
 

Abstract—We present a 10-17 Degrees of Freedom (DoF) 
sensory gloves for Smart Healthcare implementing an energy 
harvesting architecture, aimed at enhancing the battery lasting 
when powering the electronics of the two different types of gloves, 
used to sense fingers movements. In particular, we realized a 
comparison in terms of measurement repeatability and reliability, 
as well as power consumption and battery lasting, between two 
sensory gloves implemented by means of different technologies. 
The first is a 3D printed glove with 10 DoF, featuring low-cost, low-
effort fabrication and low-power consumption. The second is a 
classical Lycra® glove with 14 DoF suitable for a more detailed 
assessment of the hand postures, featuring a relatively higher cost 
and power consumption. An electronic circuitry was designed to 
gather and elaborate data from both types of sensory gloves, 
equipped with flex sensors, differing for number of inputs only.  
Both gloves allow the control of hand virtual limbs or mechanical 
arts in surgical, military, space and civil applications. The 
proposed gloves were already individually evaluated in terms of 
repeatability, reproducibility and reliability, but in this work their 
performances are compared also in terms of power consumption, 
because a particular effort was devoted in this case to increase 
battery lasting for both  systems, developing an Energy Harvesting 
(EH) system with the electronics relaying on Radio Frequency, 
Piezoelectric and Thermoelectric harvesters, and applying it to the 
gloves for the first time. The harvesting part was built and tested 
as a prototype discrete element board, that is interfaced with an 
external microcontroller and a radiofrequency transmitter board. 
Measurement results demonstrated a meaningful improvement in 
battery operation time up to 25%, considering different operating 
scenarios, for both glove systems, which exhibited not very 
different power consumption and therefore battery duration, in 
spite of different DoF measuring capabilities. 

 
Index Terms—Sensory glove, Energy harvesting, power 

management. 

 

I. INTRODUCTION 

 he energy recovery from ambient power sources, the so-

called energy harvesting, is an interesting way to capture 

and store energy for powering electrical devices, as those used 

in wearable electronics and remote wireless sensor network 
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(WSN) [1-9]. Once the energy is recovered, the next step is to 

collect it in appropriate storage systems. With this aim, batteries 

are the most important storage block for autonomous devices, 

but they have a limited time duration that can be enlarged by 

the harvested free energy. Several efforts have been devoted to 

developing power harvesting techniques used to scavenge 

power either from the environment or from the human body 

[10]. Among the Energy Harvesting (EH) applications, in the 

last years a lot of interest has been devoted on sensory glove 

[11-13], both for healthcare and ludic application, in order to 

guarantee a long time operation [14,15].  The battery life time 

of the sensory glove can be harvested by means of different 

energy harvesters, operating all together such as 

electromagnetic, solar, thermal, acoustic, vibrational, etc.  

In order to guarantee the glove comfort and portability we 

considered the development of an unwired, size- and weight-

reduced system, which exploits multi-sources energy 

harvesting techniques in order to extend the battery lasting.  

In this work we propose a couple of 10-17 degrees of 

freedom (DoF) sensory gloves for Smart Healthcare, 

implementing a multisource energy harvesting architecture, 

aimed at enhancing the battery lasting when powering the 

electronics of the two different types of gloves, used to sense 

fingers movements. The two gloves have different 

characteristic: the former is a 3D printed glove with 10 flex 

sensors on finger joints for 10 DoF hand motion assessment, the 

latter is a Lycra glove with 14 flex sensors on finger joints for 

14 DoF hand motion assessment, requiring more power 

consumption. The performances of the presented gloves,  which 

were already individually evaluated in terms of repeatability, 

reproducibility and reliability [16,17], are now compared also 

in terms of  power consumption, testing them on six healthy 

subjects by mean of the Wise test [15]. The proposed multi-

harvester system integrates Thermo-Electric Generators 

(TEGs) (that can be applied on the human forearm), stacked 

piezoelectric (PZT) disks, placed in the heel of a shoe, so to 

scavenge energy from the pressure generated by feet during 

walking or a running session, and RF dual band circuitry to 

capture energy from the available surrounding RF power.  The 

harvesting part was built and tested as a prototype discrete 

element board, that is interfaced with an external 

microcontroller and a radiofrequency transmitter board. 

