

Abstract—Online anomaly detection plays a vital role in

improving the performance of cloud data centers by identifying

unusual behaviors. In this paper, we propose an online anomaly

detection framework using non-parametric statistical technique

in cloud data center. The major advantage of the proposed work

is its capability of automatic re-computing of the model,

according to the fundamental changes in the data. In order to

determine the accuracy of the proposed work, we experiment it to

data collected from RUBis cloud testbed (Dataset 1) and Yahoo

Cloud Serving Benchmark (YCSB) (Dataset 2). Our experimental

results show the greater accuracy in terms of True Positive Rate

(TPR), False Positive Rate (FPR), True Negative Rate (TNR) and

False Negative Rate (FNR).

Index Terms—Algorithm, Automated Modeling, Cloud Data

Center, Data Stream, Non-Parametric Statistical Technique,

Online Anomaly Detection.

I. INTRODUCTION

Cloud computing service providers built data centers that

contain hundreds of thousands of servers [1]. The size and

complexity of cloud data centers are expected to grow further

as more and more services are migrating to cloud platforms.

They are increasingly characterized by extremely large scale

and complexity. Utility based cloud services [2] like Amazon

web services, SQL server data services and Google App are

able to serve thousands of thousands businesses to run their

own applications, each of which having varying workload

characteristics. Thus it is very difficult to supervise cloud data

centers, and the failure to do so will in turn lead to massive

negative impact in profit on account of inadequacy of

responsiveness and availability. Therefore there is a need to

improve cloud data center performance by establishing

Manuscript received February 10, 2019; revised April 9, 2019. Date of

publication July 5, 2019. Date of current version July 5, 2019. The associate

editor Toni Mastelić has been coordinating the review of this manuscript and
approved it for publication.

Authors are with the Department of Computer Applications, National

Institute of Technology, Tiruchirappalli, TamilNadu, India (corresponding
author, e-mails: smrithygs1990@gmail.com, brama@nitt.edu).

Digital Object Identifier (DOI): 10.24138/jcomss.v15i3.717

frameworks for detecting problems (that deviate from normal

characteristics) in real time. It includes collecting online data

streams, analyzing it and taking remedial actions when

needed. In essence, the system should aim to capture unusual

or anomalous system behavior in real time. It is a critical task

for detecting/identifying atypical characteristics when large

amount of data streams are generated continuously in cloud

data centers. The key element of this paper is online anomaly

detection in order to improve the cloud data center

performance.

Online anomaly detection refers to identifying

abnormal/unusual behavior that deviates significantly from

expected usual behavior in real time. Anomaly detection

techniques can be broadly classified into different categories

such as data mining based, machine learning based, cognition

based, statistical based etc. Here we opt for statistical based

online anomaly detection. Among that, statistical techniques

can be categorized as parametric, non-parametric and semi-

parametric techniques [3]. Parametric techniques assume the

knowledge of underlying distribution based on a fixed set of

parameters. Some parametric statistical techniques are

Gaussian model-based, regression model-based, mixture of

parametric distributions-based etc. [4]. Non-parametric

techniques make no assumptions on the probability

distribution of the data. Some examples of non-parametric

techniques are histogram based and kernel based techniques.

Semi-parametric techniques are a combination of parametric

and non-parametric techniques to build, fit and validate

statistical models. In this paper, we utilize non-parametric

statistical technique for anomaly detection due to the

following reasons. i) It makes less number of assumptions ii)

It is easier to compute iii) It can be used with all scales.

It is evident that in a real world cloud data center [5], 84%

of the virtual machines show spikes in their CPU utilization at

least once in a month [6]. From the above fact, we can see that

it is hard to classify a false alarm based on the dynamic nature

of the workload characteristics. Few drawbacks of such false

alarms are unwanted inspections, unnecessary disruption of

users applications etc.

Automated Modeling of Real-Time Anomaly

Detection using Non-Parametric Statistical

Technique for Data Streams in Cloud

Environments

Smrithy G S and Ramadoss Balakrishnan, Member, IEEE

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019 225

1845-6421/09/717 © 2019 CCIS

mailto:smrithygs1990@gmail.com

 A good anomaly detection system should be capable of

detecting anomalies by considering the dynamic nature of

workloads characteristics in cloud data centers since the

pattern of workload may show hourly, daily, weekly or

monthly changes. A system that uses static threshold for

anomaly detection is only valid for a short span of time.

