
 

Abstract—Online anomaly detection plays a vital role in 

improving the performance of cloud data centers by identifying 

unusual behaviors. In this paper, we propose an online anomaly 

detection framework using non-parametric statistical technique 

in cloud data center. The major advantage of the proposed work 

is its capability of automatic re-computing of the model, 

according to the fundamental changes in the data. In order to 

determine the accuracy of the proposed work, we experiment it to 

data collected from RUBis cloud testbed (Dataset 1) and Yahoo 

Cloud Serving Benchmark (YCSB) (Dataset 2). Our experimental 

results show the greater accuracy in terms of True Positive Rate 

(TPR), False Positive Rate (FPR), True Negative Rate (TNR) and 

False Negative Rate (FNR).  

 
Index Terms—Algorithm, Automated Modeling, Cloud Data 

Center, Data Stream, Non-Parametric Statistical Technique, 

Online Anomaly Detection.   

I. INTRODUCTION 

Cloud computing service providers built data centers that 

contain hundreds of thousands of servers [1]. The size and 

complexity of cloud data centers are expected to grow further 

as more and more services are migrating to cloud platforms. 

They are increasingly characterized by extremely large scale 

and complexity. Utility based cloud services [2] like Amazon 

web services, SQL server data services and Google App are 

able to serve thousands of thousands businesses to run their 

own applications, each of which having varying workload 

characteristics. Thus it is very difficult to supervise cloud data 

centers, and the failure to do so will in turn lead to massive 

negative impact in profit on account of inadequacy of 

responsiveness and availability. Therefore there is a need to 

improve cloud data center performance by establishing  
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frameworks for detecting problems (that deviate from normal 

characteristics) in real time. It includes collecting online data 

streams, analyzing it and taking remedial actions when 

needed. In essence, the system should aim to capture unusual 

or anomalous system behavior in real time. It is a critical task 

for detecting/identifying atypical characteristics when large 

amount of data streams are generated continuously in cloud 

data centers. The key element of this paper is online anomaly 

detection in order to improve the cloud data center 

performance.  

Online anomaly detection refers to identifying 

abnormal/unusual behavior that deviates significantly from 

expected usual behavior in real time. Anomaly detection 

techniques can be broadly classified into different categories 

such as data mining based, machine learning based, cognition 

based, statistical based etc. Here we opt for statistical based 

online anomaly detection. Among that, statistical techniques 

can be categorized as parametric, non-parametric and semi-

parametric techniques [3]. Parametric techniques assume the 

knowledge of underlying distribution based on a fixed set of 

parameters. Some parametric statistical techniques are 

Gaussian model-based, regression model-based, mixture of 

parametric distributions-based etc. [4]. Non-parametric 

techniques make no assumptions on the probability 

distribution of the data. Some examples of non-parametric 

techniques are histogram based and kernel based techniques. 

Semi-parametric techniques are a combination of parametric 

and non-parametric techniques to build, fit and validate 

statistical models. In this paper, we utilize non-parametric 

statistical technique for anomaly detection due to the 

following reasons. i) It makes less number of assumptions ii) 

It is easier to compute iii) It can be used with all scales.  

It is evident that in a real world cloud data center [5], 84% 

of the virtual machines show spikes in their CPU utilization at 

least once in a month [6]. From the above fact, we can see that 

it is hard to classify a false alarm based on the dynamic nature 

of the workload characteristics. Few drawbacks of such false 

alarms are unwanted inspections, unnecessary disruption of 

users applications etc.  
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 A good anomaly detection system should be capable of 

detecting anomalies by considering the dynamic nature of 

workloads characteristics in cloud data centers since the 

pattern of workload may show hourly, daily, weekly or 

monthly changes. A system that uses static threshold for 

anomaly detection is only valid for a short span of time. 

Another fact is, classifying individual data points as anomalies 

can bring about false alarm rates. Thus there is a need in art 

for a system which can show significant results and lower 

false alarm rates in the scenario of dynamic nature of the 

loads. Hence the motivation of this paper is to achieve high 

accuracy in identifying anomalies in cloud data centers having 

dynamic workloads by lowering the false alarm rates. 

Therefore, the main focus of this paper is using non-

parametric statistical technique for anomaly detection in real 

time data streams in cloud data centers. 