Measurement results demonstrated a meaningful improvement
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in battery operation time up to 25%, considering different 

operating scenarios. 

II. THE PROPOSED LONG-LIFE BATTERY TIME GLOVES  

For human body hands are fundamental to interact with the 

surroundings and to communicate too. A sensory glove allows 

to dynamically control the fingers and hand movements [14] in 

order to use the acquired data for several applications as among 

others: gaming, training or rehabilitation, evaluation of surgical 

gesture [12-20]. Generally, a sensory glove is made by an 

elastic glove with accelerometer or flex sensors embedded [13], 

generating electric signals according to fingers movements 

[14]. The hand movement capabilities are generally represented 

by 27 DoFs [20,21], so to take into account both 

flexion/extension and adduction/abduction of the finger joints  

as well as rotation/bending of the wrist. However, for usual 

applications, we can limit to a sub-set of DoFs. In particular, in 

the following we consider two gloves with different 

capabilities, a simple 3D printed glove with 10 DoFs, and a 

more sophisticated glove with a combination of 14 flex sensors 

and one inertial measurement unit (IMU), which are compared 

in terms of repeatability,  reproducibility and reliability of the 

measures as well as power consumption.  

A.  From 10 to 14 DoF Gloves 

 A 3D printed glove with 10 DoF was built as a single fabric 

without seams or welding or use of glues, according to the 

anatomy of the hand [17].  

The glove design includes the housings for the flex sensors 

[14,26] (Flexpoint Sensor Systems Inc., South Draper UT, 

USA) on distal interphalangeal (DIP), proximal interphalangeal 

(PIP), and metacarpophalangeal (MCP) finger joints, which are 

pockets or two foils within which the sensor can slide during 

joint bending. As a future improvement, the sensor can be 

integrated into the glove during the printing process, in order to 

guarantee each sensor to be correctly fixed in its location.  

Figure 1 shows a photo of the realized glove from the CAD 

design, and the wiring of the flex sensors, taken from a Lycra 

glove and applied to the printed glove without any modification.  

 

Fig. 1. Flex sensors’ wiring (left down) and 3D printed prototype (right up) of 

the CAD designed glove (left up) [17]. 

In order to measure the hand gestures, we developed also a 

sensory glove equipped with 14 flex sensors (Flexpoint Sensor 

Systems, Inc., Draper, UT) and a 3-axis accelerometer 

(ADXL335, by Analog Devices, Inc., Norwood, MA) able to 

measure the flex/ extension capabilities of the finger joints of a 

human hand, plus the wrist movements. Flex sensors were 

positioned on distal interphalangeal, proximal interphalangeal, 

and metacarpo- phalangeal finger joints, except for the thumb 

that has a proximal IP (PIP) sensor and distal IP sensor (DIP), 

as shown in Fig. 2. The accelerometer was positioned on back 

side of the hand. In total 17 signals were collected by means of 

a custom-made prototype board connected to a computer, so to 

take into account of both flexion/extension of the joints of the 

fingers and rotation/bending of the wrist. The complete 

wearable system can be seen in Fig. 3. 

The selected resistive sensors are stable, low cost, with a 

thickness less than 5 mils, flexible, almost linear [21,26]. 

Different sensor sizes can be also selected depending on the 

application: sensors of 1, 2, 3-inches are available for the finger 

joints DIP, PIP, MCP, respectively. The influence of fabric 

composition on sliding and flexion of the sensor has been 

studied. The glove is made of 88% polyester and 12% Elastane, 

because it provides greater comfort for movement. For the 

present study, only one medium right-hand gloves were 

developed. because could be best worn by the largest number 

of participants. The used sensory glove covers all the hand, but 

it can be modified to let the palmar surface and the fingertips 

free to maintain the tactile sensitivity. The wiring connection of 

the sensors to the electronic board is flexible and with a 

diameter of 1.5 mm and a weight less than 1g/m. The sensory 

glove has a 50 g weight.  