Another fact is, classifying individual data points as anomalies

can bring about false alarm rates. Thus there is a need in art

for a system which can show significant results and lower

false alarm rates in the scenario of dynamic nature of the

loads. Hence the motivation of this paper is to achieve high

accuracy in identifying anomalies in cloud data centers having

dynamic workloads by lowering the false alarm rates.

Therefore, the main focus of this paper is using non-

parametric statistical technique for anomaly detection in real

time data streams in cloud data centers.

The contributions of this paper are highlighted as follows:

1. We have developed an online anomaly detection

system that is capable of detecting anomalies in real

time data stream in cloud data centers. This system

uses a non-parametric statistical test, in particular,

chi-square two sample test for comparing two data

samples. Here we are capturing data stream as a time

window at specific intervals. The system is designed

for detecting abnormalities on daily basis in regular

time intervals. It can also be extended to work on

weekly or monthly basis of data patterns. The system

initially builds the base model using data without any

major security events. The framework is capable of

automatically rebuilding the model when there is a

significant change in the fundamental pattern of data.

The proposed system has low complexity and is

scalable to process large amounts of data.

2. We have experimented the accuracy of the proposed

algorithm using two different datasets; Dataset 1 and

Dataset 2. Dataset 1 and Dataset 2 are collected form

RUBiS cloud testbed [7] and Yahoo Cloud Serving

Benchmark (YCSB) [8] respectively. Our

experimental results show a greater accuracy in terms

of True Positive Rate, False Positive Rate, True

Negative Rate and False Negative Rate.

The rest of this paper is organized as follows. Section II

covers the related work. In section III preliminaries are shortly

presented. In section IV the proposed online anomaly

detection algorithm using non-parametric statistical technique

is described in detail. Section V presents the experimental

results. Section VI concludes the paper.

II. RELATED WORK

The goal of anomaly detection problems is to identify data

patterns that do not conform to a certain expected pattern in a

dataset. To design a framework that detects anomalies, a

statistical model is fit for normal behavior and then an

appropriate inference test is applied to check whether the new

observed instance belongs to this model. In order to solve the

anomaly detection problems [9], many parametric techniques

such as Tukey limits, ANOVA tests, Pearson correlation,

Grubb's test, Student-t test etc are used. However, since the

ultimate goal is to detect anomalies, learning the distributions

first and then constructing the detection rules may not yield

optimal performance. It is thus desirable to design data-driven

nonparametric tests, which directly perform anomaly detection

using data without estimating the distributions as an

intermediate step. Furthermore, since such tests do not exploit

any information about the distributions, they can be designed

to provide universal performance guarantee for arbitrary

distributions.

An anomaly detection technique that uses non-parametric

statistical techniques makes fewer or no assumptions of the

given data, such as smoothness of density. A simple non-

parametric based anomaly detection system can use

histogram-based technique. Kruegel et al. [10], [11] used

histogram-based technique for detecting web based attacks

and fraud detection respectively. A more versatile technique

under non-parametric approach for detecting anomalies is

based on parzen window estimation [12], [13]. It includes

approximating the actual density using kernel functions.

Numerous commercial studies that use more refined

statistical methods for anomaly detection have been proposed

[21] -[25]. Despite a few of the methods can be applied for

real time anomaly detection in cloud environment because of

their high computational overhead. Table I shows different

statistical approaches for anomaly detection. Buzen et al. [26]

proposed an anomaly detection technique that enhances the

fixed threshold strategies which repeatedly calculates the

control limits in an iterative manner when a new data arrives.

Datar et al. [27] presented a method for managing and

aggregating data streams in a sliding window. They suggested

their proposed model to be applied in areas like

telecommunications where data are generated continuously. In

such applications, instead of processing the whole historical

data, we can focus on the most recent set of observations.

As evident from the above literature, none of the researchers

have addressed the construction of automated modeling

(considering dynamic changes in the data) using non-

parametric statistical techniques for detecting anomalies in

real time cloud environment. The proposed anomaly detection

TABLE I

STATISTICAL APPROACHES FOR ANOMALY DETECTION

Types Approach

Parametric

Mixture Models

1. Gaussian Mixture Model (GMM) [14]

Extreme Value Theory (EVT) [15]

Autoregressive Integrated Moving Average (ARIMA) [16]

State-Space Models

1. Hidden Markov Model (HMM) [17]

2. Kalman filter [18]

Non-

Parametric

Kernel Density/ Parzen Window Estimators [19]

Negative Selection [20]

226 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

framework uses non-parametric statistical technique for

detecting anomalous characteristics based on performance

metrics such as CPU utilization. The strength of the system

lies in its capability of automatic re-computing of the model,

according to the fundamental changes in the data. This

improves the precision of anomaly detection and in turn

reduces false alarm rate.