The contributions of this paper are highlighted as follows: 

1. We have developed an online anomaly detection 

system that is capable of detecting anomalies in real 

time data stream in cloud data centers. This system 

uses a non-parametric statistical test, in particular, 

chi-square two sample test for comparing two data 

samples. Here we are capturing data stream as a time 

window at specific intervals. The system is designed 

for detecting abnormalities on daily basis in regular 

time intervals. It can also be extended to work on 

weekly or monthly basis of data patterns. The system 

initially builds the base model using data without any 

major security events. The framework is capable of 

automatically rebuilding the model when there is a 

significant change in the fundamental pattern of data. 

The proposed system has low complexity and is 

scalable to process large amounts of data. 

2. We have experimented the accuracy of the proposed 

algorithm using two different datasets; Dataset 1 and 

Dataset 2. Dataset 1 and Dataset 2 are collected form 

RUBiS cloud testbed [7] and Yahoo Cloud Serving 

Benchmark (YCSB) [8] respectively. Our 

experimental results show a greater accuracy in terms 

of True Positive Rate, False Positive Rate, True 

Negative Rate and False Negative Rate. 

The rest of this paper is organized as follows. Section II 

covers the related work. In section III preliminaries are shortly 

presented. In section IV the proposed online anomaly 

detection algorithm using non-parametric statistical technique 

is described in detail. Section V presents the experimental 

results. Section VI concludes the paper. 

II. RELATED WORK  

The goal of anomaly detection problems is to identify data 

patterns that do not conform to a certain expected pattern in a 

dataset. To design a framework that detects anomalies, a 

statistical model is fit for normal behavior and then an 

appropriate inference test is applied to check whether the new 

observed instance belongs to this model. In order to solve the 

anomaly detection problems [9], many parametric techniques 

such as Tukey limits, ANOVA tests, Pearson correlation, 

Grubb's test, Student-t test etc are used. However, since the 

ultimate goal is to detect anomalies, learning the distributions 

first and then constructing the detection rules may not yield 

optimal performance. It is thus desirable to design data-driven 

nonparametric tests, which directly perform anomaly detection 

using data without estimating the distributions as an 

intermediate step. Furthermore, since such tests do not exploit 

any information about the distributions, they can be designed 

to provide universal performance guarantee for arbitrary 

distributions. 

An anomaly detection technique that uses non-parametric 

statistical techniques makes fewer or no assumptions of the 

given data, such as smoothness of density. A simple non-

parametric based anomaly detection system can use 

histogram-based technique. Kruegel et al. [10], [11] used 

histogram-based technique for detecting web based attacks 

and fraud detection respectively. A more versatile technique 

under non-parametric approach for detecting anomalies is 

based on parzen window estimation [12], [13]. It includes 

approximating the actual density using kernel functions.  

 

Numerous commercial studies that use more refined 

statistical methods for anomaly detection have been proposed 

[21] -[25]. Despite a few of the methods can be applied for 

real time anomaly detection in cloud environment because of 

their high computational overhead. Table I shows different 

statistical approaches for anomaly detection. Buzen et al. [26] 

proposed an anomaly detection technique that enhances the 

fixed threshold strategies which repeatedly calculates the 

control limits in an iterative manner when a new data arrives. 

Datar et al. [27] presented a method for managing and 

aggregating data streams in a sliding window. They suggested 

their proposed model to be applied in areas like 

telecommunications where data are generated continuously. In 

such applications, instead of processing the whole historical 

data, we can focus on the most recent set of observations.  

As evident from the above literature, none of the researchers 

have addressed the construction of automated modeling 

(considering dynamic changes in the data) using non-

parametric statistical techniques for detecting anomalies in 

real time cloud environment. The proposed anomaly detection 

TABLE I 

STATISTICAL APPROACHES FOR ANOMALY DETECTION   

Types Approach 

Parametric 

Mixture Models 

1. Gaussian Mixture Model (GMM) [14] 

Extreme Value Theory (EVT) [15] 

Autoregressive Integrated Moving Average (ARIMA) [16] 

State-Space Models 

1. Hidden Markov Model (HMM) [17] 

2. Kalman filter [18] 

 

Non-

Parametric 

 

Kernel Density/ Parzen Window Estimators [19] 

Negative Selection [20] 
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framework uses non-parametric statistical technique for 

detecting anomalous characteristics based on performance 

metrics such as CPU utilization. The strength of the system 

lies in its capability of automatic re-computing of the model, 

according to the fundamental changes in the data. This 

improves the precision of anomaly detection and in turn 

reduces false alarm rate. 

