trained models, as shown in Table I. Then, each extracted
feature vector from a pre-trained model is passed to one of
the chosen classifiers, mentioned in Sec. III-B3. Six of these
classifiers are traditional machine learning classifiers that used
the extracted features for training the classifiers themselves,
whereas the seventh classifier is the FCN of deep models,
which is used as a baseline. Thirdly, the 976 testing images
are also passed to the pre-trained model for feature extraction
then tested over trained classifiers. Finally, different metrics
are used for evaluation. The rank-1 accuracy of each classifier
with the different models is calculated, as shown in Table II.
Furthermore, each classifier has been evaluated with different
performance metrics (see Sec. III-B4). These results are shown
in Table V to Table VII and Fig. 5 and 6.

b) Our model results: The rows of Table II represent the
pre-trained models used as features extractors. The columns
represent the classification accuracy (i.e., rank-1 accuracy)
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Fig. 6. ROC curve analysis of WBCs classifications into (eosinophil, lymphocyte, monocyte, neutrophil). Proposed model used a pre-trained model DenseNet-
169 as a feature extractor and six classifiers. AUC values are included.

TABLE I
FEATURES VECTOR OF PRE-TRAINED MODELS

Model Features vector length Model Features vector length

VGG-16 18432 Inception-V3 32768

VGG-19 18432 Inception ResNet-V2 24576

ResNet-50 2048 Xception 2048

DenseNet-121 50176 1.0 MobileNet-224 50176

DenseNet-169 81536 Mobile NasNet 51744

when that classifier is applied on top of the pre-trained
model. The hybrid of pre-trained MobileNet-224 model and
logistic regression classifier achieves the highest classifica-
tion accuracy (i.e., bold underlined value), which is 97.03%.
Comparing the results of the baseline classifier (i.e., FCN)
with other classifiers shows that our hybrid model always
outperforms classical pre-trained model with three classifiers:
logistic regression, random forest and KNN.

Table III takes the average of classifications accuracy (i.e.,
rank-1) of a pre-trained model all over the different classifiers
of Table II. In other words, it takes the average of rows of
Table II. The DenseNet-169 has the highest average rank-1,
which is 86.04%. It outperformed all other pre-trained models
by between 2.51% and 33.62%. For that, DenseNet-169 is

considered to be the best feature extractor pre-trained model.
Table IV takes the average of classification accuracy (i.e.,

rank-1) of a classifier all over the different pre-trained feature
extractor models of Table II. In other words, it takes the
average of columns of Table II. Four classifiers have a higher
average than the baseline FCN: logistic regression, KNN,
random forest and LDA. Logistic regression has the highest
average at 0.90758, which outperformed the baseline FCN
by 25.78%. In addition, logistic regression outperformed all
other classifiers between by 0.92% and 32.7%. Therefore,
logistic regression is considered to be the best classifier.
Table V represents the average of the five metrics used for
performance evaluation over each pre-trained model. In this
table, DenseNet-169 has the highest average in all five metrics
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TABLE II
RANK-1 ACCURACY FOR TEN PRE-TRAINED DEEP MODELS WITH SIX DIFFERENT CLASSIFIERS AND FULLY CONNECTED NETWORK (FCN) USED AS

THE BASELINE

Model FCN (Baseline) Logistic Regr. Decision Tree Rand. Forest Naive Bayes KNN LDA

VGG-16 69.26% 95.80% 72.23% 92.42% 64.14% 94.57% 27.05%

VGG-19 63.42% 96.72% 67.73% 91.91% 63.83% 93.44% 26.43%

ResNet-50 27.36% 55.02% 44.16 % 64.96% 38.83% 67.73% 68.85 %

DenseNet-121 76.84% 95.80% 65.68% 86.99% 67.73% 94.77% 96.93%

DenseNet-169 82.83% 96.62% 69.77% 88.01% 71.62% 96.93% 96.52%

Inception-V3 71.93% 92.42% 55.12% 78.38% 62.30% 89.65% 89.96%

Inception ResNet-V2 69.57% 95.39% 60.35% 85.04% 59.02% 87.09% 92.93 %

Xception 45.90% 91.39% 53.07% 75.1 % 53.18% 89.45% 90.06 %

1.0 MobileNet-224 73.26% 97.03% 61.68% 86.07% 53.28% 94.67% 92.42%

Mobile NasNet 69.47% 91.39% 54.82% 80.23% 46.62% 90.06% 85.86%

TABLE III
THE AVERAGE OF CLASSIFICATION ACCURACY (I.E. RANK-1) OVER THE TEN PRE-TRAINED MODELS

Model Average of Rank-1 Model Average of Rank-1

VGG-16 73.64 % Inception-V3 77.11 %

VGG-19 71.93 % Inception ResNet-V2 78.48 %

ResNet-50 52.42 % Xception 71.16 %

DenseNet-121 83.53 % 1.0 MobileNet-224 79.77 %

DenseNet-169 86.04 % Mobile NasNet 74.06 %

TABLE IV
THE AVERAGE OF CLASSIFICATION ACCURACY (I.E. RANK-1) OVER THE SEVEN CLASSIFIERS

Classifier Average of Rank-1 Classifier Average of Rank-1

Logistic Regression 0.90758 Naive Bayes 0.58055

Decision Tree 0.60461 KNN 0.89836
Random Forest 0.82911 LDA 0.76701
FCN (Baseline) 0.64984