III. CHI-SQUARE TEST

The main objective of statistical anomaly detection

technique is to determine if there is any significance difference

between the distribution of the collected set of sample data and

the distribution of the normal data. In short, we have to check

whether the two data sets are drawn from the same population

distribution function. The task will be easy when the data

distribution is known a priori. Nonetheless we cannot assume

that the data should follow a particular distribution in practical

scenarios. Thus there is a need to check the samples against

the samples that were previously accepted as normal data. The

techniques used for such situations are known as non-

parametric statistical techniques. For our problem, we are

using a particular non-parametric statistical technique called

chi-square test. It is used to check how much the observed

values of a particular given sample significantly differ from

the expected values of the distribution [28]. It shows how well

an experimental data fits an expected probability distribution.

Unlike tests like Z and t, chi-square test theories about the full

distribution instead of any single statistic from the distribution

[29].

Chi-square test can be used to compare between two datasets

that are quantized into a specific number of bins [30]. Binning

can be done by grouping the events into specific ranges of the

variable such as 0-10, 10-20, 20-30 etc. For our problem, as

we are taking the percentage of CPU utilization which can

take values between 0 and 100 as the input of our anomaly

detection framework, we quantize it into 20 bins of equal size.

Given two binned datasets that are of equal size, let Pi be the

number of observations for the first dataset and let Qi be the

number of observations in the second dataset in bin i, then the

chi-square statistics for comparing both the binned datasets is

given by,

 χ2 = ∑
(Pi−Qi)2

Pi+Qi
i (1)

The number of degrees of freedom is equal to one less than

the number of bins, if the sum of Pi's is undoubtedly equal to

sum of Qi's. Otherwise the number of degrees of freedom will

be equal to the number of bins [31]. In real time, when data

streams that are arriving in a particular time interval are

collected using a time window, there are possibilities that the

number of data instances in one time window differs from the

number of data instances in another time window. The

possible reasons may be practical constraints such as network

delays etc. In such scenarios the anomaly detection framework

should be able to compare two different sized windows, i.e. it

should be able to compare datasets of unequal sizes. For

unequal number of data points, the corresponding equivalent

of Eqn (1) can be written as [30],

χ2 = ∑
(√

Q

P
Pi−√

P

Q
Qi)2

Pi+Qi
i (2)

where P ≡ ∑ Pii and Q ≡ ∑ Qii are the number of data

instances respectively.

The computed test statistic χ^2 will be compared against a

threshold. For datasets of unequal sizes, the threshold will be

commonly set to the point in the chi-squared cumulative

distribution function with degrees of freedom equal to number

of bins that conforms to a 0.95 or 0.99 confidence level [31].

Any statistical tools like R [32], SAS [33] etc. can be used to

fix this threshold. If the computed test statistic is lesser than

the threshold, we can say that the observed dataset follows the

same distribution of the normal dataset; otherwise we can say

that the distributions are different.

IV. PROPOSED WORK

The proposed algorithm focuses on finding anomalous

pattern in a collection of data instances rather than finding

individual anomalous data instances to reduce false alarm

rates. The system collects data in particular time intervals

using a time window. If the distribution of the data instances

in the window varies significantly from the base model, the

window will be declared anomalous. Fig. 1 shows the

flowchart of the proposed anomaly detection framework for

detecting anomalous data streams in cloud data centers. For

data streams, systems that update and decay over time is

recommended. Hence, our proposed model is capable of

automatic updating when there is a fundamental change in the

pattern of data. The proposed work consists of three folds.

Initially, the procedure 𝐵𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙 builds the base model

using the performance metric, then the algorithm

𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 finds the unknown distribution of the data

and finally the algorithm 𝑂𝑛𝑙𝑖𝑛𝑒 − 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 − 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

detects abnormal characteristics in the performance data.

The proposed framework is described as follows. We are

dividing a day data into n equal time interval windows.