III. CHI-SQUARE TEST   

The main objective of statistical anomaly detection 

technique is to determine if there is any significance difference 

between the distribution of the collected set of sample data and 

the distribution of the normal data. In short, we have to check 

whether the two data sets are drawn from the same population 

distribution function. The task will be easy when the data 

distribution is known a priori. Nonetheless we cannot assume 

that the data should follow a particular distribution in practical 

scenarios. Thus there is a need to check the samples against 

the samples that were previously accepted as normal data. The 

techniques used for such situations are known as non-

parametric statistical techniques. For our problem, we are 

using a particular non-parametric statistical technique called 

chi-square test. It is used to check how much the observed 

values of a particular given sample significantly differ from 

the expected values of the distribution [28]. It shows how well 

an experimental data fits an expected probability distribution. 

Unlike tests like Z and t, chi-square test theories about the full 

distribution instead of any single statistic from the distribution 

[29]. 

Chi-square test can be used to compare between two datasets 

that are quantized into a specific number of bins [30]. Binning 

can be done by grouping the events into specific ranges of the 

variable such as 0-10, 10-20, 20-30 etc. For our problem, as 

we are taking the percentage of CPU utilization which can 

take values between 0 and 100 as the input of our anomaly 

detection framework, we quantize it into 20 bins of equal size. 

Given two binned datasets that are of equal size, let Pi be the 

number of observations for the first dataset and let Qi be the 

number of observations in the second dataset in bin i, then the 

chi-square statistics for comparing both the binned datasets is 

given by, 

 

                              χ2 = ∑
(Pi−Qi)2

Pi+Qi
i                           (1)    

                      

The number of degrees of freedom is equal to one less than 

the number of bins, if the sum of Pi's is undoubtedly equal to 

sum of Qi's. Otherwise the number of degrees of freedom will 

be equal to the number of bins [31]. In real time, when data 

streams that are arriving in a particular time interval are 

collected using a time window, there are possibilities that the 

number of data instances in one time window differs from the 

number of data instances in another time window. The 

possible reasons may be practical constraints such as network 

delays etc. In such scenarios the anomaly detection framework 

should be able to compare two different sized windows, i.e. it 

should be able to compare datasets of unequal sizes. For 

unequal number of data points, the corresponding equivalent 

of Eqn (1) can be written as [30], 

 

 

χ2 = ∑
(√

Q

P
Pi−√

P

Q
Qi)2

Pi+Qi
i                          (2) 

 

 

where P ≡ ∑ Pii  and Q ≡ ∑ Qii  are the number of data 

instances respectively.  

 

The computed test statistic χ^2 will be compared against a 

threshold. For datasets of unequal sizes, the threshold will be 

commonly set to the point in the chi-squared cumulative 

distribution function with degrees of freedom equal to number 

of bins that conforms to a 0.95 or 0.99 confidence level [31]. 

Any statistical tools like R [32], SAS [33] etc. can be used to 

fix this threshold. If the computed test statistic is lesser than 

the threshold, we can say that the observed dataset follows the 

same distribution of the normal dataset; otherwise we can say 

that the distributions are different. 

IV. PROPOSED WORK  

The proposed algorithm focuses on finding anomalous 

pattern in a collection of data instances rather than finding 

individual anomalous data instances to reduce false alarm 

rates. The system collects data in particular time intervals 

using a time window. If the distribution of the data instances 

in the window varies significantly from the base model, the 

window will be declared anomalous. Fig. 1 shows the 

flowchart of the proposed anomaly detection framework for 

detecting anomalous data streams in cloud data centers. For 

data streams, systems that update and decay over time is 

recommended. Hence, our proposed model is capable of 

automatic updating when there is a fundamental change in the 

pattern of data. The proposed work consists of three folds. 

Initially, the procedure 𝐵𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙 builds the base model 

using the performance metric, then the algorithm 

𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 finds the unknown distribution of the data 

and finally the algorithm 𝑂𝑛𝑙𝑖𝑛𝑒 − 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 − 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

detects abnormal characteristics in the performance data. 

The proposed framework is described as follows. We are 

dividing a day data into n equal time interval windows. 

