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Abstract—Electromyography (EMG) technique is often used
for diagnosis of neuromuscular diseases such as myopathy that
affects the muscle and causes many changes in the electromyogra-
phy signal characteristics. This paper presents a new method for
analysis and classification of normal and myopathy EMG signals
based on the continuous wavelet transform (CWT). Classification
algorithms, namely Support Vector Machine (SVM), k-Nearest
Neighbor (k-NN), Decision Tree (DT), Discriminant Analysis (DA)
and Native Bayes (NB) were used in our study. Five features were
extracted from the CWT and employed them as input features
to the classifiers. Results were evaluated and subsequently, a
comparison was made in terms of performance markers, namely,
accuracy, sensitivity, and specificity to ensure the efficacy of
individual classifiers as well as the number and the combination
of the feature sets. Results showed that k-NN classifier with an
association of four features delivered the best performances with
an accuracy of 93.68%.

Index Terms—Electromyography (EMG), continuous wavelet
transform (CWT), support vector machine (SVM), k-nearest
neighbor (k-NN), decision tree (DT), discriminant analysis (DA),
native bayes (NB).

I. INTRODUCTION

IN the biomedical area, Electromyography (EMG) refers to
the study of the electrical activity of the muscle [1]. From a

technical side, EMG is a biological signal acquired from mus-
cles with the aim of evaluating their activities [2]. Typically
EMG is recorded by invasive and non-invasive techniques.
The former employs needle electrodes and the latter employs
surface electrodes to acquire signals known as intramuscular
EMG and surface EMG [3]. In addition to the muscle fatigue
evaluation, sports science, rehabilitation and the development
of the prosthetic device purposes [4] [5], the primary use of
the EMG signal is the diagnosis of the neuromuscular diseases
[6] [7] [8]. As already mentioned and studied in different
researches [8] [9], the most famous neuromuscular diseases
of muscles are myopathy and neuropathy. In neurogenic cases,
nerves of the neuromuscular system are damaged, whereas, in
myopathy disease, the affected organ is the muscle itself [10].

In the literature, the diagnosis of neuromuscular diseases
or more particularly, classification of EMG data into normal,
myopathy, and neuropathy EMG signals, was a topic of
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multiple research. In [11], an accuracy of 90.7% was achieved
using wavelet neural networks (WNN) based classifier with an
autoregressive (AR) model of EMG signals. In [12], neuro-
fuzzy computing techniques with autoregressive (AR), dis-
crete wavelet transform (DWT) and wavelet packet transform
(WPT) as feature extraction methods were studied. Classifi-
cation accuracy of 95% was achieved. Other essential works
which studied the classification of normal, myopathy, and
neuropathy EMG signals can be found in [10] [13] [14]. The
research and the classification into myopathic, amyotrophic
lateral sclerosis (ALS) or normal EMG signals have also taken
considerable importance in the last years. The authors in [15]
proposed a learning scheme based on a feature fusion using
multi-domain discriminant correlation analysis (MDCA) for a
diagnosis of electroencephalogram (EEG) and EMG patterns.
The algorithm was the object of a real-time implementation on
a microcontroller device. Regarding the EMG signal diagnosis,
the proposed work achieved an optimal accuracy of 98% using
DA. In [16], a multiview feature fusion system is proposed.
The set of features are generated in both the time and the
wavelet domains. Thereafter, the discriminant correlation anal-
ysis (DCA) was performed. The proposed algorithm was tested
with two EMG data sets. The authors obtained 100% in terms
of accuracy, specificity and sensitivity in one of the two data
sets. Other relevant multi-class studies related to myopathic,
ALS and normal EMG signals can be found in [7] [17] [18]
[19] [20].

Our study deals with a binary classification issue to dis-
tinguish myopathic patients from normal subjects using the
CWT. Different approaches have been proposed to deal with
this issue. In a recent paper [21], an autoregressive moving
average (ARMA) model followed by linear discriminant anal-
ysis (LDA) algorithm was used to identify myopathic patients
from normal subjects. An accuracy of 90.25% was obtained.
An empirical mode decomposition (EMD) based technique
for the discrimination between myopathic and normal EMG
signals was proposed in [22]. In [14], the authors employed
different feature techniques for the classification of EMG
signals into healthy subjects or myopathic patients. The autore-
gressive (AR) technique along with the multilayer perceptron
(MLP) classification algorithm achieved higher results with
an accuracy of 83%. The authors in [23] achieved 86.1%
accuracy, 88.9% sensitivity and 83.3% specificity using the au-
tocorrelation function and k-NN classifier. In another reported
work [24], authors combined features extracted from tunable-
Q wavelet transform (TQWT) and from the time domain
to classify EMG signals into normal subjects or myopathic
patients. The obtained accuracy was 82.41% using random
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forest classifier.
In our previous work [25], four features were extracted from