Initially the Algorithm 1 builds the base model using the data

of interest, here CPU utilization. Here the data streams are

collected as time windows. For example, data stream collected

at 𝑖𝑡ℎ time interval will be stored in 𝑊𝑖. The data used for

building the base model should be from a clean day which

does not have any major security events. But to avoid the

degradation of model accuracy, the algorithm first eliminates

any possible outliers before building the model. This is shown

in steps from 5 to 8. After eliminating the outliers the clean

window is represented as 𝑊𝑝𝑖 . The base model for the 𝑖𝑡ℎ

time interval will be generated using 𝑊𝑝𝑖 . The distribution

𝑏𝑚𝑖 for 𝑊𝑝𝑖 is computed using the algorithm 2. 𝐵𝑀 stores the

distributions bmi; such that 𝑖 ≤ 𝑛 where 𝑛 is the number of

SMRITHY G. S. et al.: AUTOMATED MODELING OF REAL-TIME ANOMALY DETECTION 227

time intervals. Finally the Algorithm 1 returns 𝐵𝑀.

The Algorithm 2 describes how to generate the distribution

of a data stream which is collected as windows. The inputs of

the algorithm are window 𝑊, and number of bins 𝑁𝑂𝐵. The

procedure find the unknown distribution of window 𝑊 using a

bin-based histogram approach from steps 3 to 7. In window

𝑊, each data instance is called a tuple. From the tuple, a data

point 𝑑𝑝 with its value is extracted. Then Bin Index, 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡

as shown in step 4. Here 𝑊𝑚𝑖𝑛and 𝑊𝑚𝑎𝑥are the lower bound

and upper bound of window 𝑊 respectively. It can be

calculated experimentally. As we have used CPU utilization

percentage for our proposed work, its lower and upper bound

are 0 and 100 respectively. The algorithm then emits 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡

with its frequency as a tuple and calculates each bin frequency

𝑀𝑖. It finally returns Empirical Frequency �̂�.

Algorithm 2: Procedure for Find-Distribution

1 Procedure 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑊𝑖𝑛𝑑𝑜𝑤 𝑊, 𝑁𝑂𝐵)

2 Begin

3 Take each instance of 𝑊 called tuple and extract

 a data point, 𝑑𝑝 with its value from this tuple

4 Generate Bin Index, 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

(𝑑𝑝−Wmin)

(Wmax−Wmin)
∗ NOB

5 Return 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 with its frequency as a tuple

6 Count the total number of frequencies for each

 bin, 𝑀𝑖, ∀𝑖 = 1,2 … , 𝑁𝑂𝐵

7 Return Empirical Frequency �̂�

8 End

Fig. 1. Flow chart of the proposed anomaly detection framework.

Algorithm1: Procedure for Build-Model

1 Procedure 𝐵𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑦𝐷𝑎𝑡𝑎)

2 Begin

3 𝑊𝑖 ← data collected at 𝑖𝑡ℎ time interval

4 For 𝑖 ← 1 𝑡𝑜 𝑛 do

5 Return the set of values of 𝑊𝑖 that falls

 beyond ±3𝜎

6 For the set of values returned in step 5

extract

 the set of values that exceeds ±3𝜎

7 Label the set of values returned in step 6 as

 outliers

8 Return the remaining value of 𝑊𝑖 as 𝑊𝑝𝑖

9 𝑏𝑚𝑖 ← 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑊𝑝𝑖 , 𝑁𝑂𝐵)

10 Add to 𝐵𝑀; 𝑏𝑚𝑖

11 End

12 Return 𝐵𝑀

13 End

228 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

The Algorithm 3 illustrates our proposed anomaly detection

framework. Here we have focused more on a set of data points

in a particular time interval called window rather than an

individual data point. Data collected at ith time interval will be

stored in Wi. In step 4, the distribution of window Wi is

computed and represented as currenti. Then it compares

currenti with the baseline model of same time period bmi

using chi-square test statistic as shown in step 5. Here bj

represents the number of items in bin j for the base model

dataset at time window i and cj represents the number of items

in bin j for the current data stream at time window, i.
If the test statistic does not exceeds a threshold, the window

Wi is declared as benign, otherwise as anomalous and an alarm

is raised. Subsequently the anomalous counter, Nanomalous is

also incremented and the aggregated data stream is stored as

DataCurrent. At this stage, a determination is made whether

the day has ended. If the day has not ended, the algorithm goes

for a loop from step 3 to 11. Otherwise, the algorithm checks

whether the anomalous counter value has exceeded a

particular threshold THanomalous. For example, if the

algorithm declares half of the number of windows to be

abnormal, then there might be some fundamental change in the

data to which the framework needs to adapt. If it has not

exceeded, then the same set of baseline models are retained.