TABLE V
THE AVERAGE OF FIVE METRICS (PRECISION, SENSITIVITY, SPECIFICITY, ACCURACY AND F-SCORE) OVER EACH PRE-TRAINED MODEL

Model Precision Sensitivity Specificity Accuracy F-score

VGG-16 0.74 0.74 0.87 0.83 0.74

VGG-19 0.71 0.71 0.86 0.81 0.7

ResNet-50 0.52 0.53 0.77 0.68 0.5

DenseNet-121 0.83 0.83 0.93 0.91 0.83

DenseNet-169 0.86 0.86 0.95 0.92 0.86
Inception-V3 0.77 0.7 0.9 0.83 0.71

Inception ResNet-V2 0.79 0.79 0.91 0.88 0.78

Xception 0.7 0.71 0.86 0.82 0.7

1.0 MobileNet-224 0.8 0.71 0.91 0.84 0.74

Mobile NasNet 0.74 0.74 0.88 0.84 0.74

used. It scored, on average, 0.86 in precision, sensitivity and
F-score, and 0.92 in accuracy and 0.95 in specificity.

Based on previous results, the best model for feature ex-
traction is DenseNet-169, and the best classifier is Logistic
Regression. For that, ROC and AUC are used to visualizing
these results.

Table VI and Fig. 5 show the ROC and AUC of the best
classifier, logistic regression, with the ten pre-trained models.

It is found that the hybrid of logistic regression and the feature
extractor MobileNet-224 gives the best results. Table VII and
Fig. 6 show the ROC and AUC of the best feature extractor
model, DenseNet-169, with the six classifiers. It is found that
the hybrid of DenseNet-169 and LDA classifier gives the best
results. From Table VI and Table VII, both AUC value of
logistic regression with 1.0 MobileNet-224 and LDA with
DenseNet-169 have 98% as the highest value. For that, these
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TABLE VI
AUC VALUE FOR WBC, USING 10 PRE-TRAINED MODELS AND LOGISTIC REGRESSION

Model Eosinophil Lymphocyte Monocyte Neutrophil Avg

DenseNet169 0.97 0.99 0.99 0.95 0.975

DensenNet121 0.95 0.99 1 0.95 0.9725

MobileNet 0.96 1 1 0.96 0.98
InceptionResnetV2 0.95 0.99 0.99 0.94 0.9675

InceptionV3 0.92 0.98 0.98 0.91 0.9475

NasNet 0.91 0.98 0.98 0.9 0.9425

ResNet50 0.58 0.81 0.74 0.66 0.6975

Xception 0.9 0.98 0.98 0.91 0.9425

VGG19 0.95 1 1 0.94 0.9725

VGG16 0.95 1 1 0.94 0.9725

TABLE VII
AUC VALUE FOR WBC, USING DENSENET-169 AND 6 DIFFERENT CLASSIFIERS

Classifier Eosinophil Lymphocyte Monocyte Neutrophil Avg

Logisitic Regression 0.97 0.99 0.99 0.95 0.975

Gaussian NB 0.67 0.91 0.91 0.75 0.81

Decision Tree 0.71 0.9 0.84 0.74 0.7975

Random Forest 0.86 0.97 0.98 0.88 0.9225

KNN 0.97 0.99 0.99 0.95 0.975

LDA 0.96 1 1 0.96 0.98

two hybrids are considered as best hybrids for our dataset.
c) Comparison results: Compared with previous research

in the literature that manually extracts features, our study
shares a similar range of results as studies such as [9], but has
higher results than [15]. However, when comparing our results
with deep learning models, our results are higher than [17],
but lower than [19]. However, these variations in performance
could be due to using different datasets and preprocessing
steps.

V. CONCLUSION

Classifying WBCs in the microscopic image with high
accuracy is our main objective. In this research, ten pre-
trained models were used as automatic feature extractors,
and six classifiers were used for classification. The FCN was
used as a comparison baseline for classification. Our hybrid
model proves its effectiveness in increasing the classification
accuracy over classical pre-trained models. The hybrid of
1.0 MobileNet-224 model and a logistic regression classifier
has reached 97.03% classification accuracy. This accuracy
outperformed the baseline FCN with 25.78% on average.
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