the CWT and were all fed to SVM and k-NN classifiers to
detect myopathic cases from normal subjects. 10-fold cross-
validation was used as an evaluation technique. An accuracy
of 91.11 ± 0.38 (mean ± standard deviation) was obtained
using k-NN. This work is an experimental study in which the
CWT is applied along with five classification algorithms and
five extracted features (latterly detailed). The main idea behind
this study is the evaluation of the effect of the number and the
combination of the used features on the classification accuracy.
Thus, all the possible combinations of the previous features
were examined to determine the most suitable parameters for
our research. Besides, this work is interested in finding the
association of the mother wavelet in a pretreatment step, the
features, the classifier and the kernel function that ensure
higher accuracy. The algorithm is tested on data which is
divided into 2 separate subsets: a training set and a test set.
As opposed to the 10-fold cross-validation method employed
in the previous study, the included training subset signals in
this work are in no way reused in the test process.

As a mathematical tool for feature extraction, the CWT is a
non-stationary signal processing technique widely used in the
biomedical field. Several publications proved the usefulness of
CWT in EMG signal processing [10] [26] [27]. The aim of
this study is to develop a new and reliable EMG classification
method. In our proposed work, the CWT is applied to raw
EMG data to extract useful features for classification purpose.
In the classification process, feature extraction is a crucial
stage, in which single scalar parameters represent the whole
signal. These parameters must be meaningful as much as
possible. In other words, the chosen features must have the
capability to discriminate between different signals (myopathic
and normal in our case). Thus, to prove the efficiency of
the proposed parameters, and to get higher classification
performances, our algorithm was run as much as the possible
combinations of these features using five classification algo-
rithms with different kernel functions.

The remainder of the paper is organized as follows: Section
II introduces the theory of wavelet analysis and feature ex-
traction. Section III shows the methodology used in this study.
Section IV presents the experimental results of the proposed
methodology with discussion and presents a comparative study
with other reported works from the literature. Finally, we
conclude with Section V.

II. THE THEORY OF WAVELET ANALYSIS AND FEATURE
EXTRACTION

A. Continuous Wavelet Transform

The CWT provides both time and frequency localization of
a signal, which makes it an appropriate technique for analysing
non-stationary signals such as EMG which is the subject of
this study. The CWT is based on the notion of scale which
is an alternative to the concept of frequency in the Fourier
transform. The result of the CWT is shifted and scaled versions
of the original wavelet, whereas in Fourier transform, the

original signal is decomposed into sine waves of multiples
frequencies [28].

The CWT, which reflects the correlation between a signal
x(t) and a function known as the mother wavelet is defined by
the following equations:

Cx (τ, σ) =

∫ +∞

−∞
x (t)ψ∗τ,σ (t) dt (1)

where
ψτ,σ (t) =

1√
σ
ψ

(
t− τ
σ

)
(2)

ψ (t)
∗ denotes the complex conjugate of the mother wavelet

function ψ (t), σ is the scale, τ refers to the translation of the
wavelet and 1√

σ
is used for energy normalization [2].

Generally, the choice of appropriate scales and an adequate
analysing wavelet function depends on the application.

B. Average Absolute Coefficient per Scale

After we applied CWT to our EMG data, the result C is
an N ×M coefficients matrix for each signal. N reflects the
number of scales whereas M indicates samples of the signal.
Since this representation could be difficult to interpret, we
proposed in a first stage to reduce the size of the matrix to a
single vector by calculating the mean absolute coefficient per
scale, by the mean of the following equation:

sc =

M∑
j=1

| Cij |

M
i = 1, ..., N (3)

where sc is a vector which contains the average absolute
coefficient per scale for one subject. The second stage of the
proposed system corresponds to feature extraction and will be
explained next.

C. Feature Extraction using CWT

Based on first observations (Fig. 2 and Fig. 3), good
discrimination between normal and myopathy EMG signals
could be done using the proposed algorithm presented in Fig.1.