 

Fig. 2. Flex sensor position on the fin*ger joints of the 17 DoF glove, and IMU 

position on the back side of the hand. 
 

B. Data Acquisition and Transmission Board 

The Arduino Leonardo electronic board allows the management 

of 14 analog inputs for the bend sensor signals, 2 digital pin for 

Bluetooth serial communication, and provides ground and 

voltage reference for operation of the bend sensors. 
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Fig. 3. The Lycra glove system: the glove with 14 flex sensors on the DIP, IP 

and MCP joint and the IMU device, and the acquisition and transmission box  

The transduction takes place via a voltage divider between 0 

and 5 V with a fixed 18 kΩ resistance, selected because it is the 

geometric mean between the maximum and minimum sensor 

resistance, to provide the widest voltage range [25]. The sensor 

readout circuit is followed by a 10-bit ADC module with a 

sampling frequency set to 1 kHz and the transmission frequency 

set to 50 Hz, to handle up to 20 multiplexed channels. Once the 

data are acquired, they are redirected to an RN42 Bluetooth 

module and sequentially to the receiving antenna connected to 

a PC.  The current draw is about 100 mA for the 3D printed 

glove with 10 flex sensor, and 110 mA for the Lycra glove with 

14 flex sensors and the IMU device, but is largely due to the 

acquisition and transmission board, since the bending sensor 

circuit has resistances of hundreds of Kohms and the IMU unit 

only absorbs 350 A.  

C. Energy Harvesting System Architecture 

Evidently, practical reasons impose a wireless transmission 

system of the sensory gloves. The glove data transmission block 

scheme trough wireless connectivity is represented in Fig. 4. 

The system is composed by a RF commercial transmitting block 

driven by a microcontroller and a remote receiving block 

connected to a data server. In order to guarantee a system 

battery long life time, the overall system includes a multi-

harvester block, so as to scavenge free available energy directly 

from the surrounding environment, as demonstrated in [29-33]. 

The real case scenario is shown in Fig. 5. The transmitting and 

receiving blocks have been implemented with market 

components.   

 

Fig. 4. Data glove acquisition and visualization process. 

 

Fig. 5. The complete system block scheme 

The harvesting block architecture is shown in Fig. 6. Three 

different harvesters terminated with a Schottky diode so to 

avoid reverse current flow operate in parallel. Details of the 

hardware implementation have been already reported in [33]. 

The energy coming from the human heat is collected by means 

of a set of 6 standard 2 cm  2 cm Peltier cells. The cells were 

arranged in series connection as depicted in Fig. 7a, in order to 

achieve a higher output voltage. The cell surface is 55% smaller 

than the one employed in previous works. This reduces the 

harvested power per cell, but increases the power per area, since 

a smaller surface helps to achieve a better adhesion with the 

human forearm skin. Concerning the piezo harvesting branch 

(Fig. 7b), we adopted a parallel configuration of multiple 

stacked piezoelectric disks. Finally, for the RF harvester, a 

multichannel harvester operating at 936 MHz and 2.4 GHz with 

a dual band commercial antenna (Fig. 7c) and power selected 

incoming path as in [8].  

 

Fig. 6.  Blocks representing the multi-harvesting system. It includes a thermal, 

pressure and RF energy harvesting paths, connected to a power management 
block. 

            

a)         b)      c)  

      

Fig. 7.  a) TEG Harvester; b) PZT Harvester; c) RF Antenna 
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III. MEASUREMENTS METHOD 

To compare the glove performances, the Wise test was 

conducted on the developed gloves [16,19]. Six healthy 

subjects were involved, 4 males and 2 females, all right-handed, 

40 years mean age with SD=20 years. The measurement 

protocol was approved by the local ethics committee. The glove 

was worn by the right hand and the electronic board was 

attached to the forearm. The measuring setup consisted of 4 

areas: the area where to place the open hand at rest, the large 

mold area, the small mold area and the closed hand area. The 

hand postures during the Wise test are shown in Fig. 8.  