Otherwise, the algorithm rebuild the baseline models using the

data of the previous day; DataCurrent.

V. EXPERIMENTS AND RESULTS

The accuracy of the proposed algorithm is evaluated using

two datasets, Dataset 1 and Dataset 2. The details of

experimental set up and results are described in the following

section.

A. Experimental Setup

For evaluating the proposed algorithm, for the first scenario

we have established a RUBiS cloud testbed [7] with two

compute nodes: H1 and H2. RUBiS is an open source cloud

based auction site benchmark. Its services are deployed in

virtual machines mapped to the cloud’s machine resources

when used in cloud environment. The testbed uses 5 virtual

machines (VM 1 to VM 5) on Xen Platform hosted on H1 and

H2. Host H1 contains 3 virtual machines; VM1, VM2 and

VM3. Host H2 contains two virtual machines; VM4 and

VM5.

TABLE II

 SYSTEM SPECIFICATIONS

Node Specifications

 Intel (R) Xeon (R)

Processor E5 - 2695 v4

2.10 GHz

 45 M cache

 64 GB DDR4 RAM

 4 TB Hard Disk

 dual NIC card,

 Each processor-2

sockets

 Each socket-18 cores

 Total-36 logical

processors

Virtual machine specifications
 13 vCPU

 16 GB DDR4 RAM

 1 TB Hard disk.

Table II describes the system specifications. VM1 processes

the user requests, VM2 handles the application logic and a

database runs on VM3. A work-loader and a program to inject

anomalies run on VM4 and VM5 respectively. The work-

loader generates service for 24 hours on H1 in which the

auction site is residing. For evaluating our proposed work, we

continuously audit the CPU utilization data which we have

named as Dataset 1. Initially the framework builds the base

model from clear benign data. After that it diagnoses

anomalies, if the CPU utilization varies significantly from the

base model. The proposed framework not only detects

anomalies but also automatically rebuild the model, if the

fundamental data pattern changes.

For the next scenario, we have experimented with the

proposed framework based on the Yahoo Cloud Serving

Benchmark (YCSB) [8] framework to generate an expandable

workload. YCSB has been run with varying workloads on

different VMs. The framework regularly collects the data

stream which we have called as Dataset 2. Here the database

Algorithm 3: Online-Anomaly-Detection

𝐼𝑛𝑝𝑢𝑡: 𝐷𝑆, 𝐵𝑀, 𝑇𝐻, 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 = 0, 𝑇𝐻𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

1 Begin

2 𝑊𝑖 ← data collected at 𝑖𝑡ℎ time interval

3 For 𝑖 ← 1 𝑡𝑜 𝑛 do

4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ← 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑊𝑖 , 𝑁𝑂𝐵)

5 Compute the test statistic,

 χ2 ← ∑

(√
𝑏𝑚𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖
∗𝑐𝑗−√

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖
𝑏𝑚𝑖

∗𝑏𝑗)2

𝑐𝑗+𝑏𝑗

𝑁𝑂𝐵
𝑗=1 , where

 𝑏𝑚𝑖 = ∑ 𝑏𝑗
𝑁𝑂𝐵
𝑗=1 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 = ∑ 𝑐𝑗

𝑁𝑂𝐵
𝑗=1

6 If χ2 < 𝑇𝐻

7 Flag window 𝑊𝑖 as benign

8 Else

9 Flag window 𝑊𝑖 as anomalous

10 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 = 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 + 1

11 𝐷𝑎𝑡𝑎𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← Store aggregated volume

 of data

12 End

13 If 𝑁𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 < 𝑇𝐻𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

14 Retain 𝐵𝑀 for next day anomaly detection

15 Else

16 Re-compute 𝐵𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝐶𝑢𝑟𝑟𝑒𝑛𝑡)

17 End

SMRITHY G. S. et al.: AUTOMATED MODELING OF REAL-TIME ANOMALY DETECTION 229

system is a MySQL database. In the load period, data are

loaded in the YCSB run. A number of transactions are used on

the database to increase the load abnormally; hence generating

anomalous data stream. Several performance metrics such as

CPU utilization, memory utilization etc. are generated.