The use of classifiers requires the extraction of the most
relevant parameters in the signal. In most machine learning
applications, signals are represented by their statistical infor-
mation. Thus, five statistical features are extracted in our study
by means of mathematical tools. The proposed features are :

– The mean scale

meanscale =

∫ scalemax

0
σ | cx (σ) | dσ∫ scalemax

0
| cx (σ) | dσ

(4)

– The median scale∫ medscale

0

| cx (σ) | dσ =
1

2

∫ maxscale

0

| cx (σ) | dσ (5)

– The mean coefficient

meancwt =

N∑
i=1

sc (i)

N
(6)

– The minimum coefficient
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mincwt = min (sc) (7)

– The maximum coefficient
maxcwt = max (sc) (8)

III. METHODOLOGY

A. EMG Dataset

As presented in [29], the data contains two classes: a
class of normal subjects and a class of myopathic patients.
The myopathic group is composed of 7 patients aged 19-
63 years; 5 males and 2 females. The myopathic patients
had all, electrophysiological and clinical signs of myopathy.
The group of the normal class contains 10 subjects, 6 males
and 4 females aged 21-37 years. The normal group had no
signs of neuromuscular disorders. The brachial biceps muscle
was employed in this work because it is one of the most
investigated muscles in the EMG analysis.

The EMG signals were recorded under usual conditions for
Motor Unit Action Potential (MUAP) analysis. The recordings
were made at a low voluntary and constant level of contraction.
A standard concentric needle electrode was used. The signals
were recorded from five places in the muscle at three levels
of insertion (deep, medium, low). The signals were recorded
at a sampling frequency of 23437 Hz. The high and low pass
filters of the EMG amplifier were set at 2 Hz and 10 kHz [29].

B. Classification Process

The EMG data used in this study is divided into a training
data set and test data set. The training data represents 75%
of the total data set and it is used to build the classification
model. The test data which represents 25% of the total data
is used for validation purpose. The distribution of records in
the two data sets for each class is shown in Table I.

TABLE I
DISTRIBUTION OF RECORDS IN THE TWO DATASETS

Class Training set Test set Total

Normal 201 68 269

Myopathy 80 27 107

After extracting the previously mentioned features, the next
step is the classification of all signals into two groups: normal
subjects and myopathic patients. In our study, five supervised
learning classifiers are applied. Table II summarizes the differ-
ent classifiers and kernels used. Regarding the k-NN classifier,
it is evaluated via different k parameter values.

Next, classification results are examined. Measurements
such as accuracy, sensitivity, and specificity are used and
defined as follows [11]:

– Specificity (Spec): refers to the number of correctly
classified normal subjects divided by the total number
of normal subjects.

– Sensitivity (Sens): refers to the number of correctly
classified myopathic subjects divided by the total number
of myopathic subjects

– Accuracy (Acc): refers to the number of correctly clas-
sified subjects divided by the total number of subjects.

These measurements are calculated by the following
equations [30]:

Sensitivity =
Tp

Tp + FN
× 100 (9)

Specificity =
TN

TN + FP
× 100 (10)

Accuracy =
TN + TP

TN + TP + FN + FP
× 100 (11)

where TP is the number of true positives, TN true negatives,
FP false positives and FN false negatives [31].

Raw EMG data

• 201 signal from normal subjects

• 80 from myopathic subjects

CWT analysis

•Using sym6 wavelet

•A scale interval from 2 to 100

Average absolute (CWT)

•Calculation of the average 
absolute coefficient per scale

Feature extraction

•The mean and the median scales

•The minimum, the mean and the 
maximum coefficients

Classification 

•To normal or myopathic patients

•Using SVM, k-NN, DA, NB and 
DT

Fig. 1. Block diagram of the proposed work.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This paper presents a new technique for EMG signal analy-
sis and classification (Fig. 1). The study concerns two groups:
normal subjects and myopathic patients. An example of a
typical EMG signal for each group is given in Fig. 2.

In our study, the CWT is used to analyse EMG signals.
In order to determine the suitable CWT parameters (the
mother wavelet and the scales), a pretreatment process is done.
Wavelet functions such as “db4”, “sym6” and “haar” wavelets
were tested. Best performances and low computation time
were obtained via “sym6”. Following this result, the whole
study is completed using “sym6” wavelet function.
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TABLE II
CLASSIFIERS AND KERNELS USED IN THIS STUDY

Classifier SVM DA DT NB k-NN

Kernel/ K value

Linear(Lin) Linear(Lin) Exact(Ex) Normal(Nor) 3

Polynomial(Pol) PseudoQuadratic(PsQ) PullLeft(Pul) Triangle(Tri) 5

RBF DiagLinear(DiagL) PCA Epanechnikov(Ep) 7

- PseudoLinear(PsL) - Box 9

Fig. 2. Typical normal and myopathic EMG signals.

Table III summarizes the empirically obtained CWT param-
eters.