The large mold is a 3D printed cylinder of 63 mm diameter, 

and the small mold of 53 mm. These two sizes have been 

selected because they are between open and closed hand: the 

mean values, measured with a 3D printed goniometer with 1-

degree sensitivity, are 30 degrees for MCP and PIP with large 

mold, whereas they are 45 degrees for MCP and PIP for small 

mold.  

The Wise test provides a mold gripping task A (Fig. 8 

postures 2, 3 or 4) and a resting hand task C (posture 1). At this 

stage, the unit was never removed to study the repeatability of 

the sensors. A second stage with B in the same position of A 

and D in the same position of C, the sensor unit was removed 

and worn again to study the reproducibility of the sensors. A 

time slot of 10 seconds for recording each position was selected 

from which the 6 central seconds were extracted for the 

analysis.  The test was repeated for 10 iterations, then for 10 

blocks (with a break of at least 3 minutes between two 

consecutive blocks for doffing and donning the glove).  A first 

code deals with the organization of data, whereas a second code 

is used to calculate the Range and standard deviation (SD) 

values, intra-correlation coefficients (ICCs), and correlation 

between Range and SD for all subjects. The bending angles of 

the hand joints were measured without wearing the data gloves, 

using a manual goniometer with 1-degree resolution; the 

obtained values were used in calibration for mapping the digital 

values into angular values. 

 

Fig. 8. Hand postures during Wise test: 1) open hand, 2) large mold grasping 3) 

small mold grasping, 4) hand completely closed.  

IV. MEASUREMENT  RESULTS 

A. Glove performance comparison 

Measurements performed by the 3D printed glove and the 

Lycra glove were saved in the Matlab workspace as two 5-

dimensional matrices indexed by the trial number (10), block 

number (10), joint or sensor number (10), position number (4) 

and subject (6). The Range and SD values were computed 

among the trials, and the mean across blocks, joints, positions 

and subjects is presented in Table I to evaluate repeatability 

(task A and C) and reproducibility (task B and D) in comparison 

with the results obtained by Simone [19], who applied only 5 

flex sensors on the MCP joints, but did not considered the 

thumb, and Gentner [15], who applied 10 flex sensors on MCP 

and PIP joints like our 3D printed glove. 

 
TABLE I 

MEASUREMENT RESULTS OF THE 3D PRINTED AND LYCRA GLOVE IN TERMS 

OF REPEATABILITY (TASK A-C) AND REPRODUCIBILITY (TASK B-D) 

COMPARED WITH OTHER GLOVES FROM LITERATURE. 

Glove DoF 

Task A Task B Task C Task D Mean 

Range SD Range SD Range SD Range SD Range SD 

Printed 10 5.94 2.03 9.04 3.67 2.44 1.2 5.77 1.95 5.80 2.21 

Lycra 17 6.67 2.12 6.85 2.16 3.47 1.11 4.45 1.44 5.36 1.71 

Gentner 10 6.09 1.94 7.16 2.26 2.61 0.86 3.98 1.28 4.96 1.59 

Simone 5 5.22 1.61   1 0.5   3.36 1.05 

 

The reliability between measures in each task was assessed 

by intraclass correlation coefficients (ICCs) [16]. The ICC 

calculation was based on within-subject variance, which 

reflects measurement errors. If within-subject variance is low, 

the ICC approaches 1 and the measurements are considered as 

reliable. Conversely, if the ICC approaches 0, a large fraction 

of variance is explained by measurement errors (indicating a 

low reliability). The mean out of 20 ICC calculations for each 

joint was used as a measure of joint sensor reliability. Thus, for 

each joint, four ICC values (one for each task) existed. The 

mean ICC for each joint across tasks served as a measure of 

reliability for a specific joint. 

ICC values are reported in Table II, which are comparable to 

gloves evaluated by Gentner [15] and Simone [19]. 