Initially the Algorithm 1 builds the base model using the data 

of interest, here CPU utilization. Here the data streams are 

collected as time windows. For example, data stream collected 

at 𝑖𝑡ℎ time interval will be stored in 𝑊𝑖. The data used for 

building the base model should be from a clean day which 

does not have any major security events. But to avoid the 

degradation of model accuracy, the algorithm first eliminates 

any possible outliers before building the model. This is shown 

in steps from 5 to 8. After eliminating the outliers the clean 

window is represented as 𝑊𝑝𝑖 . The base model for the 𝑖𝑡ℎ 

time interval will be generated using 𝑊𝑝𝑖 . The distribution 

𝑏𝑚𝑖 for 𝑊𝑝𝑖  is computed using the algorithm 2. 𝐵𝑀 stores the 

distributions bmi; such that 𝑖 ≤ 𝑛 where 𝑛  is the number of 
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time intervals. Finally the Algorithm 1 returns 𝐵𝑀.  

The Algorithm 2 describes how to generate the distribution 

of a data stream which is collected as windows. The inputs of 

the algorithm are window 𝑊, and number of bins 𝑁𝑂𝐵. The 

procedure find the unknown distribution of window 𝑊 using a 

bin-based histogram approach from steps 3 to 7. In window 

𝑊, each data instance is called a tuple. From the tuple, a data 

point 𝑑𝑝  with its value is extracted. Then Bin Index, 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

as shown in step 4. Here 𝑊𝑚𝑖𝑛and 𝑊𝑚𝑎𝑥are the lower bound 

and upper bound of window 𝑊 respectively. It can be 

calculated experimentally. As we have used CPU utilization 

percentage for our proposed work, its lower and upper bound 

are 0 and 100 respectively. The algorithm then emits 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

with its frequency as a tuple and calculates each bin frequency 

𝑀𝑖. It finally returns Empirical Frequency �̂�.  

 

 
 

 

 

 

 

Algorithm 2: Procedure for Find-Distribution  

1 Procedure 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑊𝑖𝑛𝑑𝑜𝑤 𝑊, 𝑁𝑂𝐵) 

2 Begin 

3      Take each instance of 𝑊 called tuple and extract  

      a data point, 𝑑𝑝 with its value from this tuple 

4      Generate Bin Index, 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

 
           𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

(𝑑𝑝−Wmin)

(Wmax−Wmin)
∗ NOB 

5      Return 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 with its frequency as a tuple 

6      Count the total number of frequencies for each  

       bin, 𝑀𝑖,  ∀𝑖 = 1,2 … , 𝑁𝑂𝐵 

7      Return Empirical Frequency �̂� 

8 End  

 

 

 

 

 

Fig. 1. Flow chart of the proposed anomaly detection framework. 

 

Algorithm1: Procedure for Build-Model 

1 Procedure 𝐵𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑦𝐷𝑎𝑡𝑎) 

2 Begin 

3 𝑊𝑖 ← data collected at 𝑖𝑡ℎ time interval 

4      For 𝑖 ← 1 𝑡𝑜 𝑛  do 

5           Return the set of values of  𝑊𝑖 that falls  

           beyond ±3𝜎 

6           For the set of values returned in step 5 

extract  

           the  set of values that exceeds ±3𝜎 

7          Label the set of values returned in step 6 as  

          outliers 

8           Return the remaining value of 𝑊𝑖 as 𝑊𝑝𝑖  

9           𝑏𝑚𝑖 ← 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑊𝑝𝑖 , 𝑁𝑂𝐵) 

10           Add to 𝐵𝑀; 𝑏𝑚𝑖 

11      End  

12   Return 𝐵𝑀 

13 End  
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The Algorithm 3 illustrates our proposed anomaly detection 

framework. Here we have focused more on a set of data points 

in a particular time interval called window rather than an 

individual data point. Data collected at ith time interval will be 

stored in Wi. In step 4, the distribution of window Wi is 

computed and represented as currenti. Then it compares 

currenti with the baseline model of same time period bmi 

using chi-square test statistic as shown in step 5. Here bj 

represents the number of items in bin j for the base model 

dataset at time window i and cj represents the number of items 

in bin j for the current data stream at time window, i.  
If the test statistic does not exceeds a threshold, the window  

Wi is declared as benign, otherwise as anomalous and an alarm 

is raised. Subsequently the anomalous counter, Nanomalous is 

also incremented and the aggregated data stream is stored as 

DataCurrent. At this stage, a determination is made whether 

the day has ended. If the day has not ended, the algorithm goes 

for a loop from step 3 to 11. Otherwise, the algorithm checks 

whether the anomalous counter value has exceeded a 

particular threshold THanomalous.  For example, if the 

algorithm declares half of the number of windows to be 

abnormal, then there might be some fundamental change in the 

data to which the framework needs to adapt. If it has not 

exceeded, then the same set of baseline models are retained. 

Otherwise, the algorithm rebuild the baseline models using the 

data of the previous day; DataCurrent. 