TABLE III
CWT PARAMETERS USED IN THIS STUDY

Mother wavelet Scale interval Corresponding frequency
interval (Hz)

Sym6 2 - 100 170 - 8523

After CWT is applied to raw EMG data, and to correctly
identify myopathic patients from normal subjects, we followed
a procedure based on the calculation of the mean absolute
CWT coefficient per scale (Fig. 3). Meaningful features were
then proposed to be extracted for classification purpose.

Fig. 3. The average coefficient evolution per scale for four significant
subjects: two normal and two myopathic.

A meaningful difference between normal and myopathic
subjects based on time scale analysis of the EMG signal is
shown in Fig. 3. The evolution of the mean coefficient per
scale of normal subjects is more significant than myopathic
ones. The box-and-whisker plot of this result is illustrated in
Fig. 4. As shown in Fig. 3 and Fig. 4, this technique has
efficiency in the discrimination between myopathy patients and
normal subjects. In order to classify all signals, five features
are extracted: the mean and the median scales, the minimum,
the mean and the maximum coefficients.

Fig. 4. The box-and-whisker plot of the average coefficient evolution per
scale for four significant subjects: two normal and two myopathic.

A correct diagnosis of myopathic cases requires a higher
classification accuracy. Thus, our algorithm was run several
times to find combinations of features and kernels that ensure
the best results.

Table IV shows the best results obtained with the cor-
responding kernel functions using all the five parameters
previously presented.

TABLE IV
CLASSIFICATION RESULT USING ALL FEATURES

Classifier Acc (%) Sens (%) Spec (%) Kernel / K value

SVM 91.58 81.48 95.59 RBF

DA 90.53 85.18 92.65 Lin

NB 89.47 88.89 89.71 Ep - Tri

k-NN 90.53 88.89 91.18 9

DT 82.10 92.59 77.94 all kernels

These results show that SVM classifier achieved the best
performance with an accuracy of 91.58%, a sensitivity of
81.48% and a specificity of 95.59% using RBF kernel.
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Regarding the other classifiers performances, accuracies of
90.53%, 89.47%, and 82.10% are obtained using k-NN and
DA classifiers, NB, and DT, respectively.

To get higher accuracies, we propose to run our algorithm
as much as the possible combinations of features. Table V
summarizes the results of the best performances combination
of only four features. The best combination found is compound
from the following features: The mean and the median scales,
the mean and the minimum coefficients.

Using only four features, the k-NN classifier with k=7
demonstrated the highest performance with an accuracy of
93.68%, a sensitivity of 88.89% and a specificity of 95.59%.
SVM classifier with the RBF kernel performed the second-
highest classification accuracy of 92.63%. On the one side,
DA and NB classifiers kept almost the same performances
as previously when all five features were used. On the other
side, DT classifier achieved an accuracy of 83.16% using all
kernels. As compared to the case with five features, results
become higher using only four.

TABLE V
CLASSIFICATION RESULT USING BEST FOUR COMBINED FEATURES

Classifier Acc (%) Sens (%) Spec (%) Kernel / K value

SVM 92.63 85.18 95.59 RBF

DA 90.53 88.89 91.18 PsQ

NB 89.47 85.18 91.18 Nor - Tri

k-NN 93.68 88.89 95.59 7

DT 83.16 88.89 80.88 all kernels

Table VI presents the results of the best three combined
features, which are: the mean scale, the minimum, and the
maximum coefficients.

TABLE VI
CLASSIFICATION RESULT USING BEST THREE COMBINED FEATURES

Classifier Acc (%) Sens (%) Spec (%) Kernel / K value

SVM 90.53 81.48 94.12 RBF

DA 89.47 88.89 89.71 Lin

NB 88.42 88.89 88.23 Box

k-NN 91.58 85.18 94.12 5-7

DT 81.05 85.18 79.41 all kernels

As it is clear in the table above, stability in the overall
performances is noticed. All classifiers except DT have an
accuracy higher than 88%, while DT achieved only 81%. In
general, the specificity values are higher than sensitivity values
for all classifiers except for DT classifier.

Table VII illustrates a comparison between the performances
of the five classifiers using only two features. The best two
combined features are the mean scale and the minimum
coefficient.

We can notice from the results of Table VII that the overall
performances decreased for the majority of classifiers except
for SVM and NB classifiers. An accuracy of 90.53% is
achieved with the Linear kernel function of the SVM. The
obtained sensitivity and specificities are 88.89% and 91.18%
respectively. A significant decrease is to be noticed in DT

TABLE VII
CLASSIFICATION RESULT USING BEST TWO COMBINED FEATURES

Classifier Acc (%) Sens (%) Spec (%) Kernel / K value

SVM 90.53 88.89 91.18 Lin

DA 89.47 81.48 92.65 DiagL

NB 89.47 77.78 94.12 Box

k-NN 89.47 85.18 91.18 7

DT 76.84 70.37 79.41 all kernels

results. The DT accuracy is only 76.84%, while the sensitivity
and the specificities are 70.37% and 79.41% respectively.
Table VIII shows the obtained results with the corresponding
kernel function using only one parameter. Best results were
obtained using the mean scale feature.