Likewise in scenario 1, here also we are taking the CPU

utilization data only. For both the scenarios, the time window

is fixed experimentally to get optimal results. Similar to

Dataset1, here also we build a base model from clear benign

data. The streaming data is compared with the base model to

detect abnormal CPU utilization. Moreover the framework

automatically rebuilds the base models when there is a

significant change in the fundamental data pattern. After that it

diagnoses anomalies, if the CPU utilization varies significantly

from the base model.

B. Results

In this experiment, we detect anomalies on the fly. Data

coming in a streaming fashion is collected in a predefined time

window. The algorithm raises an alarm when it detects

anomalies in a window. For both the datasets we take 20 bins

and the number of data points in a time window varies in the

range of 98 - 110 and computed the threshold using 𝑅. For

Dataset 1 we are considering a time window of 2 minutes

duration, thus 30 time windows per hour and hence 720

windows (30*24) per day. Out of 720 windows, the anomaly

injector injects anomalies to 120 windows. Thus we have 600

benign windows and 120 anomalous windows. The virtual

machine and host metrics are collected/analysed in an anomaly

detector. The proposed Algorithm 3 detects variations in the

performance metrics of virtual machines and hosts. It correctly

classifies 596 benign windows out of 600 and remaining 4

benign windows are misclassified. It also identifies 118

anomalous windows out of 120 and remaining 2 windows are

misclassified. When a new window arrives, the algorithm

compares its distribution with the model. If it matches, it

classifies the window as benign; otherwise as anomalous and

an alarm is raised.

 In second scenario, for Dataset 2 we are considering a time

window of 2 minutes duration, and we are collecting 2000

windows out of which 1700 are benign and remaining 300 are

anomalous. The proposed algorithm correctly classifies 1685

benign windows out of 1700 and remaining 15 benign

windows are misclassified. It also identifies 298 anomalous

windows out of 300 and remaining 2 windows are

misclassified. The accuracy results of the proposed algorithm

are based on the following statistical metrics.

𝑇𝑃𝑅 =
𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
 (3)

𝐹𝑃𝑅 =
𝑜𝑓 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
 (4)

 TNR =
of successful benign windows classified

of total benign windows
 (5)

 FNR =
of unsuccessful anomalous windows classified

of total anomalous windows
 (6)

TABLE III

PERFORMANCE ANALYSIS OF PROPOSED METHOD FOR DATASET 1

Method
Metrics

TPR TNR FNR FPR

Proposed

Method
98.33 99.33 1.67 0.67

Parzen

Window

Estimators

96.53 96.63 3.47 3.37

Negative

Selection
95.75 93.03 4.25 6.97

TABLE IV

PERFORMANCE ANALYSIS OF PROPOSED METHOD FOR DATASET 2

Method
Metrics

 TPR TNR FNR FPR

Proposed

Method
99.33 99.12 0.67 0.88

Parzen

Window

Estimators

97.47 97.43 2.53 2.57

Negative

Selection
95.94 96.01 4.06 3.99

Fig. 2. Performance analysis of various schemes based on TPR and TNR for

Dataset 1.

Fig. 3. Performance analysis of various schemes based on FNR and FPR for

Dataset 1.

Tables III and IV reflect the overall accuracy statistics of

the proposed method when applied in Dataset 1 and Dataset 2

respectively. Thus it shows the higher accuracy of our

230 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

proposed framework. Fig. 2 and Fig. 3 depicts the

performance of the algorithm in terms of specified statistical

metrics for Dataset 1. Fig. 4 and Fig. 5 depicts the

performance of the algorithm in terms of specified statistical

metrics for Dataset 2. Thus it shows the higher accuracy of our

proposed method.

Fig. 4. Performance analysis of various schemes based on TPR and TNR for

Dataset 2.

Fig. 5. Performance analysis of various schemes based on FNR and FPR for

Dataset 2.

VI. CONCLUSIONS

Failure to detect anomalies/unusual characteristics will lead

to massive negative impact in profit on account of inadequacy

of responsiveness and availability in cloud data centers. Thus

there is a need to improve cloud data center performance by

establishing frameworks for detecting anomalies in real time.

In this paper, an online anomaly detection framework using

non-parametric statistical technique for cloud data centers is

proposed. The proposed framework is capable of self-

regulating the base model, when there is significant variation

in the fundamental pattern of data. The experimental results

show the higher accuracy of our proposed framework.