V. EXPERIMENTS AND RESULTS 

The accuracy of the proposed algorithm is evaluated using 

two datasets, Dataset 1 and Dataset 2. The details of 

experimental set up and results are described in the following 

section. 

A. Experimental Setup   

For evaluating the proposed algorithm, for the first scenario 

we have established a RUBiS cloud testbed [7] with two 

compute nodes: H1 and H2. RUBiS is an open source cloud 

based auction site benchmark. Its services are deployed in 

virtual machines mapped to the cloud’s machine resources 

when used in cloud environment. The testbed uses 5 virtual 

machines (VM 1 to VM 5) on Xen Platform hosted on H1 and 

H2. Host H1 contains 3 virtual machines; VM1, VM2 and 

VM3. Host H2 contains two virtual machines; VM4 and 

VM5. 

 
TABLE II 

 SYSTEM SPECIFICATIONS  

Node Specifications 

 Intel (R) Xeon (R) 

Processor E5 - 2695 v4 

2.10 GHz 

 45 M cache 

 64 GB DDR4 RAM 

 4 TB Hard Disk 

 dual NIC card, 

 Each processor-2 

sockets 

 Each socket-18 cores 

 Total-36 logical 

processors 

Virtual machine specifications 
 13 vCPU 

 16 GB DDR4 RAM 

 1 TB Hard disk. 

 

Table II describes the system specifications. VM1 processes 

the user requests, VM2 handles the application logic and a 

database runs on VM3.  A work-loader and a program to inject 

anomalies run on VM4 and VM5 respectively.  The work-

loader generates service for 24 hours on H1 in which the 

auction site is residing. For evaluating our proposed work, we 

continuously audit the CPU utilization data which we have 

named as Dataset 1.  Initially the framework builds the base 

model from clear benign data. After that it diagnoses 

anomalies, if the CPU utilization varies significantly from the 

base model. The proposed framework not only detects 

anomalies but also automatically rebuild the model, if the 

fundamental data pattern changes.  

For the next scenario, we have experimented with the 

proposed framework based on the Yahoo Cloud Serving 

Benchmark (YCSB) [8] framework to generate an expandable 

workload.  YCSB has been run with varying workloads on 

different VMs. The framework regularly collects the data 

stream which we have called as Dataset 2. Here the database 

Algorithm 3: Online-Anomaly-Detection 

𝐼𝑛𝑝𝑢𝑡: 𝐷𝑆, 𝐵𝑀, 𝑇𝐻, 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 = 0, 𝑇𝐻𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 

1 Begin 

2 𝑊𝑖 ← data collected at 𝑖𝑡ℎ time interval 

3      For 𝑖 ← 1 𝑡𝑜 𝑛  do 

4           𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ← 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑊𝑖 , 𝑁𝑂𝐵) 

5           Compute the test statistic, 

 

 

        χ2 ← ∑

(√
𝑏𝑚𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖
∗𝑐𝑗−√

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖
𝑏𝑚𝑖

∗𝑏𝑗)2

𝑐𝑗+𝑏𝑗

𝑁𝑂𝐵
𝑗=1 , where 

            𝑏𝑚𝑖 = ∑ 𝑏𝑗
𝑁𝑂𝐵
𝑗=1  and  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 = ∑ 𝑐𝑗

𝑁𝑂𝐵
𝑗=1           

6           If χ2 < 𝑇𝐻 

7              Flag window 𝑊𝑖 as benign 

8           Else 

9               Flag window 𝑊𝑖 as anomalous 

10                𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 = 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 + 1 

11               𝐷𝑎𝑡𝑎𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← Store aggregated volume  

                of  data 

12      End  

13      If 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 < 𝑇𝐻𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠  

14         Retain 𝐵𝑀 for next day anomaly detection 

15      Else 

16          Re-compute 𝐵𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝐶𝑢𝑟𝑟𝑒𝑛𝑡) 

17 End  
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system is a MySQL database. In the load period, data are 

loaded in the YCSB run. A number of transactions are used on 

the database to increase the load abnormally; hence generating 

anomalous data stream. Several performance metrics such as 

CPU utilization, memory utilization etc. are generated.  

Likewise in scenario 1, here also we are taking the CPU 

utilization data only. For both the scenarios, the time window 

is fixed experimentally to get optimal results. Similar to 

Dataset1, here also we build a base model from clear benign 

data. The streaming data is compared with the base model to 

detect abnormal CPU utilization. Moreover the framework 

automatically rebuilds the base models when there is a 

significant change in the fundamental data pattern. After that it 

diagnoses anomalies, if the CPU utilization varies significantly 

from the base model. 