TABLE VIII
CLASSIFICATION RESULT USING ONLY ONE FEATURE

Classifier Acc (%) Sens (%) Spec (%) Kernel / K value

SVM 84.21 70.37 89.71 Lin-RBF

DA 85.26 74.07 89.71 all kernels

NB 84.21 70.37 89.71 all kernels

k-NN 81.05 74.07 83.82 7

DT 73.68 59.26 79.41 all kernels

Using only the mean scale as a feature, the best-obtained
accuracy is 85.26% and was obtained via all kernels of DA
classifier. DT had the lowest result with an accuracy of
73.68%. The following figure presents the evolution of the
accuracy of all classifier along with the number of the used
features.

From the obtained results, and as the Fig. 5 shows, it
is noticed that generally, the accuracy significantly increases
with an increase in the number of features used to train the
classifiers. The highest results of all classifiers were obtained
using a combination of the following four features: the mean
and the median scales, the mean and the minimum coefficients.
The best-obtained accuracy was 93.68% and was achieved
using k- NN classifier with k=7. SVM achieved an accuracy
of 92.63% using the Polynomial kernel. These results show
the effectiveness of these two classifiers compared to others
(DT in particular), the thing that goes with the previous results
from the literature [7] [25] [31].

The summary of all best results for each classifier with the
specific kernel and the best features combination employed is
presented in Table IX.

The findings are of a higher accuracy when compared with
other studies which investigated the normal and the myopathic
EMG classes (Table X).

V. CONCLUSION

In this work, a new approach based on CWT to analyse and
classify EMG data into two groups: normal and myopathy, is
proposed. The CWT was performed, and then five features
that we applied at a later stage as inputs to classifiers were
extracted. The suggested parameters in this study are the

340 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 4, DECEMBER 2019



TABLE IX
SUMMARY OF THE BEST CLASSIFICATION RESULTS OF ALL CLASSIFIERS WITH THE FEATURES COMBINATION USED

Classifier Acc (%) Sens (%) Spec (%) Kernel / K value Features combination

k-NN 93.68 88.89 95.59 7 mean and median scales – mean and minimum coefficients

SVM 92.63 85.18 95.59 RBF mean and median scales – mean and minimum coefficients

DA 90.53 88.89 91.18 PsQ mean and median scales – mean and minimum coefficients

NB 89.47 88.89 89.71 Ep - Tri all features

DT 83.16 88.89 80.88 PCA-Exact-PullLeft mean and median scales – mean and minimum coefficients

TABLE X
COMPARISON OF THE PROPOSED WORK WITH OTHER REPORTED WORKS WHICH STUDIED TWO-CLASS CLASSIFICATION:

MYOPATHIC AND NORMAL CLASSES

Work Methods and classification algorithms used Acc (%) Sens (%) Spec (%)

Fattah et al. [23] Auto-correlation – k-NN 86.1 88.9 83.3

Elamvazuthal et al. [14] Auto-regressive – MULTI-LAYER PERCEPTRON 83 - -

Joshi et al. [24] Tunable-Q wavelet – RANDOM FOREST 81.14 - -

Lahmiri and Boukadoum [21] Full ARMA – LDA 90.25 83.67 92.65

Proposed work CWT – k-NN 93.68 88.89 95.59

Fig. 5. Evolution of the accuracy of all classifier following the number of
the used features.

mean and the median scales, the mean, the minimum and the
maximum coefficients. Five classification algorithms were also
used: Support Vector Machine (SVM), Discriminant Analysis
(DA), Native Bayes (NB), k-Nearest Neighbour (k-NN) and
Decision Tree (DT). For each classification algorithm, multiple
kernel functions were explored. The core focus of this research
is to investigate the highest classification performances by
evaluating the impact of the number and the association of
the proposed features on the classification results. From the
research that has been carried out, it can be concluded that our
proposed technique using the CWT is an efficient tool for the
diagnosis of myopathy disease. This binary classification al-
gorithm delivered consistent results in discrimination between
myopathic patients and normal subjects using intramuscular
EMG signals. The findings of our research are quite convinc-
ing, and thus, this technique can be generalised in the future
as a multi-class classification method. The proposed work can
be applied and also tested for other biomedical signals.
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