ACKNOWLEDGMENT

The research work reported in this paper is supported by

Department of Electronics & Information Technology

(DeitY), a division of Ministry of Communications and IT,

Government of India, under Visvesvaraya PhD scheme for

Electronics & IT.

REFERENCES

[1] B. Li, B. Li and F. Liu, "Cloud and data center performance [Guest

Editorial]," IEEE Network, 27, (2013): 6-7. doi:

10.1109/MNET.2013.6574658
[2] M. H. Ghahramani, M. Zhou, and C. T. Hon, "Toward cloud computing

QoS architecture: Analysis of cloud systems and cloud services."

IEEE/CAA Journal of Automatica Sinica 4.1 (2017): 6-18. doi:
10.1109/JAS.2017.7510313

[3] Smrithy G S, Sathyan Munirathinam, and Ramadoss Balakrishnan .

"Online Anomaly Detection using Non-Parametric Technique for Big
Data Streams in Cloud Collaborative Environment ." Big Data (Big

Data), 2016 IEEE International Conference on, IEEE, 2016:1950-1955.

doi: 10.1109/BigData.2016.7840816

[4] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly

detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.

doi: 10.1145/1541880.1541882
[5] S. Shen, V. V. Beek, and A. Iosup, “Statistical characterization of

business-critical workloads hosted in cloud datacenters,”15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (2015):
465–474. doi: 10.1109/CCGrid.2015.60

[6] S. Barbhuiya, Z. Papazachos, P. Kilpatrick and D. Nikolopoulos, "RADS:

Real-time Anomaly Detection System for Cloud Data Centres." arXiv
preprint arXiv:1811.04481 (2018).

[7] RUBiS testbed.[Online], 2003. Available: http://rubis.ow2.org/

[8] Cooper, Brian F., et al. "Benchmarking cloud serving systems with
YCSB." Proceedings of the 1st ACM symposium on Cloud computing.

ACM, 2010. doi: 10.1145/1807128.1807152

[9] Ibidunmoye, Olumuyiwa, Francisco Hernández-Rodriguez, and Erik
Elmroth. "Performance anomaly detection and bottleneck identification."

ACM Computing Surveys (CSUR) 48.1 (2015): 4. doi: 10.1145/2791120

[10] Krügel, Christopher, Thomas Toth, and Engin Kirda. "Service specific

anomaly detection for network intrusion detection." Proceedings of the

2002 ACM symposium on Applied computing. ACM, 2002. doi:

10.1145/508791.508835
[11] Kruegel, Christopher, et al. "Bayesian event classification for intrusion

detection." Computer Security Applications Conference, 2003.

Proceedings. 19th Annual. IEEE, 2003.doi:
10.1109/CSAC.2003.1254306

[12] Parzen, Emanuel. "On estimation of a probability density function and
mode." The annals of mathematical statistics 33.3 (1962): 1065-1076.

doi:10.1214/aoms/1177704472

[13] Yeung, Dit-Yan, and Calvin Chow. "Parzen-window network intrusion
detectors." Pattern Recognition, 2002. Proceedings. 16th International

Conference on. Vol. 4. IEEE, 2002.doi: 10.1109/ICPR.2002.1047476

[14] Song, Xiuyao, et al. "Conditional anomaly detection." IEEE Transactions
on Knowledge and Data Engineering 19.5 (2007). doi:

10.1109/TKDE.2007.1009

[15] Clifton, David A., et al. "An extreme function theory for novelty detec-
tion." IEEE Journal of Selected Topics in Signal Processing 7.1 (2013):

28-37. doi: 10.1109/JSTSP.2012.2234081

[16] Hoare, Stephen W., David Asbridge, and Paul CW Beatty. "On-line
novelty detection for artefact identification in automatic anaesthesia

record keeping." Medical engineering & physics 24.10 (2002): 673-681.

doi: 10.1016/S1350-4533(02)00146-7
[17] Qiao, Yan, et al. "Anomaly intrusion detection method based on HMM."