B. Results 

In this experiment, we detect anomalies on the fly. Data 

coming in a streaming fashion is collected in a predefined time 

window. The algorithm raises an alarm when it detects 

anomalies in a window. For both the datasets we take 20 bins 

and the number of data points in a time window varies in the 

range of 98 - 110 and computed the threshold using 𝑅. For 

Dataset 1 we are considering a time window of 2 minutes 

duration, thus 30 time windows per hour and hence 720 

windows (30*24) per day. Out of 720 windows, the anomaly 

injector injects anomalies to 120 windows. Thus we have 600 

benign windows and 120 anomalous windows. The virtual 

machine and host metrics are collected/analysed in an anomaly 

detector. The proposed Algorithm 3 detects variations in the 

performance metrics of virtual machines and hosts. It correctly 

classifies 596 benign windows out of 600 and remaining 4 

benign windows are misclassified. It also identifies 118 

anomalous windows out of 120 and remaining 2 windows are 

misclassified. When a new window arrives, the algorithm 

compares its distribution with the model. If it matches, it 

classifies the window as benign; otherwise as anomalous and 

an alarm is raised. 

 In second scenario, for Dataset 2 we are considering a time 

window of 2 minutes duration, and we are collecting 2000 

windows out of which 1700 are benign and remaining 300 are 

anomalous. The proposed algorithm correctly classifies 1685 

benign windows out of 1700 and remaining 15 benign 

windows are misclassified. It also identifies 298 anomalous 

windows out of 300 and remaining 2 windows are 

misclassified. The accuracy results of the proposed algorithm 

are based on the following statistical metrics. 

 

𝑇𝑃𝑅 =  
# 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
     (3) 

 

𝐹𝑃𝑅 =  
# 𝑜𝑓 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
    (4) 

 

 TNR =  
# of successful benign windows classified

# of total benign windows
          (5) 

 

   FNR =  
# of unsuccessful anomalous windows classified

# of total anomalous windows
  (6) 

TABLE III 

PERFORMANCE ANALYSIS OF PROPOSED METHOD FOR DATASET 1 

Method 
Metrics 

TPR TNR FNR FPR 

Proposed 

Method 
98.33 99.33 1.67 0.67 

Parzen 

Window 

Estimators 

96.53 96.63 3.47 3.37 

Negative 

Selection 
95.75 93.03 4.25 6.97 

 

 

TABLE IV 

PERFORMANCE ANALYSIS OF PROPOSED METHOD FOR DATASET 2 

Method 
Metrics 

     TPR     TNR     FNR    FPR 

Proposed       

Method 
99.33 99.12 0.67 0.88 

Parzen 

Window 

Estimators 

97.47 97.43 2.53 2.57 

Negative 

Selection 
95.94 96.01 4.06 3.99 

 

 
 

Fig. 2. Performance analysis of various schemes based on TPR and TNR for 

Dataset 1. 

 

 

 
 

Fig. 3. Performance analysis of various schemes based on FNR and FPR for 

Dataset 1. 
 

Tables III and IV reflect the overall accuracy statistics of 

the proposed method when applied in Dataset 1 and Dataset 2 

respectively. Thus it shows the higher accuracy of our 
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proposed framework. Fig. 2 and Fig. 3 depicts the 

performance of the algorithm in terms of specified statistical 

metrics for Dataset 1. Fig. 4 and Fig. 5 depicts the 

performance of the algorithm in terms of specified statistical 

metrics for Dataset 2. Thus it shows the higher accuracy of our 

proposed method. 

 

 
 

Fig. 4. Performance analysis of various schemes based on TPR and TNR for 

Dataset 2. 

 

 
 

Fig. 5. Performance analysis of various schemes based on FNR and FPR for 

Dataset 2. 

VI. CONCLUSIONS  

Failure to detect anomalies/unusual characteristics will lead 

to massive negative impact in profit on account of inadequacy 

of responsiveness and availability in cloud data centers. Thus 

there is a need to improve cloud data center performance by 

establishing frameworks for detecting anomalies in real time. 

In this paper, an online anomaly detection framework using 

non-parametric statistical technique for cloud data centers is 

proposed. The proposed framework is capable of self-

regulating the base model, when there is significant variation 

in the fundamental pattern of data. The experimental results 

show the higher accuracy of our proposed framework. 
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