Consequently, the repeatability and reliability of the 3D printed, 

and the Lycra gloves are similar to other evaluated gloves and 

also lies within the measurement reliability of manual 

goniometry (0.7) [15]. 

 
TABLE II 

COMPARISON OF RELIABILITY, EXPRESSED AS INTRACLASS CORRELATION 

COEFFICIENTS (ICCS) RESULTING FROM THE WISE TEST, BETWEEN THE 3D 

PRINTED GLOVE WITH 10 DOF, THE LYCRA GLOVE WITH 17 DOF AND OTHER 

GLOVES FROM THE LITERATURE 

Glove DoF 
ICC 

Min Max Mean 

Printed 10 0.69 0.83 0.73 

Lycra 17 0.71 0.90 0.75 

Gentner 14 0.87 0.98 0.93 

Simone 4 0.79 1 0.95 

 

B. Energy Harvesting Results 

With respect to previous published papers [33,34] the multi 

harvester block has been optimized in terms of working 

efficiency. Table III summarizes the achieved results in terms 

of conversion efficiency and harvested power. 

Regarding the TEG harvested power, considering an average 

ambient temperature of 22°C, a conversion efficiency peak of 
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about 60% was achieved for an equivalent 10 kΩ load. For the 

PZT harvester measuring procedure, we employed an 

equivalent resistive load and a 75kg human walking at 1Hz 

speed on average. Measures showed in Table III demonstrate 

how the conversion efficiency peak, thus the maximum 

harvested power was achieved at lower loads, around 1 kΩ. To 

conclude, Figure 9 shows the overall multichannel RF path 

conversion efficiency, which is the combination of both low-

power and medium-power harvesting channels, covering a -20 

to 5 dBm window of incoming power. The combination of the 

two RF harvesting channels allows to obtain a good conversion 

efficiency for an extended input power range, as demonstrated 

in [33-38].  

The capabilities of the presented harvesting system where 

tested by implementing a low-power acquisition and 

transmission board as a benchmark platform. The system 

involves a microcontroller ARM Cortex M0 (by Microchip) and 

a Si4463 transceiver (by Silicon Labs) whose output 

transmission power was set to 0 dBm. The overall current is 

about 4 mA in idle mode, and as-low-as 10 mA in transmission 

mode. According to [9], by exploiting a power saving 

transmission algorithm, it is possible to achieve a power 

consumption of 13 mA on average, regardless of the chosen 

transmission baud rate (19200 or 38400), which in combination 

with the average harvested power, can extend the battery lasting 

of about 25%. 

 
TABLE III 

SUMMARY OF THE ACHIEVED EFFICIENCY AND HARVESTED POWER FOR THE 

TEG ARRAY AND PIEZOELECTRIC HARVESTER, RESPECTIVELY, WITH RESPECT 

TO THE EQUIVALENT OUTPUT LOAD. 

Equivalent Load 

[kΩ] 

TEG Conversion 

Efficiency [%] 

Piezo Harvested 

Power [mW] 

1 32 0.8 

2 37 0.55 

5 47 0.3 

10 58 0.26 

20 49 0.22 

50 29 0.2 

100 38 0.3 

 

 

Fig. 9. RF path conversion efficiency [8]. 

  

V. CONCLUSION 

We have presented a 10-17 degrees of freedom sensory 

gloves for Smart Healthcare, realized by means of different 

technologies, implementing an energy harvesting architecture. 

The harvesting circuitry, able to scavenge energy from RF, 

Thermo-Electric Generators and piezoelectric disks, was tested, 

demonstrating the feasibility towards low supply-powered IC 

applications. 

The Wise test with six healthy subjects was conducted on the 

selected gloves to make a comparison in terms of measurement 

repeatability, reproducibility and reliability, as well as power 

consumption and battery lasting. It can be shown that the 

repeatability, reproducibility and reliability of the 3D printed 

and the Lycra gloves with energy harvesting capability are 

similar to other evaluated gloves and also lies within the 

measurement reliability of manual goniometry, but the battery 

duration is increased by 25%. 
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