Electronics letters 38.13 (2002): 663-664. doi: 10.1049/el:20020467

[18] Sun, Bo, et al. "Anomaly detection based secure in-network aggregation
for wireless sensor networks." IEEE Systems Journal 7.1 (2013): 13-25.

doi: 10.1109/JSYST.2012.2223531

[19] Yeung, Dit-Yan, and Calvin Chow. "Parzen-window network intrusion
detectors." Pattern Recognition, 2002. Proceedings. 16th International

Conference on. Vol. 4. IEEE, 2002. doi: 10.1109/ICPR.2002.1047476

[20] González, Fabio A., and Dipankar Dasgupta. "Anomaly detection using
real-valued negative selection." Genetic Programming and Evolvable Ma-

chines 4.4 (2003): 383-403. doi: 10.1023/A:1026195112518

[21] Cabrera, João BD, Lundy Lewis, and Raman K. Mehra. "Detection and

classification of intrusions and faults using sequences of system calls."

Acm sigmod record 30.4 (2001): 25-34. doi: 10.1145/604264.604269

[22] Ghosh, Anup K., Aaron Schwartzbard, and Michael Schatz. "Learning
Program Behavior Profiles for Intrusion Detection." Workshop on

Intrusion Detection and Network Monitoring. Vol. 51462. 1999.

SMRITHY G. S. et al.: AUTOMATED MODELING OF REAL-TIME ANOMALY DETECTION 231

[23] Farid, Dewan Md, Nouria Harbi, and Mohammad Zahidur Rahman.

"Combining naive bayes and decision tree for adaptive intrusion detec-
tion." arXiv preprint arXiv: 1005.4496 (2010).

[24] Hodge, Victoria J., and Jim Austin. "A survey of outlier detection me-

thodologies." Artificial intelligence review 22.2 (2004): 85-126. doi:
10.1007/s10462-004-4304-y

[25] Patcha, Animesh, and Jung-Min Park. "An overview of anomaly

detection techniques: Existing solutions and latest technological trends."
Computer networks 51.12 (2007): 3448-3470. doi:

10.1016/j.comnet.2007.02.001

[26] Buzen, Jeffrey P., and Annie W. Shum. "Masf-multivariate adaptive
statistical filtering." Int. CMG Conference. 1995.

[27] Datar, Mayur, et al. "Maintaining stream statistics over sliding win-

dows." SIAM journal on computing 31.6 (2002): 1794-1813.
[28] Aron, Arthur, and Elaine N. Aron. Statistics for psychology. Prentice

Hall/Pearson Education, 2003.

[29] Abouzakhar, Nasser, and Abu Bakar. "A Chi-square testing-based
intrusion detection Model." Procs 4th International Conference on

Cybercrime Forensics Education & Training. 2010.

[30] W.H.Press. Numerical recipes in c. [Online], 1986. Available:
http://www.aip.de./groups/soe/local/numbers/book pdf/c14-3.pdf

[31] Wang, Chengwei, et al. "Statistical techniques for online anomaly

detection in data centers." Integrated Network Management (IM), 2011
IFIP/IEEE International Symposium on. IEEE, 2011. doi:

10.1109/INM.2011.5990537

[32] R. The r project for statistical computing. [Online], 2015. Available:
http://www.r-project.org/

[33] SAS analytics software and solutions. [Online], 2013. Available:

http://www.sas.com/en_in/home.html

Smrithy G S received the B.Tech degree in

Information Technology from University of

Kerala in 2011 and M.Tech degree in
Engineering Statistics (University topper) from

Cochin University of Science and Technology in

2014. Currently, she is a PhD researcher in the
Department of Computer Applications at

National Institute of Technology, Tiruchirappalli,
India. Her research interests include: Statistical

techniques for security and privacy in Big data,

Anomaly detection and protection, identity
management and intrusion detection techniques

in Cloud Computing, and Information Security.

Ramadoss Balakrishnan received the M.Tech
degree in Computer science and Engineering in

1995 from the Indian Institute of Technology,

Delhi and the PhD degree in Applied
Mathematics in 1983 from Indian Institute of

Technology, Bombay. Currently he is working

as a Professor of Computer Applications at
National Institute of Technology, Tiruchirapalli.

His research interests include: Software Testing

Methodologies, Security and Privacy in Big
Data and Cloud, software Metrics, Data

Warehouse – EAI, Data Mining, WBL, and

XML. He is a recipient of Best Teacher Award
at National Institute of Technology,

Tiruchirapalli, India during 2006-2007. He is a member of IEEE, Life

Member (LM) of ISTE, New Delhi, Life Member (LM), Computer Society of
India.

232 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

http://www.sas.com/en_in/home.html

